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Abstract

Glyphosate is the world’s most widely used herbicide. The commercial success of this molecule is due to its non-selectivity and

its action, which would supposedly target specific biosynthetic pathways found mainly in plants. Multiple studies have however

provided evidence for high sensitivity of many non-target species to glyphosate and/or to formulations (glyphosate mixed with

surfactants). This herbicide, found at significant levels in aquatic systems through surface runoffs, impacts life history traits

and immune parameters of several aquatic invertebrates’ species. Some of these species are vectors of diseases, one of the most

important of which is the mosquito. Mosquitoes, from hatching to emergence, are exposed to aquatic chemical contaminants.

In this study, we first compared the toxicity of pure glyphosate to the toxicity of glyphosate-based formulations for the main

vector of avian malaria in Europe, Culex pipiens mosquito. Then we evaluated, for the first time, how field realistic dose of

glyphosate interacts with larval nutritional stress to alter mosquito life history traits and susceptibility to avian malaria parasite

infection. Our results show that exposure of larvae to field-realistic doses of glyphosate, pure or in formulation, did not affect

larval survival rate, adult size and female fecundity. One of our two experimental blocks showed, however, that exposure to

glyphosate decreased development time and reduced mosquito infection probability by malaria parasite. Interestingly the effect

on malaria infection was lost when the larvae were also subjected to a nutritional stress, probably due to a lower ingestion of

glyphosate.

ABSTRACT

Glyphosate is the world’s most widely used herbicide. The commercial success of this molecule is due
to its non-selectivity and its action, which would supposedly target specific biosynthetic pathways found
mainly in plants. Multiple studies have however provided evidence for high sensitivity of many non-target
species to glyphosate and/or to formulations (glyphosate mixed with surfactants). This herbicide, found
at significant levels in aquatic systems through surface runoffs, impacts life history traits and immune
parameters of several aquatic invertebrates’ species. Some of these species are vectors of diseases, one of the
most important of which is the mosquito. Mosquitoes, from hatching to emergence, are exposed to aquatic
chemical contaminants. In this study, we first compared the toxicity of pure glyphosate to the toxicity of
glyphosate-based formulations for the main vector of avian malaria in Europe, Culex pipiens mosquito. Then
we evaluated, for the first time, how field realistic dose of glyphosate interacts with larval nutritional stress to
alter mosquito life history traits and susceptibility to avian malaria parasite infection. Our results show that
exposure of larvae to field-realistic doses of glyphosate, pure or in formulation, did not affect larval survival
rate, adult size and female fecundity. One of our two experimental blocks showed, however, that exposure
to glyphosate decreased development time and reduced mosquito infection probability by malaria parasite.
Interestingly the effect on malaria infection was lost when the larvae were also subjected to a nutritional
stress, probably due to a lower ingestion of glyphosate.
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Introduction

Glyphosate is the world’s most widely used herbicide. More than 85 000 tons are spread every year (Ben-
brook, 2016). The commercial success of glyphosate is due to its non-selectivity and its action, which would
supposedly target specific biosynthetic pathways found only in plants and certain microorganisms, thus min-
imizing its toxicity to non-target organisms. Many studies belie this assumption and provided evidence for
high sensitivity of many non-target species to glyphosate (Annett et al., 2014; Gill et al., 2018). In addition,
glyphosate is mixed with surfactants to improve the performance of this foliar applied herbicide (surfactants
increase the surface area in contact with the vegetation). Comparative toxicity assessments between for-
mulations (glyphosate mixed with surfactants) and pure glyphosate consistently show that formulations are
more toxic than glyphosate alone (Gill et al., 2018; Nagy et al., 2019).

It has been estimated that less than 0.1% of glyphosate-based herbicides applied to crops reach their specific
targets (Nguyen et al., 2016). Herbicide and their degradation products are therefore found at significant
levels in the environment (Bai and Ogbourne, 2016; Peruzzo et al., 2008; Struger et al., 2008) and, in
particular, in aquatic systems through surface runoffs (Giesy et al., 2000; Morrissey et al., 2015; Van Bruggen
et al., 2018). Exposure to sublethal concentrations of glyphosate, pure or in formulation, induces biochemical,
physiological and behavioral alterations in many fish and amphibian species (Daam et al., 2019; Langiano
and Martinez, 2008; Mann and Bidwell, 1999; Modesto and Martinez, 2010). An increasing number of
studies also showed negative effects of glyphosate exposure on life history traits (Hansen and Roslev, 2016;
Janssens and Stoks, 2017; Kibuthu et al., 2016; Morris et al., 2016) and immune parameters (Matozzo et al.,
2019; Mohamed, 2011; Monte et al., 2019) of several aquatic invertebrates’ species. Some of these species
are vectors of diseases, one of the most important of which is the mosquito.

The pre-imaginal stages of mosquitoes develop in freshwater environments and, from hatching to emergence,
larvae and pupae may therefore be exposed to aquatic chemical contaminants. Glyphosate exposure may alter
mosquito behavior (Baglan et al., 2018), life history traits such as larval survival rate or reproduction (Bara
et al., 2014; Kibuthu et al., 2016; Morris et al., 2016 but see Baglan et al., 2018), as well as the expression of
genes conferring resistance to insecticides (Riaz et al., 2009). Glyphosate exposure has therefore the potential
to influence the vectorial capacity of mosquitoes. To date, no studies have however tested whether exposure
to glyphosate could directly affect mosquito susceptibility to vector-borne parasite infections and whether
this potential impact is modulated by larvae nutritional stress. In the wild, mosquito larvae are exposed
simultaneously to multiple biotic (competition, predation) and abiotic (temperature, bioactive contaminants,
food quality, (Beketov and Liess, 2007; Muturi et al., 2011; Tripet et al., 2008)) stresses. All possible outcomes
of stressor combinations (i.e. additive, synergistic or antagonistic) may be observed (Coors and Meester,
2008; Crain et al., 2008) and influence vector-borne pathogen transmission directly through changes in vector
density or indirectly by changing vector immunocompetence, lifespan or reproductive potential.

Our specific aims in this study were to answer three questions. First, does exposure of larvae to glyphosate
influence mosquito life history traits and susceptibility to malaria parasite infections? Second, is the poten-
tial effect of glyphosate-based herbicides (formulation) stronger than glyphosate alone? Third, is there an
additive, synergistic or antagonistic effect between two different stressors, namely glyphosate exposure and
food limitation? Experiments were conducted with a natural system consisting on the avian malaria parasite
Plasmodium relictum and its vector in the wild, the mosquito Culex pipiens(Pigeault et al., 2015).

Materials and methods

2.1 Malaria parasites

Plasmodium relictum (lineage SGS1) is the most prevalent agent of avian malaria in Europe (Valkiunas,
2004). The parasite strain used in the first experiment was isolated from an infected Great tit (Parus major
) in Lausanne, Switzerland in June 2018. Since then, the parasite has been maintained by carrying out
regular passages across a stock canaries (Serinus canaria ) through intraperitoneal injections (i.p) until the
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experiment (November 2018, Pigeault et al., 2015). The Plasmodium relictum strain (lineage SGS1) used
in the second experiment was isolated two months before the experiment (January 2019) from an infected
House sparrow (Passer domesticus ) captured in the field and passaged to näıve canaries by i.p.

Prior to the experimental infection, a small amount (ca.3-5 μL) of blood was collected from the medial
metatarsal vein of each canaries to ensure that they were free from any previous haemosporidian infections.
Three and four birds, for the experiment one and two respectively, were then inoculated by intraperitoneal
injection of 100μL of an infected blood solution. Blood solution was constituted with a mixture of PBS
and blood (ratio 1:1) sampled from 3 canaries infected with the parasite three weeks before the experiment.
Ten days post-infection, bird parasitaemia (percentage of infected red blood cell) was estimated by visual
quantification on blood smears (Valkiunas, 2004).

2.2 Mosquito rearing and experimental infections

Both experiments were conducted with a wild lineage of Culex pipiens mosquitoes, the main vector of
Plasmodium relictum in Europe, collected in Lausanne (Switzerland) and maintained in insectary since
August 2017. Mosquito eggs used in the experiments were obtained by feeding 30-40 females on one healthy
bird (Serinus canaria ). All eggs were then placed in the same plastic tank. One day post-hatching, larvae
were haphazardly collected and randomly assigned to the different treatment groups (see below). Larvae
were reared individually in plastic tube (30mL) filled with 6 mL of solution (see below). Larval mortality
and development time were daily recorded until adult emergence. Immediately after emergence, mosquitoes
belonging to the same treatment were placed inside an adult rearing cage. Males and females were kept
together and fed ad libitum on a 10% glucose water solution during 5 ± 2 days.

Afterwards, fifteen females from each experimental treatment were placed together inside a feeding cage (2
and 3 different cages for experiment 1 and 2, respectively) and allowed to feed from aPlasmodium -infected
bird for 3 hours. Engorged females were then taken out from the cages, briefly anesthetized with CO2 and
placed individually into numbered dry 30ml plastic tubes covered with a mesh. Food was provided in the
form of a cotton pad soaked in a 10% glucose solution placed on top of each tube. To distinguish between
the treatments, mosquitoes were previously marked using different fluorescent color powders and the color
allocated to each treatment changed in each of the cages (for details see Vézilier et al., 2010). Five days
post blood meal, females were taken out of the tubes and placed in new plastic tubes filled with 4mL of
water to encourage them to lay eggs. The amount of haematin excreted at the bottom of each first tube was
quantified as an estimate of the blood meal size (Vézilier et al., 2010). Three days later (day 8 post blood
meal), females were taken out of the tubes. The egg-rafts were collected and the number of eggs was counted
under a binocular microscope. One wing was removed from each female and measured under a binocular
microscope along its longest axis as an index of body size (Van Handel and Day, 1989). Females were then
dissected and the number of Plasmodium parasite (oocyst stage) presents in their midguts were counted
under a binocular microscope. The wing size was also measured for all males.

2.3 Glyphosate exposition

Experiment 1: pure glyphosate and glyphosate-based herbicides

The purpose of this experiment was to test the impact of pure glyphosate and glyphosate-based herbicides
(formulation), on mosquito life history traits and susceptibility to malaria parasite infection. For this purpo-
se, one day old mosquito larvae were randomly assigned to five experimental groups (120 larvae/ per group).
Two groups corresponded to 2 different concentrations of pure glyphosate, two groups corresponded to the
same 2 concentrations of glyphosate but in formulation. The remaining group was reared without glyphosate
(control). Larvae were fed daily with 0.5 mg of food, which is consistent with our standard colony mainte-
nance diet (1:1 Fish food and rabbit pellets). For pure glyphosate solution, rearing solutions were prepared
from a stock solution of 2 mg/l produced with solid glyphosate (96% purity; provided by Sigma-Aldrich,
Switzerland) dissolved in mineral water. From the stock solution, 2 derived solutions were prepared, with
the following concentrations: 0.05mg/L and 0.1mg/L. For the glyphosate-based herbicides, a formulated gly-
phosate solution (glyphosate concentration: 360g/L; Sintagro®) was diluted ten times with mineral water
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to obtain a stock solution (glyphosate concentration: 3.60 g/L). From this stock solution, 2 derived soluti-
ons were prepared to obtain two glyphosate concentrations: 0.05mg/L and 0.1mg/L. The concentrations of
glyphosate used in our study (0.05 and 0.1mg/L) were chosen based on concentrations observed in aquatic
systems (Giesy et al., 2000) as well as in previous studies on the impact of sub-lethal doses of pesticides on
aquatic invertebrates species (Baglan et al., 2018; Kibuthu et al., 2016; Riaz et al., 2009).

Stock solutions were renewed every 6 days, to avoid any degradation effect (Baglan et al., 2018). Rearing
solution were replaced every 3 days to ensure that the larvae were exposed to the same concentration of
glyphosate during all their development.

Experiment 2: pure glyphosate and food limitation

The purpose of the second experiment was to evaluate the impact of larval exposure to glyphosate associated
to a nutritional stress on mosquito life history traits and susceptibility to malaria parasite infection. For this
purpose, larvae, reared in a 0.05 mg/L glyphosate solution, were either daily fed with 0.5 mg (standard
colony maintenance diet) or with 0.25 mg of food (nutritional stress). The specific food treatments were
chosen based on a pilot study, with the goal of generating a nutritional stress that did not significantly
impact larval survival rate. One day old mosquito larvae were randomly assigned to four experimental
groups (160 larvae/ per group): (1) glyphosate exposure and standard diet, (2) glyphosate exposure and
nutritional stress, (3) unexposed to glyphosate and standard diet and (4) unexposed to glyphosate and
nutritional stress. Glyphosate solution was prepared as described above with solid glyphosate (96% purity;
provided by Sigma-Aldrich, Switzeralnd).

2.4 Statistical analysis

All statistical analyses were performed with R (version 3.4.1). The different statistical models built to analyze
the data are described in the supplementary material (Table S1 ). Mortality during development (death =
0, emerged = 1) was analyzed with Generalized Linear Model (GLM) with binomial distribution of errors.
Explanatory variables were glyphosate concentration and glyphosate type (pure or in formulation) for the
experiment 1 and glyphosate exposition and food treatments for the experiment 2. A GLM with normal
distribution of errors was used to test for difference in development time (calculated as the number of days
from hatching to emergence) and wing length (mm) among the larval treatments. Explanatory variables were
mosquito sex, glyphosate concentration and glyphosate type (pure or in formulation) for the experiment 1
and mosquito sex, glyphosate exposition and food treatments for the experiment 2. Female mosquito-centred
traits (blood meal size, number of eggs, infection prevalence and oocyst burden), which may depend on
which bird mosquitoes fed on, were analyzed fitting bird as a random factor into the models (to account for
the spatial pseudoreplication), using lmer or glmer (package: lme4, Bates et al., 2015) according to whether
the errors were normally (blood meal size, number of eggs and oocyst burden) or binomially (prevalence)
distributed. Glyphosate concentration and glyphosate type (pure or in formulation) for the experiment 1
and glyphosate exposition and food treatments for the experiment 2 were used as fixed factors. Blood meal
size was also added as a fixed factor when it was not a response variable.

Maximal models, including all higher-order interactions, were simplified by sequentially eliminating non-
significant interactions and terms to establish a minimal model (Crawley, 2012). The significance of the
explanatory variables was established using either a likelihood ratio test (which is approximately distributed
as a Chi-square distribution, Bolker, 2008) or an F test. The significant Chi-square or F values given in
the text are for the minimal model, whereas non-significant values correspond to those obtained before the
deletion of the variable from the model. A posteriori contrasts were carried out by aggregating factor levels
together and by testing the fit of the simplified model using LRT (Crawley, 2012).

Results

3.1 Experiment 1: pure glyphosate versus glyphosate-based herbicides

There was no effect of glyphosate type (pure or formulation) on larval mortality (model 1: χ²1= 0.88, p =
0.347) but glyphosate concentration (0, 0.05 and 0.1 mg/L) had a significant impact (model 1: χ²1= 6.65,
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p = 0.036). Contrast analyses showed a significant difference in mortality between the two mosquito groups
exposed to glyphosate. Larval mortality was higher in mosquitoes reared in 0.05mg/L glyphosate solution
than in mosquitoes reared in 0.1mg/L glyphosate solution (contrast analyses χ²1= 5.55, p = 0.018, larval
mortality: 0 mg/L: 10.9%, 0.05 mg/L: 18.7%, and 0.1 mg/L: 10.3%).

Glyphosate concentration and glyphosate type did not have significant effect on both larval development
time (model 2: glyphosate concentration: F= 1.93, p = 0.165, glyphosate type: F= 1.87, p = 0.154) and
adult mosquito size (model 3: glyphosate concentration: F= 0.12, p = 0.732, glyphosate type: F= 2.08, p
= 0.150). As expected an effect of sex was observed, males had a shorter development time (model 2: F=
629.38, p < 0.0001) and were smaller than females (model 3: F= 314.16, p < 0.0001).

While larvae exposed to the highest concentration of glyphosate (0.1mg/L) tended to take a smaller blood
meal (0 mg/L: 28.6μg ± 1.9, 0.05mg/L: 29.6μg ± 1.4, 0.1mg/L: 26.7μg ± 1.1), the amount of blood ingested
did not vary significantly between treatments (model 4: glyphosate concentration: χ²1= 2.76, p = 0.09;
glyphosate type χ²1= 0.12, p = 0.724). No effect of glyphosate concentration and glyphosate type were
observed on the number of laid eggs (model 5: χ²1= 2.19, p = 0.139; χ²1= 0.40, p = 0.526, respectively).
A positive relationship was observed between blood meal size and the number of laid eggs (model 5: χ²1=
24.39, p < 0.0001).

Midgut dissection revealed that 100% of the mosquitoes fed on infected bird blood were infected with
Plasmodium relictum.Glyphosate concentration and glyphosate type had no effect on the oocyst burden of
mosquitoes (model 6: χ²1 = 0.11, p = 0.895, χ²1 = 0.02, p = 0.895, respectively). A positive relationship
was observed between blood meal size and oocyst burden (model 6: χ²1= 25.56, p < 0.0001).

3.2 Experiment 2: glyphosate and nutritional stress

Glyphosate exposure (0.05mg/L) and food treatments had no significant effect on larval mortality (model
7: χ²1 = 2.76, p = 0.097, χ²1 = 0.01, p = 0.904, respectively). Variation in larvae development time was
explained by food treatment, glyphosate exposure and mosquito sex (model 8: F= 366.08, p < 0.0001,
F= 8.123, p = 0.004, F= 655.21, p < 0.0001, respectively). While nutritional stress impacted negatively
the development time (Figure 1A ), larvae exposed to glyphosate developed faster than unexposed larvae
(Figure 1B ). As expected males had a shorter development time than females (male: 9.9 ± 0.1 day, female:
13.4 ± 0.2).

Food treatments and sex, but not glyphosate exposure, impacted mosquito size (model 9: F= 39.20, p <
0.0001, F= 384.85, p < 0.0001, F= 2.06, p = 0.153, respectively). Males were smaller than females and
adults from larvae reared under standard diet condition were bigger than adults from larvae reared under
nutritional stress (mean ± s.e. optimal feeding condition = 0.30 ± 0.003, food limitation = 0.28 ± 0.003).

The amount of blood ingested by females as well as the number of laid eggs did not vary between treatments
(blood meal size: model 10: glyphosate exposure = χ²1= 1.27, p = 0.259; food treatments = χ²1= 1.29, p
= 0.256; eggs number: model 11: glyphosate exposure χ²1= 0.01, p = 0.99; food treatment = χ²1= 3.49, p
= 0.066). A positive relationship was observed between blood meal size and the number of laid eggs (model
11: χ²1= 5.70, p = 0.017).

Significant interaction of glyphosate exposure and food treatments was observed regarding the probability of
females to be infected by malaria parasites (model 12: χ²1 = 7.67, p = 0.006,Figure 2A ). In the absence of
glyphosate, nutritional stress tended to decrease the infection prevalence (infection prevalence = nutritional
stress: 0.80, standard diet: 0.95; contrast analysis: χ²1 = 2.74, p = 0.097). However, in the presence of
glyphosate, the infection prevalence observed in females from larvae reared with standard diet was roughly
a third lower than that of females from the nutritional stress treatment (infection prevalence = nutritional
stress: 0.95, standard diet condition: 0.66; contrast analysis: χ²1 = 5.18, p = 0.022). It is also interesting to
note that when larvae are reared without nutritional stress, the infection prevalence observed in mosquitoes
exposed to glyphosate was significantly lower than in unexposed mosquitoes (contrast analysis: χ²1 = 5.37,
p = 0.020, Figure 2A ). Infection prevalence tended to but was not significantly impacted by blood meal
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size (model 12: χ²1 = 3.13, p = 0.076).

The intensity of the infection was not impacted by glyphosate exposure, food treatments or by the interaction
between the two factors (model 13: χ²1 = 0.56, p = 0.455, χ²1 = 0.98, p = 0.321, χ²1 = 0.08, p = 0.782,
respectively,Figure 2B ), but a positive relationship was observed between blood meal size and oocyst
burden (model 13: χ²1= 13.97, p = 0.0001).

Discussion

In this study we assessed the consequences of larval exposure to pure glyphosate or glyphosate-based herbicide
on Culex pipiensmosquito life history traits and susceptibility to avian malaria parasite infection. While we
did not observe significant effect of glyphosate on mosquito life history traits, we found that this compound
reduced the prevalence of Plasmodium parasite infection under standard diet. Interestingly this effect was
lost when the larvae were subjected to nutritional stress.

4.1 Glyphosate exposure and mosquito life history traits

Exposure of larvae to the two realistic concentrations of glyphosate had no significant effect on mosquito
size and other life history traits. Although our second experiment tended to show a slight effect of glypho-
sate (0.05mg/L) on larval development time, this was not observed in the first experiment even when the
concentration of glyphosate in the rearing solution was doubled. These results are consistent with a recent
study that found no effect of glyphosate on Aedes aegyptimosquito larvae at concentrations 20 times higher
than ours (Baglan et al., 2018). In a pilot study, we even showed that a glyphosate concentration of 1g/L
did not affect larval survival rate. In other aquatic invertebrate species, this molecule tends to have more
significant effect. Glyphosate exposure, even at low concentration (0.1 - 0.05 mg/l), induced a reduction of
juvenile size in the planktonic crustacean Daphnia magna (Cuhra et al., 2013) and negatively impacted the
survival rate in the amphipod Hyalella castroi and the crayfish Cherax quadrinatus (Avigliano et al., 2014;
Dutra et al., 2011). This suggests that mosquito larvae are more tolerant to glyphosate than other aquatic
invertebrate species.

4.2 Glyphosate exposure and mosquito susceptibility toPlasmodium infection

The impact of glyphosate on the susceptibility of mosquitoes to malaria parasite infection is unclear. While
the probability of infection of females was 100% in the first experiment, we found that exposure to glypho-
sate in the larval stage reduced the prevalence ofPlasmodium infection by roughly one-third in the second
experiment. Fluctuations in the prevalence of infection between experimental blocks are common (Pigeault
et al., 2015). This might be due to the difference in parasite strains and parasite loads in infected canaries
between the experiments. The observed effects in the second experiment may be due to an effect of glyphosa-
te on mosquito immunity. Glyphosate can affect invertebrate immunity in several ways, including effects on
haemocyte parameters (Hong et al., 2018, 2017; Matozzo et al., 2019; Monte et al., 2019), activity of immune
enzymes (Hong et al., 2017) and on oxidative stress (de Melo Tarouco et al., 2017; Pala, 2019). The effects
on invertebrate immunity were generally negative. For instance, the exposure of shrimps (Macrobrachium
nipponensis ), Chinese mitten crabs (Eriocheir sinensisto ) and clams (Ruditapes philippinarumto ) to a
sublethal concentrations of glyphosate caused a significant decrease in total haemocyte count (Hong et al.,
2018, 2017; Matozzo et al., 2019). However, in the clam R. philippinarum , exposure to glyphosate increased
significantly haemocyte proliferation and both diameter and volume of these immune cells (Matozzo et al.,
2019). In the Chinese mitten crabs high concentrations of glyphosate increased the phenoloxidase (PO) acti-
vities. The phenoloxidase cascade is an important immune response of mosquitoes leading to encapsulation
and death of a variety of parasites includingPlasmodium (Christensen et al., 2005; Yassine et al., 2012; Zhang
et al., 2008).

Another non-exclusive reason that could explain lower prevalence of infection in mosquitoes exposed to
glyphosate would be the effect of this molecule on their midgut (Gregorc and Ellis, 2011). Some other
pesticides, such as imidacloprid, disrupt the development of mosquitoes’ midgut (Fernandes et al., 2015).
Imidacloprid significantly reduced the number of digestive and endocrine cells, resulting in malformation
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of the midgut epithelium (Fernandes et al., 2015). The midgut epithelial membrane is the first barrier
that parasites must cross to infect their vector. In addition, mosquito midgut produces large amounts of
xanthurenic acid which is essential for the exflagellation ofPlasmodium transmissible stages (gametocytes,
Billker et al., 1998), the secretion of digestive carboxypeptidase enzymes may also provide parasite with
essential amino acids for its development (Lavazec and Bourgouin, 2008). An alteration of the midgut could
therefore impact the parasite’s ability to invade this organ. It is important to note that while exposure to
glyphosate did not affect the size of adult mosquitoes, females derived from larvae exposed to the highest
concentrations of glyphosate (0.1mg/L) tended to excrete less haematin. This result may indicate an effect
of glyphosate on their ability to digest blood potentially due to a midgut malformation.

4.3 Glyphosate exposure and larval nutritional stress

Many natural (e.g. competition, predation, temperature) and human-induced stressors (e.g. chemical con-
taminant) are known to impact negatively mosquito life history traits and immunity (Muturi et al., 2012;
Shapiro et al., 2016; Vantaux et al., 2016). In nature, mosquito larvae are exposed to multiple stressors and,
while all possible outcomes of stressor combinations (i.e. additive, synergistic or antagonistic) may be expec-
ted, the effect of the interaction between stressors are overlook in studies on mosquito-parasite interaction.
To our knowledge, this is the first study to evaluate how field realistic dose of glyphosate interacts with
larval nutritional stress to alter mosquito life history traits and susceptibility to malaria parasite infection.
As expected nutritional stress resulted in longer development time and smaller sized adults (Araújo et al.,
2012; Takken et al., 2013; Vantaux et al., 2016). The only interaction we observed between food treatment
and glyphosate exposure was on the probability of infection of females. The addition of nutritional stress
during larvae development appeared to have alleviated the positive effect of glyphosate on the prevalence of
Plasmodium infection. When larvae were exposed to glyphosate, the prevalence of infection was significantly
higher when a nutritional stress was applied. The amount of glyphosate ingested by the larvae should in-
crease in proportion to the amount of food ingested. Assuming that glyphosate has an effect on the midgut
physiology (Gregorc and Ellis, 2011), if the larvae have less food, they will ingest less glyphosate, which will
reduce the effect of this molecule.

4.5 Pure glyphosate versus glyphosate-based herbicide

We also investigated whether a glyphosate-based herbicide was more harmful than glyphosate alone. Nu-
merous studies have demonstrated that glyphosate formulations (glyphosate mixed with surfactants) are
more toxic than pure glyphosate (reviewed in (Nagy et al., 2019)) but our study did not show any difference.
However, the majority of these studies used Roundup® formulation which is described as the most cytotoxic
herbicide (Mesnage et al., 2014; Nagy et al., 2019). The surfactants associated to glyphosate vary from one
formulation to another. Here, we used the Sintagro® formulation and our results suggest that the surfactant
included in this formulation (i.e. alkyl polyglucosid), which is different from that contained in Roundup®
(i.e. polyoxyethyleneamine), had no effect, at the concentrations used in our study, on mosquito’s life history
traits.

Conclusion

Our results show that exposure to field-realistic doses of glyphosate at larval stages, pure or in formulation,
did not affect mosquito larval survival rate, adult size and female fecundity. One of our two experimental
blocks showed, however, an effect of glyphosate on the development time and on the probability of female
infection byPlasmodium parasite. However the effect on infection prevalence was lost when the larvae are
subjected to a nutritional stress, probably due to a lower ingestion of glyphosate. Altogether, our study
and those published recently, tend to suggest that mosquito larvae are more tolerant to glyphosate than
many other invertebrate species. It has been recently shown that adult exposure to glyphosate perturbs the
gut microbiota of honey bees and ultimately their susceptibility to parasite infection (Motta et al., 2018).
It would be therefore relevant to also investigate the effect of glyphosate exposure at the adult stage in
mosquito vector.
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2015. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosqui-
toStegomyia aegypti (=Aedes aegypti ). Med. Vet. Entomol. 29, 245–254. https://doi.org/10.1111/mve.12122

Giesy, J.P., Dobson, S., Solomon, K.R., 2000. Ecotoxicological risk assessment for Roundup® herbicide, in:
Ware, G.W. (Ed.), Reviews of Environmental Contamination and Toxicology. Springer New York, New York,
NY, pp. 35–120. https://doi.org/10.1007/978-1-4612-1156-3 2

Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., Girdhar, M., 2018. Glyphosate toxicity for animals. Environ.
Chem. Lett. 16, 401–426. https://doi.org/10.1007/s10311-017-0689-0

Gregorc, A., Ellis, J.D., 2011. Cell death localization in situ in laboratory reared honey bee
(Apis mellifera L. ) larvae treated with pesticides. Pestic. Biochem. Physiol. 99, 200–207. htt-
ps://doi.org/10.1016/j.pestbp.2010.12.005

Hansen, L.R., Roslev, P., 2016. Behavioral responses of juvenileDaphnia magna after exposure
to glyphosate and glyphosate-copper complexes. Aquat. Toxicol. Amst. Neth. 179, 36–43. htt-
ps://doi.org/10.1016/j.aquatox.2016.08.010

Hong, Y., Yang, X., Huang, Y., Yan, G., Cheng, Y., 2018. Assessment of the oxidative and genotoxic ef-
fects of the glyphosate-based herbicide roundup on the freshwater shrimp, Macrobrachium nipponensis .
Chemosphere 210, 896–906. https://doi.org/10.1016/j.chemosphere.2018.07.069

Hong, Y., Yang, X., Yan, G., Huang, Y., Zuo, F., Shen, Y., Ding, Y., Cheng, Y., 2017. Effects of glyphosate
on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis . Fish Shellfish

9



P
os

te
d

on
A

u
th

or
ea

28
J
an

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
58

02
2
62

6.
64

33
37

61
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Immunol. 71, 19–27. https://doi.org/10.1016/j.fsi.2017.09.062

Janssens, L., Stoks, R., 2017. Stronger effects of Roundup than its active ingredient glyphosate in damselfly
larvae. Aquat. Toxicol. 193, 210–216. https://doi.org/10.1016/j.aquatox.2017.10.028

Kibuthu, T.W., Njenga, S.M., Mbugua, A.K., Muturi, E.J., 2016. Agricultural chemicals: life changer for
mosquito vectors in agricultural landscapes? Parasit. Vectors 9, 500. https://doi.org/10.1186/s13071-016-
1788-7

Langiano, V. do C., Martinez, C.B.R., 2008. Toxicity and effects of a glyphosate-based herbicide on the
Neotropical fish Prochilodus lineatus . Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 147, 222–231.
https://doi.org/10.1016/j.cbpc.2007.09.009

Lavazec, C., Bourgouin, C., 2008. Mosquito-based transmission blocking vaccines for interrupting Plasmodi-
um development. Microbes Infect. 10, 845–849. https://doi.org/10.1016/j.micinf.2008.05.004

Mann, R.M., Bidwell, J.R., 1999. The Toxicity of glyphosate and several glyphosate formulations
to four species of southwestern Australian frogs. Arch. Environ. Contam. Toxicol. 36, 193–199. htt-
ps://doi.org/10.1007/s002449900460

Matozzo, V., Zampieri, C., Munari, M., Marin, M.G., 2019. Glyphosate affects haemocy-
te parameters in the clam Ruditapes philippinarum . Mar. Environ. Res. 146, 66–70. htt-
ps://doi.org/10.1016/j.marenvres.2019.03.008
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Figure captions

Figure 1. Impact of (A ) food treatment and (B ) glyphosate exposure on larval development time. Boxplots
were constructed to show the raw data. Boxes above and below the medians (horizontal lines) show the first
and third quartiles, respectively. Black points represent the means. Levels not connected by the same letter
are significantly different (P < 0.05).

Figure 2. Impact of food treatment and glyphosate exposure on (A ) the probability of mosquitoes to be
infected by malaria parasites and on (B ) the intensity of infection (oocyst burden). In panel (B ) black
horizontal lines represent medians and black diamond represent means. Levels not connected by the same
letter are significantly different (P < 0.05).
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