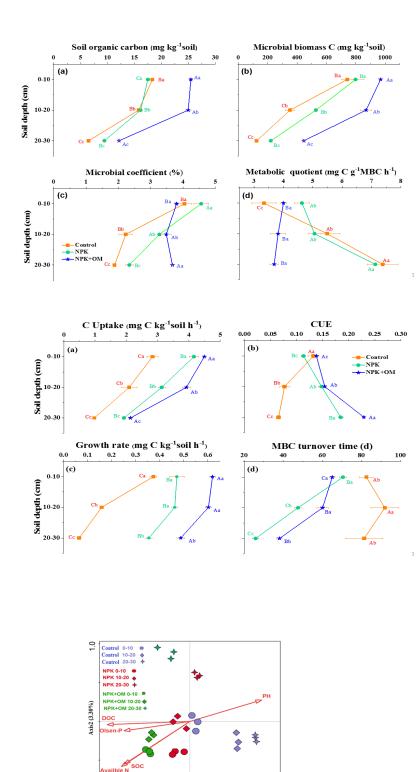
Assessment of depth-dependent microbial carbon use efficiency in long-term fertilized paddy soil using an 18O-H2O approach

Mostafa Zhran¹, Tida Ge², Yaoyao Tong³, Yangwu Deng³, Xiaomeng Wei⁴, Lynn Tin Mar⁴, Zhenke Zhu², Jinshui Wu⁵, and Anna Gunina⁶

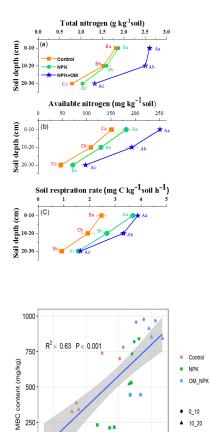
¹Egyptian Atomic Energy Authority
²Institude of Subtropical Agriculture, The Chinese Academy of Sciences
³JiangXi University of Science and Technology
⁴Institute of Subtropical Agriculture Chinese Academy of Sciences
⁵Chinese Acad Sci
⁶Universitat Kassel


May 5, 2020

Abstract

Microbial biomass (MB) production and turnover strongly affect soil organic carbon (SOC) accumulation. Microbial carbon use efficiency (CUE) and MB turnover in paddy soil were determined using a novel substrate-independent H218O labeling approach and the effect of long-term fertilization with mineral (NPK) or combined (NPK+OM (manure)) amendments in 0-10, 10-20, and 20-30 cm depths were investigated. Long-term fertilization increased microbial C uptake, CUE, and growth rates, and all indexes were the highest in the NPK+OM treatment. The CUE ranged between 0.07 and 0.23 and showed variable behavior with depth: it reduced in the control treatment, indicating that more C was allocated to energy production than biomass growth, and increased in fertilized soils, showing the shift of C usage for biomass growth. The highest CUE was observed at 20-30 cm in NPK and NPK+OM and indicated that microorganisms overcome the nutrient deficiency in deep soil layers by keeping high C uptake rates at a constant CUE. MBC turnover was more rapid in NPK (10-70 d) and NPK+OM (40-65 d) compared to control (80 d) and intensified with the depth. These findings highlight that under long-term fertilization MB turnover can be controlled by CUE. These shifts in the strategies of microorganisms functioning can explain the accumulation of SOC in heavily fertilized paddy soils.

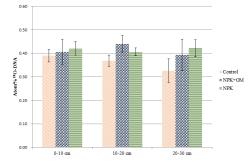
Hosted file


2MS-180.doc available at https://authorea.com/users/297389/articles/426491-assessment-ofdepth-dependent-microbial-carbon-use-efficiency-in-long-term-fertilized-paddy-soilusing-an-18o-h2o-approach

1.0

Axis1 (87.60%)

0; -1.0



10 15 DNA content (mg/kg)

20

0.

5

■ 20_30