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Abstract

Up to present, research on shout options remains only on the assumption that the underlying asset follows either Brownian

motion or geometric Brownian motion. But it can not be evaluated accurately by PDE on geometric Brownian motion. To solve

this problem this paper derives a new partial integro-differential inequality (PIDI) for shout options pricing on the assumption

that the price of the underlying asset follows the jump-diffusion model and constructs the mathematical model by combining

specific features and terminal conditions. On the basis of this model we obtain some results about shout options pricing. For

this mathematical model this paper proposes a new competitive algorithm to choose two aspects. One is employing high-order

difference for integral and partial derivative terms, the other is using Howard algorithm (also called policy iteration) for the

complementarity problem. Numerical examples show that this algorithm yields an accurate technique and is more efficient than

the traditional approaches in the case of geometric Brownian motion and jump-diffusion model, respectively.

1 INTRODUCTION

Exotic options traded in the over-the-counter market has become increasingly important since the early
1980s and is larger than the exchange-traded market. An advantage of exotic options is that they can be
tailored by a financial institution to meet the particular needs of a corporate treasurer or fund manager.
One of them is called shout options [1] given the holder to shout to the writer once or more times according
to specified rules during its life. At the end of the life of the option, the option holder receives either the
usual payoff from a European option or the intrinsic value at the time of the shout, whichever is greater.
The valuation and hedging of shout options is more complicated than that of standard options because there
is an element of uncertainty in the investor’s actions.

Up to present, academic research on shout options has not been extensive. Thomas [1] described the simple
type of shout options in 1993. Cheuk and Vorst [2] considered shout options with multiple exercise opportu-
nities and presented explicit type methods for pricing these types of derivatives under the assumption that
the underlying asset followed geometric Brownian motion in 1997. Boyle et al [9] used Monte Carlo simula-
tion to deal with Greek function integrals and dynamic programming to price 11*Corresponding author:Jun
Liu E-mail address: junliu7903@126.com complicated shout options in 1999.In his paper Boyle presented
when the number of factors exceeds four, the complication of this method far exceeds that of numerical
partial differential method. Windcliff et al. [4] solved a system of interdependent linear complementarity
problem to value the shout options and considered numerical issues related to interpolation and choice of
time stepping method in detail in 2001.Dai and Kwok [6] developed a linear complementarity problem to
analyze shout options and provided shouting boundaries using the binomial scheme and recursive integration
approach in 2004. Goard [8] derived exact solutions for both the price of the shout call option and the strike
reset put option where they each have a single shout right during the life of the contract in 2012. Ballestra
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and Cecere [21] presents a new numerical method for solving the linear complementarity problem controlled
by partial integro-differential equations in 2016. Mallier and Goard [5] used an integral equation method to
value shout options and found the behavior of the optimal exercise boundary for one and two shout options
close to maturity in 2018.

More complicated shout options were embedded in other financial products, such as segregated funds sold
by Canadian life insurance companies. These products provided a guarantee for the holders to permit to
reset shout times, up to some limit during the life of the contract. It is also worth noting that some energy
derivative contracts have included a feature called swing options [3], which is similar in many respects to
complicated shout options. About these contracts embedded with shout options Windcliff et al. [7] explored
the valuation using an approach based on the numerical solution of a set of linear complementarity problems
in 2001.In his paper he indicated the shout option components of many of these contracts may be underpriced.

During last decade there have been some literature to propose and extend high-order difference approach for
solving the partial integro-differential equation (PDE) arising from option pricing. Düring and Fournié [12]
derived a high-order difference scheme for option pricing in Heston model in 2012 .They extended this method
to non-uniform grids in 2014[13] and multiple space dimensions in 2015[14]. In 2019 Düring and Pitkin [15]
applied this approach to extend to stochastic volatility jump modes for option pricing. The advantage of this
approach is that it is very parsimonious in terms of memory requirements and computational effort and is
more efficient than finite element approaches for option pricing [15].

About Howard algorithm (also called policy iteration [17]), Howard [16] proposed this technique for the
solution of the Hamilton-Jacobi-Bellman(HJB)equations in finance in 1960.Thakoor et al. [18] developed a
new procedure for the linear complementarity formulation and used Howard’s algorithm to solve the discrete
problem obtained through a higher-order Crandall-Douglas discretization in 2019.The advantage of this
algorithm is to ensure convergence for solution of the discretized equations under sufficient conditions[17].

The purpose of this paper is to evaluate complicated shout options more accurately. So far research on shout
options remains only on the assumption that the price of the underlying asset follows either Brownian motion
or geometric Brownian motion. Now, Compared with geometric Brownian motion, jump-diffusion model can
describe the underlying asset more accurately. Therefore, this paper derives a new partial integro-differential
inequality (PIDI) for shout options pricing on the assumption that the price of the underlying asset follows
the jump-diffusion model and constructs the mathematical model by combining specific features and terminal
conditions. Another innovation is that this paper proposes a new competitive algorithm to choose two aspects
for this mathematical model. One is employing high-order difference for integral and partial derivative terms,
the other is using Howard algorithm (also called policy iteration) for the complementarity problem. The
advantage of this action is to make full use of the advantages of Howard algorithm and the high-order
difference algorithm, that is, to ensure the convergence and achieve valuation result more accurately than
the traditional finite element method for the shout options.

The rest of the paper is organized as follows. In Section 2 we derive a new partial integro-differential ine-
quality (PIDI) for shout options pricing on the assumption that the price of the underlying asset follows the
jump-diffusion model and constructs the mathematical model by combining specific features and terminal
conditions. In Section 3 we propose a new competitive algorithm by combining high-order difference and
Howard algorithm. In Section 4 we present numerical examples to compare the convergence and efficiency
of the scheme to traditional methods. Section 5 concludes.

2 MATHEMATICAL MOEL OF SHOUT OPTIONS

In this section, we derive a new partial integro-differential inequality (PIDI) for complicated shout options
pricing on the assumption that the price of the underlying asset follows the jump-diffusion model and
construct the mathematical model by combining specific features and terminal conditions.

The simple form of shout options is defined in John C. Hull [10]. Shout options is such an option that the
holder can shout to the option seller during the life of the option. At the end of the life of the option, the
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option holder receives either the usual payoff from a European option or the intrinsic value at the time of
the shout, whichever is greater. That is, the payoff function of simple shout options is

g (S,K) =

{
&amp; max {K − ST , 0} , if no shout,

&amp; max {Sτ − ST , 0}+K − Sτ , if shouting occur at the time τ, τ ∈ (0, T ) ,

where S denotes the price of underlying asset, T is the maturity time and τ is any time of the period.

The more complicated shout options is defined in Windcliff [4].The holder could have multiple rights according
to the contract rules, in some cases with a limit placed on the number of rights which may be exercised within
a given time period. That is, the holder has rights to convert the holding option contract into another one
with the same form but less flexibility by exercising the options.

2.1. Mathematical model of shout options

So far research on shout options remains only on the assumption that the price of the underlying asset follows
either Brownian motion or geometric Brownian motion. Now, Compared with geometric Brownian motion,
jump-diffusion model can describe the underlying asset more accurately. Therefore, this paper assumes that
the underlying asset follows jump-diffusion model, that is

dS (t) = (r − βλ) Sdt + σΣ (t) dW (t) + (y − 1)S (t) dQ (t) , (2.1)

where r is risk free rate, σ is volatility of underlying asset,W (t) denotes Brownian motion. S (t−) is the value
of S immediately before the jump. Q (t) is compound Poisson process with intensity λ and mean size β.

Suppose the jump sizes Y have a density f (y). In this case, the average jump size β = EY =
∫ +∞
0

yf (y) dy.
For example, the jump size Y of underlying asset price follows log-normal distribution, that is

f (y) =
1√

2πψγ
e
− (logy−α)2

2γ2 ,

then the average jump size β = eα+γ
2/2.

Under the assumption that the price of the underlying asset follows jump-diffusion model, we derive a new
partial integro-differential inequality (PIDI) for complicated shout options pricing, that is, theorem 2.1 is a
new result in this paper.

Theorem 2.1(The mathematical model for complicated shout put options) . When the underlying
asset price S follows the jump-diffusion model (2.1) and the jump size has a density function f (y), the shout
put options value V satisfies the PIDI (2.2) and the inequality (2.3)

∂V

∂t
+ (r − βλ)S ∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
+ λ

[∫ +∞

0

V (t, yS) f (y) dy − V (t, S)

]
− rV ≤ 0, (2.2)

Ṽ ≤ V , (2.3)

and the terminal condition

V (S,K,U, T ) = {

&amp; 0, S → +∞,
&amp;K − S, S → −∞,

3
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where the value Ṽ of the contract the holder receives upon shouting for complicated shout options is defined
as

Ṽ (S,K,U, t) = {

&amp;V (S,K,U + 1, t) +D (S,K,U, t) , if U + 1 ≤ Umax,
&amp;−∞, otherwise.

(2.4)

Proof: Under the risk-neutral measure, the underlying asset price S follows the following stochastic process

dS (t) = (r − βλ) Sdt + σΣ (t) dW (t) + (y − 1)S (t) dQ (t) .

The Itô formula implies

e−rt [V (t, S (t))− V (0, S (0))]

=

∫ t

0

e−ρκ
[
−ρ῞ (k, S (k)) +

∂V

∂t
(k, S (k)) + (r − βλ)S (k)

∂V

∂S
(k, S (k)) +

1

2
σ2S2 ∂

2V (k, S (k))

∂S2

]
dk

+

∫ t

0

e−rkσΣ (k)
∂V

∂S
(k, S (k)) dW (k)

+

∫ t

0

e−rk [V (k, S (k))− V (k, S (k−))] dk. (2.5)

If S has a jump at time k, then the underlying asset price satisfies

S (k) = yS (k−) .

We examine the last term in (2.5)

∫ t

0

e−rk [V (k, S (k))− V (k, S (k−))] dk

=

∫ ∞
0

∫ t

0

e−rk [V (k, yS (k−))− V (k, S (k−))] dkdy

=

∫ ∞
0

∫ t

0

e−ρκ [V (k,ψΣ (k−))− V (k, S (k−))] d (N (k)− λκ)dy

+

∫ t

0

e−ρκ [V (k,ψΣ (k−))− V (k, S (k−))] λδκ. (2.6)

Substituting (2.6) into (2.5), we obtain

d
(
e−rtV (t, S (t))

)
= e−rt

{
−rV (t, S (t)) +

∂V

∂t
(t, S (t)) + (r − βλ)S (t)

∂V

∂S
(t, S (t)) +

1

2
σ2S2 ∂

2V (t, S (t))

∂S2
+ λ

∫ ∞
0

[V (t, ymS (t)) f (y)− V (t, S (t))] dy

}
dt+e−rt σΣ (t)

∂V

∂S
(t, S (t)) dW (t)

4
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+

∫ ∞
0

e−ρτ [V (t,ψΣ (t−))− V (t, S (t−))] d (N (t)− λτ) . (2.7)

Using Itô formula for e−rtπ (t), the following equation can be obtained

d (e−rtπ (t)) = e−rt [−ρπ (t) dt + δπ (t)]

= e−rt [π (t) dS (t)− rS (t)π (t) dt]

= e−rt [−σΣ (t)π (t) dW (t) + π (t)S (t−) d (Q (t)− βλτ)]

= e−rt
[
−σΣ (t)π (t) dW (t) + π (t)S (t−)

∫ ∞
0

d (N (t)− λδτ)
]
. (2.8)

Let

π (t) =
∂V

∂S
.

Considering (2.7) and (2.8), we obtain

d [e−rtV (t, S (t))− e−rtπ (t)]

= d [e−rtV (t, S (t))]− d [e−rtπ (t)]

= e−rt
{
−rV (t, S (t)) +

∂V

∂S
(t, S (t)) + (r − βλ)S (t)

∂V

∂S
(t, S (t)) +

1

2
σ2S2 ∂

2V (t, S (t))

∂S2
+ λ

[∫ ∞
0

V (t, yS (t)) f (y) dy− V (t, S (t))

]}
dt

Therefore, the following inequality can be established

−rV +
∂V

∂t
+ (r − βλ)S ∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
+ λ

[∫ +∞

−1
V (t, yS) f (y) dy− V (t, S)

]
≤ 0.

Because the remaining times of contract held by the shout options holder after exercising the shout right is
shorter than that of the original contract, and the number of shouts is less, there is

Ṽ ≤ V.

For random variable U , when U+1 ≤ Umax, the new contract value Ṽ (S,K,U, t) with residual shout numbers
U corresponds to the original contract valueV (S,K,U + 1, t) with shout numbers U + 1 and the dividend
function D (S,K,U, t) due to shout, that is

Ṽ (S,K,U, t) =

{
&amp;V (S,K,U + 1, t) +D (S,K,U, t) , ifU + 1 ≤ Umax,

&amp;−∞, otherwise.

At the maturity time t = T we can get the following equation

V (S,K,U, T ) = g (S,K) .

We will restrict attention in this work to shout put options, then the payoff function is given by

g (S,K) = max (K − S, 0) , (2.9)

5
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then for shout put option

V (S,K,U, T ) = max (K − S, 0) ,

So the terminal condition of shout put options is

V (S,K,U, T ) = {

&amp; 0, S → +∞,
&amp;K − S, S → −∞.

2.2 Some results from Theorem2.1

According to the Theorem2.1 we can obtain some results including the simplified form of the PIDI (2.2),
discrete jump distribution and completeness and so on.

When the jump sizes follow specific continuous distributions, the PIDI (2.2) can be transformed into the
partial differential inequality.

Corollary 2.1(Simplified form of the PIDI (2.2)) Assuming that the jump sizes Yi of underlying asset
price follow exponential distribution, that is, f (y) = θe−θy, the PIDI (2.2) can be simplified as follows

−rV +
∂V

∂t
+ aS

∂V

∂S
+
b

2
S2 ∂

2V

∂S2
≤ 0 ,

where a = r + λ
(
1
θ − 1− β

)
, b = 1 + σ2 − 2

θ + 2
θ2 .

Proof: For[V (t, (y + 1)S)− V (t, S)]using Taylor expansion and substituting into the PIDI (2.2), we obtain

−rV+
∂V

∂t
+

[
r − βλ+ λ

∫ ∞
0

(y − 1) f (y)dy

]
S
∂V

∂S
+

[
σ2 +

∫ ∞
0

(y − 1)
2
f (y)dy

]
S2

2

∂2V

∂S2
≤ 0. (2.10)

If Y follows the exponential distribution with parameter θ, then

∫ ∞
0

yf (y)dy = EY =
1

θ
, (2.11)

∫ ∞
0

y2f (y)dy = EY 2 = DY + E2Y =
1

θ2
+

1

θ2
=

2

θ2
. (2.12)

Let

a = r + λ

(
1

θ
− 1− β

)
,

b = 1 + σ2 − 2

θ
+

2

θ2
.

Substituting (2.11) and (2.12) into (2.10), we obtain

−rV +
∂V

∂t
+ aS

∂V

∂S
+
b

2
S2 ∂

2V

∂S2
≤ 0 .

When the jump sizes are discrete random variables, the PIDI followed by the price of complicated shout
options could be obtained easily.

6
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Remark 2.1(Discrete jump distribution). There are modifications of Theorem 2.1 for the case when the
jump sizes Yi have a probability mass functionp (y1) , · · · , p (ym) rather than a density f (y) under risk-neutral

measure. In (2.2), the term
∫ +∞
0

V (t, yS) f (y)dywould be replaced by
∑M
m=1 p(ym)V (t, ymS).

The mathematical model of complicated shout options (Theorem 2.1) always holds for an arbitrary shout
options with different payoff functions.

Remark 2.2(Completeness). In this subsection, we have contracted the value for complicated shout put
options on the underlying asset driven by jump-diffusion processes. It is clear from the analysis that the
same argument would work for an arbitrary shout options with payoffh (S (T )) at time T written on a stock
modelled this way. One could simply replace the put payoff by the function of h in equation (2.9).The partial
integro-differential inequality (2.2) and the inequality (2.3) would still apply, although now with the terminal
condition V (S,K,U, T ) = h(S).

The following Remark2.3 shows that the previous research on shout option is only a specific case of this
paper and Remark 2.4 gives the significance of inequality (2.3).

Remark 2.3 (Consistency). If there is not jump during the life of the contract, that is, the Eq. (2.1) does
not contain the jump term, then the PIDI (2.2) reduce to PDE in [4].

Remark 2.4 (Sufficiency). Shout options holders have the right to exercise at any time or shout any times
during the life of the contract. In view of this situation, the second inequality in (2.2) ensures that the seller
of shout options has sufficient amount to meet the buyer’s exercise.

3 AN NEW ALGORITHM FOR PRICING SHOUT OPTIONS

Another innovation is that this paper proposes a new competitive algorithm to choose two aspects for this
mathematical model. One is employing high-order difference for integral and partial derivative terms, the
other is using Howard algorithm (also called policy iteration) for the complementarity problem.

Let x = logS, τ = T − t, we obtain

−∂V
∂τ

+

(
r − βλ− 1

2
σ2

)
∂V

∂x
+

1

2
σ2 ∂

2V

∂x2
+λ

[∫ +∞

0

V (T − τ, yex) f (y) dy− V (T − τ, ex)

]
−rV ≤ 0. (3.1)

In order to calculate conveniently, it is necessary to limit x to the region Ω = [−ϕ,+ϕ]. Considering the
uniform grid with interval h = 2ϕ/M that the grid points are given by xm = −ϕ + mh,m ∈ [0,M ], and
Vm (τ) = V (xm, τ) is defined.

3.1 Handling integral term

Integral term is defined on(−∞,+∞),then the region outside Ω1 also needs to be calculated

We set

z = logy, H̃ (z, ỹ, U, τ) = H (ez, ỹ, U, τ) andf̃ (z) = ezf (ez)

so the integral term of (3.1)

λ

∫ +∞

0

V (T − τ, yex) f (y)dy

= λ

∫ +∞

−∞
V
(
T − τ, ex+z

)
f (ez) ezdz

= λ

∫ −ϕ
−∞

V
(
T − τ, ex+z

)
f (ez) ezdz+λ

∫ +ϕ

−ϕ
V
(
T − τ, ex+z

)
f (ez) ezdz+λ

∫ +∞

+ϕ

V
(
T − τ, ex+z

)
f (ez) ezdz

7
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By the composite trapezoidal rule in the region Ω, we have the following approximation

λ

∫ +ϕ

−ϕ
V
(
T − τ, ex+z

)
f (ez) ezdz

≈ h

3

M∑
m=1

[
V
(
T − τ, ex+zm−1

)
f (ezm−1) ezm−1 + 4V

(
T − τ, yex+zm

)
f (ezm) ezm + V

(
T − τ, ex+zm+1

)
f (ezm+1) ezm+1

]
Integral term is defined in the region(−∞,+∞), then the region outsideΩ also needs to be calculated.

For shout put options, when ϕ is sufficiently large, we obtain

λ

∫ +∞

+ϕ

V
(
T − τ, ex+z

)
f (ez) ezdz ≈ λ

∫ +∞

+ϕ

max
(
1− eξ, 0

)
f (ξ) dξ = 0.

For the integral term of shout put options defined in the region(−∞,−ϕ), we estimate its value by use of
the composite trapezoidal rule

λ

∫ −ϕ
−∞

V
(
T − τ, ex+z

)
f (ez) ezdz ≈ λ

∫ −ϕ
−∞

max
(
1− eξ, 0

)
f (ξ) δξ.

3.2 Handling differential term

Let δx and δ 2
x denote the first and second order central difference approximations with respect to x,

respectively, then

δxVm =
Vm+1 − Vm−1

2h

and

δ2xVm =
Vm+1 − 2Vm + Vm−1

h2
.

At the internal node of region Ω we obtain

Vτ =
(
r − βλ− 1

2σ
2
)
δxVm + 1

2σ
2δ2xVm − rVm + λωm + εm, (3.2)

whereωm= } (Vm) +l (Vm) .

Local truncation error

εm =
h2

12

(
2

(
r − βλ− 1

2
σ2

)
(Vxxx)m +

1

2
σ2 (Vxxxx)m

)
+O

(
h4
)
.

Fourth-order discretization can be obtained by substituting higher derivatives in terms of Vx and Vxx and
using central difference approximation. Referring to Thakoor et al [11], there is

1

2
σ2Vξξξ = Vξτ −

(
r − βλ− 1

2
σ2

)
Vxx + rVx − λωx,

8
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and

(
1

2
σ2

)2

Vxxxx =
1

2
σ2Vξξτ −

(
r − βλ− 1

2
σ2

)
Vx +

(
r − βλ− 1

2
σ2

)
2Vxx − r

(
r − βλ− 1

2
σ2

)
Vx

+
(
r − βλ− 1

2σ
2
)
ωx + r

2σ
2Vxx − 1

2σ
2ωxx.

Substituting Vxxx and Vxxxx into (3.2), we obtain the numerical discretization form

(
1

2
σ2 +

h2

12

(
1

2
σ2δ2x +

(
r − βλ− 1

2
σ2

)
δx

))
(Vτ )m =

((
1

2
σ2

)2

+
h2

12

((
r − βλ− 1

2
σ2

)
2 − r

2
σ2

))
δ2xVm+

(
1

2
σ2

(
r − βλ− 1

2
σ2

)
− h2

12
r

(
r − βλ− 1

2
σ2

))
δxVm−

r

2
σ2Vm+

(
1

2
σ2 +

h2

12

(
1

2
σ2δ2x +

(
r − βλ− 1

2
σ2

)
δx

))
ωm.

It is noted that the finite difference operators δx andδ2x are δx = 1
2h[

−1 amp; 0 amp; 1
]
,δ2x = 1

h2[
1 amp;−2 amp; 1

]
, respectively, then for μ [1,M − 1],the operators satisfy the following equation

α (Vτ )m−1 + η (Vτ )m + γ (Vτ )m+1 = (δ − υ)Vm−1 + ξVm + (δ + υ)Vm+1 + αωm−1 + ηωm + γωm+1,

where

ωm= } (xm) +l (xm) , α =
σ2

24
−
(
r − βλ− 1

2σ
2
)
h

english24,η = 5σ2

12 , γ = σ2

24 +
(r−βλ− 1

2σ
2)h

english24,

δ =
1

12

((
r − βλ− 1

2
σ2

)
2 − r

2
σ2

)
+

(
σ2
)2

4h2
, v =

σ2
(
r − βλ− 1

2σ
2
)

english4h-ρ
(
r − βλ− 1

2σ
2
)
h

ενγλιση24,

ξ = − 1
6

((
r − βλ− 1

2σ
2
)
2 + 5σ2

2

)
.

3.3 New algorithm

BV
′
(τ) = AV (τ) + BW (τ) + (τ) ,

where

V (τ) = [V1 (τ) , V2 (τ) , · · · , VM−1 (τ)]
T
, ω (τ) = [ω1 (τ) , ω2 (τ) , · · · , ωM−1 (τ)]

T
, (τ) = [1 (τ) , 0, · · · , 0,M−1 (τ)]

T

9
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1 (τ) = −αV
′

0 (τ) + αω0 (τ) + (δ − v)V0 (τ) ,M−1 (τ) = −γV
′

M (τ) + γωM (τ) + (δ + v)VM (τ) .

Let

δ−v = δ − v, δ+v = δ + v,

define

A =
ξ amp; δ+v amp; 0 amp; 0 amp; 0
· · · amp; · · · amp; · · · amp; · · · amp; · · ·
0 amp; 0 amp; δ−v amp; ξ amp; δ+v
0 amp; 0 amp; 0 amp; δ−v amp; ξ

,B=


β amp; γ amp; 0 amp; 0 amp; 0
α amp;β amp; γ amp; 0 amp; 0
· · · amp; · · · amp; · · · amp; · · · amp; · · ·
0 amp; 0 amp;α amp;β amp; γ
0 amp; 0 amp; 0 amp;α amp;β

.

Let

e (τ) = [e1, e2, · · · , eM−1]
T
,

whereem = 2
∑M

2 −1
j=1 V2j (τ)fjm + 4

∑M
2
j=1 V2j−1 (τ)f2j−1,m.

Let

f j = f (−jh)

then e (τ) can be written as

e (τ) = FGV (τ) ,

where G is a diagonal matrix and can be written as G = diag [4, 2, 4, · · · , 2, 4], F is Toeplitz matrix and can
be written as

F =

f0 amp; f1 amp; f2 amp; · · · amp; fM−3 amp; fM−2
f−1 amp; f0 amp; f1 amp; f2 amp; · · · amp; fM−3

f−2 amp; f−1 amp; f0 amp; f1 amp; · · · amp;
...

... amp;
. . . amp;

. . . amp;
. . . amp;

. . . amp; f2
f−(M−3) amp; · · · amp; f−2 amp; f−1 amp; f0 amp; f1
f−(M−2) amp; f−(M−3) amp; · · · amp; f−2 amp; f−1 amp; f0


.

Let (τ) = [ð1 (τ) ,ð2 (τ) , · · · ,ðM−1 (τ)]
T

, where ðm (τ) = h
3 (g0m (τ) + gMm (τ) +} (xm)), then ω (τ) can be

written asω (τ) = λ
(
h
3FGV (τ) + ð (τ)

)
.

Coefficient B is a nonsingular matrix, then

V
′
(τ) = CV (τ) + θ (τ) , τ [0, T ] ,(3.3)

where C = B−1A+ λη

10
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english3FG,θ (τ) = λð (τ) +B−1d (τ).

The payoff function of shout options is not smooth, so in order to achieve the fourth-order convergence rate,
grid refinement technology is used around the strike price.

3.4 Cubic spline time integral

The time interval [0, T ] is divided intoN intervals with the length k = T/N and the time node
is τn = nk, ν [0, N ]. At each time interval [τn, τn+1]three spline approximations are found for the given
valuesV (τn)and the differential terms V

′
(τn)V

′ (
τn + k

2

)
V
′
(τn + k), that is

V (τ) = V (τn) + kρ0 (q)V
′
(τn) + kρ1 (q)V

′
(
τn +

k

2

)
+ kρ2 (q)V

′
(τn + k) ,

where polynomial ρi are

ρ0 (q) = q − 3

2
q2 +

2

3
q3, ρ1 (q) = 2q2 − 4

3
q3, ρ2 (q) = −1

2
q2 +

2

3
q3.

Therefore, we obtain

V (τn + k) = V (τn) + k
6

(
V
′
(τn) + 4V

′ (
τn + k

2

)
+ V

′
(τn + k)

)
,(3.4)

V
(
τn + k

2

)
= V (τn) + k

24

(
5V
′
(τn) + 8V

′ (
τn + k

2

)
− V ′ (τn + k)

)
.(3.5)

By use of (3.3) and (3.5), we have(
I − k

3C
)
V
(
τn + k

2

)
=
(
I + 5k

24C
)
V (τn)− k

24CV (τn + k) +1 (τn),

where 1 (τn) = k
24

(
5b (τn) + 8b

(
τn + k

2

)
− θ (τn + k)

)
.

Removing V
(
τn + k

2

)
, (3.4) can be written as the following form

V (τn + k) = V (τn) +2 (τn) +
k

6
C

(
V (τn) + 4V

(
τn +

k

2

)
+ V (τn + k)

)
,

where2 (τn) = k
6

(
θ (τn) + 4θ

(
τn + k

2

)
+ θ (τn + k)

)
.

Time marching algorithm

(
I − k

2
C +

k2

12
C2

)
V (τn + k) =

(
I +

k

2
C +

k2

12
C2

)
V (τn) + c (τn) ,

where c (τn) = 2k
3 C1 (τn) +

(
I − k

3C
)
2

(τn) .

Although 1 (τn) and2 (τn) depend on values at time τn + k
2 and τn + k, these values can be easily calculated

because they only depend on terminal conditions.

3.5 Solutions obtained by the new algorithm

Linear complementarity problem (2.2) can be described as the form min (Vτ − LV, V − g) = 0.

The discrete type of the above is

min
(
BV

′
(τ)− BV (τ)− Bw (τ)− (τ), V (τ) − g

)
= 0,(3.6)

11
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where g = [g1, g2, · · · , gM−1]
T

, gm = Kmax (1− exm , 0).

Vector a = [a1, a2, · · · , an]
T
, b = [b1, b2, · · · , bn]

T
.

Let min (ai, bi) represents the component of vector min (a, b).

Let V n = V (τn), then the calculation ofV n+1 can be obtained by solving the discrete

problemmin
(
BV n+1 − ζn, V n+1 − g

)
= 0, whereB =

(
I − k

2C + k2

12C
2
)

.

Let cn = c (τn), then the vectorζn can be obtained by the following formula

ζn =
(
I + k

2C + k2

12C
2
)
V n + cn.

Let Q = {0, 1} ,M ′
= M − 1, considering the problem

(B (α̂)V −$ (α̂)) ,(3.7)

where for α̂εQM
′

,B (α̂) is a monotone matrix of dimension M
′
, and $ (α̂) is a vector on M

′
.

For the case whereα̂ = (α̂1, α̂2, · · · , α̂M ′ ) εQM
′

and Bij (α̂) depend only on α̂i, for each α̂εQ,α̂â =

(â, â, · · · , â) ∈ QM
′

, Bα̂ = B
(
α̂α̂
)
, $α̂ = $

(
αα̂
)
, then (3.7) can be represented equivalently as followi-

ng(
Bα̂V −$α̂

)
(3.8)

Therefore, Eq. (3.6) can be written as Eq. (3.8) in the case B0 = B,B1 = I,$0 = ζn, $1 = g .

Then this algorithm is applied to find the solution of (3.8).

(1) Initializeα̂0 ∈ QM
′

= {0, 1}M
′

(2) For k (≥ 0) iteration

(a) Find V (k) ∈ RM
′

, so that B
(
α̂k
)
V (k) = $

(
α̂k
)
. If k ≥ 1and V (k) = V (k−1), the iteration

stops, otherwise do (b)

(b) For each i = 1, 2, · · · ,M ′
, letα̂k+1

i = {

&amp; 0, if
(
B0V (k) −$0

)
≤
(
B1V (k) −$1

)
&amp; 1, otherwise

(c) Set k = k + 1 and go back to (a)

This algorithm generates a series of approximate values V k forV n+1 and if coefficient B is M-matrix, it has
finite terminal. In all our numerical experiments, we have not encountered any violation of this nature.

4. NUMERICAL ANALYSIS

In this section, first we show the convergence of the algorithm in this paper is superior to traditional finite
element method, then we compare the performance between the algorithm proposed in this paper and
traditional method in two cases, one is without jump term, the other is in jump diffusion model.

4.1 Convergence of the algorithm

We use Figure1 to illustrate the time convergence of the numerical algorithm. The result indicates that the
algorithm we propose in this paper has the fourth-order convergence rate in time because the logarithmic-
logarithmic graph is parallel to the fourth-order convergence slope, while the Crank-Nicolson time-stepped
finite element method has the second-order convergence rate. High-order discretization of space and time
means that the algorithm has higher accuracy than second-order discretization under the same number of
time steps and space nodes.

12
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4.2 Performance Comparison of shout options with no jumps

The first example is carried out for the jump-diffusion model with the parameter λ = 0, that is, the underlying
asset follows geometric Brownian motion only. For comparison, we also include results in [2] and [4] for the
same shout options. The result in [4] were obtained using numerical PDE method and in [2] using a similarity
reduction and an explicit difference method.

Parameters are used σ = 0.20, r = 0.10,K = $100, T = 5yr In Table 1.The Reference solution using asset
grid nodes=n, time steps=n. Result in [4]: time steps=n, asset grid nodes=2n− 1.The error given is for the
course grid and was estimated using the converged answer at the finest level as an approximation for the
exact solution.

Figure1.Convergence of shout put options in jump-diffusion model

Table 1 Performance comparison between algorithm in this paper and that in [4] and [2] for pricing at-the-
money shout put options with no jumps.

No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

Shout
counter
reset
yearly

Shout
counter
reset
yearly

Shout
counter
reset
yearly

Number of
shouts

1 2 5 10 1/yr (5
total)

2/yr (10
total)

4/yr (20
total)

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Algorithm
in this
paper

Asset
nodes

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

100 5.5701 7.7158 11.280 13.805 9.9502 12.411 14.474
200 5.5706 7.7226 11.285 13.818 9.9535 12.416 14.488
400 5.5713 7.7235 11.296 13.825 9.9549 12.419 14.492
800 5.5714 7.7242 11.299 13.829 9.9561 12.420 14.497
Course
grid error

0.0052 0.0081 0.0095 0.014 0.00087 0.014 0.016

Result in
[4]

Result in
[4]

Result in
[4]

Result in
[4]

Result in
[4]

Result in
[4]

Result in
[4]

Result in
[4]

13
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No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

No shout
counter
resets

Shout
counter
reset
yearly

Shout
counter
reset
yearly

Shout
counter
reset
yearly

Asset
nodes

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

100 5.5648 7.7144 11.278 13.793 9.9412 12.399 14.463
200 5.5697 7.7215 11.291 13.814 9.9524 12.415 14.485
400 5.5709 7.7233 11.294 13.820 9.9551 12.419 14.49
800 5.5712 7.7238 11.295 13.821 9.9557 12.419 14.491
Course
grid error

0.0064 0.0094 0.017 0.028 0.0145 0.020 0.028

Result in
[2]

Result in
[2]

Result in
[2]

Result in
[2]

Result in
[2]

Result in
[2]

Result in
[2]

Result in
[2]

Time
steps

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

Option
value at
S = 100

100 5.59 7.74 11.22 13.53
250 5.58 7.73 11.27 13.71
500 5.58 7.73 11.28 13.77 N/A N/A N/A
1000 5.57 7.73 11.29 13.80
5000 5.57 7.72 11.29 13.82
Course
grid error

0.02 0.02 0.07 0.29

Results in table 1 indicates that the algorithm in this paper yields the more accurate value for the shout
options according to the indicator course grid error.

4.3 Performance Comparison of shout options in jump-diffusion model

In this part, performance of shout options in jump-diffusion model will be compared between the algorithm
in this paper and two traditional finite element methods. The first one used an exponential time integration
(ETI) [20] and the other employed a second-order backward differentiation formula (BDF-2) [19]. Parameters
are S0 = 80,K = 80, σ = 0.25, T = 1, r = 0.03 and the jump term parameters λ = 1.2, α = 0.15, γ = 0.3.
The other parameters are ϕ = 3 and the number of time steps is twice that of spatial steps.

Table 2 shows that the accuracy of algorithm in this paper is much higher than that of finite element method
in calculating shout options price. For example, when 480 spatial steps are used, the error of algorithm in
this paper is only10-7, which is much smaller than that of finite element method10-3.

Table 2 Performance comparison on shout put options between algorithm in this paper and finite element
algorithm in jump-diffusion model

M ETI ETI BDF-2 BDF-2

price error price error
Linear element Linear element Linear element Linear element Linear element
30 12.3384 2.2E-1 14.6687 2.2 E-1
60 13.8231 7.1E-2 14.9471 7.1 E-2
120 15.0223 3.4E-2 15.0132 3.4 E-2
240 15.0346 4.8E-3 15.0296 4.8 E-3
480 15.0521 1.2E-3 15.0036 1.2 E-3

14



P
os

te
d

on
A

u
th

or
ea

1
F

eb
20

20
—

C
C

B
Y

4.
0

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

05
7
2
47

.7
44

36
49

9
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

M ETI ETI BDF-2 BDF-2

M price error rate rate
Algorithm in this paper Algorithm in this paper Algorithm in this paper Algorithm in this paper Algorithm in this paper
30 14.8266 0.8 E-1 - -
60 15.0503 3.5 E-3 3.412 3.412
120 15.0512 1.4 E-4 3.487 3.487
240 15.0520 1.8 E-5 3.102 3.102
480 15.0520 6.5 E-7 3.034 3.034
Ref 15.0520

It is obviously found from Table 3 that for shout put options, price generated by the algorithm in this paper
using 272 spatial nodes can meet the accuracy requirement when two sets of parameters are selected. On a
large number of grid nodes, the algorithm improves the speed because of processing integral terms.

Table 3 Shout put options in jump-diffusion model (parametersS0 = 80,K = 80, r = 0.03, T = 0.5, ϕ = 3)

M price error rate CPU(s)

σ = 0.1, γ = 0.5, α = −0.7, λ = 0.2 σ = 0.1, γ = 0.5, α = −0.7, λ = 0.2 σ = 0.1, γ = 0.5, α = −0.7, λ = 0.2 σ = 0.1, γ = 0.5, α = −0.7, λ = 0.2 σ = 0.1, γ = 0.5, α = −0.7, λ = 0.2
34 2.2813 4.2 E-2 – 0.363
68 2.3014 4.2 E-3 4.112 0.833
136 2.3021 8.5 E-4 3.545 5.765
272 2.3100 2.1 E-4 3.826 94.77
Ref 2.3102
σ = 0.12, γ = 0.15, α = 0.2, λ = 0.2 σ = 0.12, γ = 0.15, α = 0.2, λ = 0.2 σ = 0.12, γ = 0.15, α = 0.2, λ = 0.2 σ = 0.12, γ = 0.15, α = 0.2, λ = 0.2 σ = 0.12, γ = 0.15, α = 0.2, λ = 0.2
34 2.5033 2.2 E-2 0.132
68 2.5108 1.8 E-3 4.232 0.623
136 2.5133 2.5 E-4 3.826 5.236
272 2.5133 3.6 E-5 3.131 87.645
Ref 2.5133

5. CONCLUSIONS

In this paper, we derive a new partial integro-differential inequality (PIDI) for shout options pricing on
the assumption that the price of the underlying asset follows the jump-diffusion model and construct the
mathematical model by combining specific features and terminal conditions. Another innovation is that this
paper proposes a new competitive algorithm. Numerical experiments confirm the convergence in pricing
shout options and shows that the algorithm proposed in this paper is superior to the traditional algorithm
in the case of geometric Brownian motion and jump diffusion model, respectively.
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[13] B. Düring, M. Fournié, C. Heuer. High-order compact finite difference scheme for option pricing in
stochastic volatility models on non-uniform grids. J COMPUT APPL MATH. 2014; 271:247–266. DOI:
10.1016/j.cam.2014.04.016.
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