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Abstract

This paper presents an entirely new way of calculating exponential functions. This method uses the 2n
sequence at its foundation. An example of the 2n sequence is 2,4,8,16,32,64 and so on. This method is
vastly more time saving and energy saving because one performs very few multiplication operations once an
exponent has been broken down into its 2n components. This method can be coded into a computer software
and this will improve the speed with which computer libraries calculate exponential functions. This paper
also explains how this new method of exponential function calculation can partly help to solve the discrete
exponential and discrete logarithm problem through easier calculation of exponential functions.

1.Introduction.

“Neural network simulations often spend a large proportion of their time computing exponential functions.
Since the exponentiation routines of typical math libraries are rather slow, their replacement with a fast
approximation can greatly reduce the overall computation time.”[1]

It is true that computer math libraries that deal with the exponential functions are rather slow but this is a
function of using very archaic and long routine calculations which are time-consuming and energy wasting.
If a more time-efficient method for calculating exponential functions can be found and then coded into a
computer math library then this will save a lot of time for many mathematicians, engineers and computer
scientists who use these exponential function libraries a lot. This author presents a new method of calculating
exponential functions which is both accurate and time-saving. We no longer need to rely on time-saving
approximations of exponential functions. We can now use time-saving accurate calculations of exponential
functions and this could indeed change the field computational science.

There is a relationship between exponential functions and logarithms. The power of logarithms as a compu-
tational device lies in the fact that by them multiplication and division are reduced to the simpler operations
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of addition and subtraction.[2]

“There are many applications of exponential functions and logarithmic functions in science and technology.
The voltage in a given circuit can be expressed using exponents. The value of money in an investment can be
determined through the use of exponents. The intensity of earthquakes is measured by a logarithmic scale.
The intensity of light related to the thickness of the material through which it passes can be expressed using
exponents. The distinction between acids and bases in chemistry is measured in terms of logarithms.” [3]

When it comes to exponential functions, the word exponent is often used instead of index, and functions
in which the variable is in the index (such as 2x, 10sinx) are called exponential functions. [4] If b is a real
number greater than zero, then for each real exponent x we assume bx is a unique real number. Since for
each real x there is one and only one bx, the equation y=bx,(b>0)

defines a function. We call such an equation an exponential function.[3]

2. Body .

To solve the exponential function f(x)=mx, the most common method of calculating exponential functions
has been to directly multiply m, x number of times. This method of calculation is extremely slow especially
if the exponent has a large value. For, example calculating

f(x) = 35123000 involves multiplying 35, 123,000 times. This is an extremely difficult task and is frankly
almost impossible if calculated manually. Computers are best suited to calculate this function because
computers do not get tired of performing repetitive tasks. However, there is a need to come up with a more
efficient way of calculating the exponential function. This is important because exponential functions are
very important in mathematics and engineering fields.

This paper introduces a new, novel method of calculating the exponential function. This method is extremely
efficient and it uses the 2n sequence at its foundation. One can solve the exponential function quicker if one
uses the 2n table. A sample of the table will be displayed towards the end of the paper.

I have decided to call this method the Ngazi method. Ngazi is a swahili word for ladder or stairs. Ngazi is
a two syllable word which is pronounced as (nga-zi) where /n/ and /g/ are pronounced as one syllable.[5]

I named this method ngazi or stairs because the results of the first multiplication are used in the second
multiplication and the results of the second multiplication are used in the third multiplication and so on.
Therefore the first multiplication is linked to the second multiplication and the second multiplication is linked
to the third multiplication and this reminds the author of a flight of stairs where one stair leads to the next
stair up to the final stair.

2.1 Introduction to the ngazi method

Suppose you are trying to calculate the function f(x)= m16.

The method you would use is probably the normal method we always use for calculating exponential func-
tions. You would multiply m by itself 15 times to get m16.

f(x)= m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m = m16.

However, this method is tedious, time-consuming and inefficient.

Now let us use the ngazi method to calculate this function. I will calculate it first, then I will explain after
the calculation.

Example 1

f(x)= m16

f(x)= m×m = m2.

m2×m2 = m4

2
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m4×m4 = m8

m8 ×m8 = m16

Notice that this new method exploits in its calculation, the fact that mn ×mn =m2n.. This is a well known
property of the exponential function and in this paper, this property will be applied to all cases of exponential
functions including functions that have exponents that do not belong to the 2n sequence.

When two exponential functions are multiplied together, and the bases are similar, then we can add the
exponents together. Therefore, instead of multiplying m by itself 15 times, we can multiply the results of
every multiplication by itself and we will end up with only four distinct multiplication operations. Therefore
we have reduced the number of multiplication operations from 15 to 4. We can calculate the percentage of
reduction in inefficiency in multiplication operations. 15-4 = 11. Therefore, we have reduced the number of
multiplication operations by 11. Therefore, in percentage terms we have reduced inefficient multiplication
operations by (11÷15)×100= 73.33%. This is a 73.33% reduction in inefficient multiplication operations and
it is a significant improvement in efficiency. What is magical about this method is the fact that the reduction
in inefficiency actually increases as the value of the exponent keeps on increasing. I will give a second example
with a slightly larger exponent value to prove this salient point.

Example 2

Calculate f(x) = m256

Using the normal method

f(x) = m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m

m×m×m×m×m×m×m×m×m×m×m×m×m×m×m×m = m256.

Notice that each row has 16 operands of m and we have a total of 16 rows therefore we have a total of

16×16 = 256 operands of m. We also have 255 (256-1) multiplication operations. To get the number of
multiplication operations, subtract one from the total number of operands. 255 multiplication operations is
unacceptably large and a more efficient method ought to be used instead. Let us use the ngazi method to
calculate the function f(x) = m256

3
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The ngazi method

Calculate f(x) = m256

f(x)= m×m = m2.

m2×m2 = m4

m4×m4 = m8

m8 ×m8 = m16

m16×m16 = m32

m32×m32 = m64

m64×m64 = m128

m128×m128 = m256

Thus we have used only eight multiplication operations instead of the 255 multiplication operations that we
used in the normal calculation. Therefore, this new method of exponential function calculation is extremely
efficient. Let us calculate how efficient the calculation of the second example was. We used only 8 multi-
plication operations instead of 255 multiplication operations and the difference between the two is 255-8 =
247. Therefore, we have reduced the number of multiplication operations by 247. Therefore, in percentage
terms we have reduced inefficient multiplication operations by 247÷255×100= 96.86%. This is an extremely
impressive level of improvement in efficiency. This improvement can be increased up to 99% for very large
exponent values. I will give an example of such a large exponent value with the following function f(x) =
m65536 however due to space constraints, I will not list the 65,535 multiplication operations because that
will fill several pages of paper. I will jump straight to the ngazi method.

The ngazi method

Example 3

Calculate f(x) = m65536

f(x)= m×m = m2.

m2×m2 = m4

m4×m4 = m8

m8 ×m8 = m16

m16×m16 = m32

m32×m32 = m64

m64×m64 = m128

m128×m128 = m256

m256×m256 = m512

m512×m512 = m1024

m2048×m2048 = m4096

m4096×m4096 = m8192

m8192×m8192 = m16384

m16384×m16384 = m32768

4
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m32768×m32768 = m65536

Thus we have used only 15 multiplication operations instead of the 65,535 multiplication operations that we
would have used in the normal method. Let us calculate how efficient the calculation of this third example was.
We used only 15 multiplication operations instead of 65,535 multiplication operations and the difference is
65,535-15 = 65,520. Therefore, we have reduced the number of multiplication operations by 65,520. Therefore,
in percentage terms we have reduced inefficient multiplication operations by 65,520÷65,535×100= 99.98%.
I do not think that there is any method of exponential calculation out there that is more efficient than this
method.

Notice that there is a relationship between the exponents in the 3 examples. The three exponents are 16,
256 and 65,536. The peculiar thing about these three numbers is that they all belong to the same sequence.
They belong to the 2n sequence. This is an important fact.

Despite how efficient this method is, this method tends to be slightly more inefficient if the value of the
exponent does not belong to the 2n sequence. I will give several examples of exponential functions whose
exponents do not belong to the 2n sequence. However, this increase in inefficiency is only slight and will
not greatly affect the overall efficiency of this new method. Let us calculate the following function using the
ngazi method, f(x) = m310.

Example 4

Calculate f(x) = m310

When we are dealing with exponents that do not belong to the 2n sequence, the first step is to multiply the
results of each operation by itself as many times as it takes for the result to be greater than 310. This simply
means continue with the multiplication operation until the result is greater than the value of the function
you are trying to calculate.

Step 1

Table 1

Operation Number of multiplication operations required

m×m = m2 1
m2×m2 = m4 2
m4×m4 = m8 3
m8×m8 = m16 4
m16×m16 = m32 5
m32×m32 = m64 6
m64×m64 = m128 7
m128×m128 = m256 8
m256×m256 = m512 9

As you can see, we have multiplied the results of each operation by itself until we got a result that was
greater than the value of the exponent (310). Next, we need to take into consideration the exponent value
256. This is the penultimate exponent value in the 2n sequence table above and it is less than the exponent
value 310 that we are calculating and it is also less than the exponent value 512 (which is the exponent value
in the2n sequence greater than the value we are calculating).

This exponent should always fall in the penultimate row. We have no use for the ultimate row other than
the fact that the final row acts as a place holder. It marks the place where the operation needs to stop but
the final row itself is not involved in any mathematical calculations.

The second step will involve subtracting the penultimate exponent from the exponent that we are calculating.

5
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Step 2.

Thus, we subtract 256 from 310 which is 310-256 = 54. Obviously the value 54 does not belong to the 2n

sequence. Therefore, the function f(x)=m310 can be rewritten as:

f(x)=m256×m54. This is because in a multiplication operation, when the two bases are the same, we can add
the exponents together and so m256×m54 = m310.

So how do we calculate f(x)=m54 yet 54 does not fall on the 2n sequence? We do this by engaging in the
same multiplication operation involving exponents of the 2nsequence until we get a result greater than 54.
This will be step three.

Step 3

f(x) = m54

f(x)= m×m = m2.

m2×m2 = m4

m4×m4 = m8

m8 ×m8 = m16

m16×m16 = m32

m32×m32 = m64

Since 64 is greater than 54, we stop the multiplication operation here.

In step 4, we will have to subtract the penultimate exponent (32) from the exponent that we are calculating
(54).

Step 4 .

Hence, 54-32=22.

Therefore we can rewrite f(x)=m310 as:

f(x)=m256×m32×m22

So how do we calculate f(x)=m22 yet 22 does not fall on the 2n sequence? We do this by engaging in the
same multiplication operation involving exponents of the 2nsequence until we get a result greater than 22.
This will be step five.

Step 5

f(x) = m22

f(x)= m×m = m2.

m2×m2 = m4

m4×m4 = m8

m8 ×m8 = m16

m16×m16 = m32

Since 32 is greater than 22, we stop the multiplication operation here.

In step 6, we will have to subtract the penultimate exponent (16) from the exponent that we are calculating
(22).

Step 6 .

6
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Hence, 22-16=6.

Therefore we can rewrite f(x)=m310 as:

f(x)=m256×m32×m16×m6.

Notice that 256, 32 and 16 are all penultimate exponents and they also belong to the 2n sequence. However,
6 is not a penultimate exponent, it is a remainder exponent because it is what remains after we have removed
all possible 2n sequence exponents. This author stopped when the exponent of the value that does not belong
to the 2n sequence reduced to a single digit value. The assumption is that m6 is easy to calculate no matter
how large the value of m is. The final step which is step 7, involves solving for f(x)=m256×m32×m16×m6.

The beauty of this method is that once we have calculated the first round of multiplication for m310 in table
1, then we already obtained the values for m256, m32 and m16. This means that we do not need to calculate
these values again. We can just go back to table 1 in example 4 and pick them up. Therefore m256, m32 and
m16 need zero new multiplication operations. However, notice that m6 is not found in table 1 and we will
have to calculate it manually. However it is expected that it will be trivial to calculate m6for mathematicians
or computers regardless of the size of m. We know that m6 will take 5 multiplication operations to calculate
it. From table1, we can see that m256, m32 and m16 require 9 multiplication operations to calculate. That is,
table 1 requires 9 multiplication operations to create and once it is created, we can obtain values for m256, m32

and m16without further calculations. Therefore how many multiplication operations does it take to calculate
m256×m32×m16×m6 if we already have the values for each operand separately? It takes 3 multiplication
operations to calculate it. Therefore the total multiplication operations necessary to solve this problem is
9+5+3=17. Therefore instead of multiplying m by itself 309 times, we can just multiply it 17 times to get the
answer if we use this new method. We will reduce the number of multiplication steps needed by 309-17=292.
This is a reduction in inefficiency of 292÷309×100= 94.5%

Example 5

When one is given a scary equation like this: f(x)=319one should not panic. This equation can be sorted
out in a few steps if you know that f(x)=319 = f(x)=316×33. Always reduce the exponents into 2n sequence
exponents and single-digit remainder exponents that do not belong to the 2nsequence. The value 316 can be
calculated in 4 multiplication operations as shown in table 1 in example 4. The value 33 will be calculated in
2 multiplication operations. Therefore the total number of multiplication operations will 4+2=6. The value
316×33 itself will take 1 multiplication operation to calculate. Therefore if you know that m19 can be divided
into m16 and m3 then you will know that it takes only 4+2+1=7 multiplication operations to get the answer
instead of doing all the 16 multiplication operations that is used in the normal calculations. Knowing how a
particular number is divided into its 2nsequence components is extremely important and one can also use a
table of 2n values to make work easier. For example, with enough practice or with a 2n table nearby, it is not
difficult at all to realize that 163 can be broken into its 2n components like this 128,32 and 3. The number 3
is not a 2n component, it is just the remainder. Therefore with enough practice or with a table nearby it is
not difficult for one to discover that m163 = m128×m32×m3. m128 requires 7 multiplication operations. m32

requires 5 multiplication operations, however we do not have to recalculate m32 since we already calculated it
when we were calculating m128. This means we can just pick the values for m32 from our calculations of m128.
Therefore zero multiplication operation is necessary to calculate m32 because it is already calculated. The
value m3 requires 2 multiplication operations. Remember that m128×m32×m3 itself requires 2 multiplication
operation. Therefore the total number of multiplication operations required is 7+2+2=11. So instead of
multiplying m by itself 162 times, we can just use the ngazi method which requires only 11 multiplication
operations to get the answer.

Next, The author will go ahead and carry out the actual calculations to prove that one need only 7 multi-
plication operations to calculate f(x)=m19.

First of all, we assume that the mathematician who is trying to use this method is proficient in converting
m19 to its 2n components. Now let us solve an actual problem.

7
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Example 6

Solve f(x)= 319

Step 1

Convert it into its 2n components. This becomes

f(x)= 316×33.

Step 2

316 requires 4 multiplication operations as shown below

f(x)= m×m = m2.

m2×m2 = m4

m4×m4 = m8

m8 ×m8 = m16

step 3

Replacing m with 3 we get

f(x)= 3×3=9 (First, square 3 to get 9)

9×9=81 (Then square 9 to get 81)

81×81=6,561 (Then square 81 to get 6,561)

6,561×6,561=43,046,721 (Finally square 6,561 to get 43,046,721)

33 requires 2 multiplication operations as shown below

3×3×3=27

step 4

316×33 requires 1 multiplication operation.

Therefore the total number of multiplication operations required to perform this calculation using this
method is 4+2+1=7.

2.2 Using 2n Tables to quickly solve exponential functions

If one has a 2n table then one can quickly break down any number into its 2n components.

A table will make work easier for any mathematician. Below is a sample 2n table that will be used to calculate
another example for demonstration purposes.

Table 2

Number of multiplication operations required Value of the 2n exponent

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

8
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Number of multiplication operations required Value of the 2n exponent

10 1,024
11 2,048
12 4,096
13 8,192
14 16,384
15 32,768
16 65,536

If you are given f(x)= m243, use table 2 to solve the problem.

Let us break up 243 into its 2n components.

First of all we can see from table 2 that 243 falls between 128 and 256. Therefore, we must subtract 128
from 243.

243-128= 115

115 is the remainder but 115 itself can be further broken down into other 2n components. 115 falls between
64 and 128 therefore we can subtract 64 from 115.

115-64=51

51 is the remainder but 51 itself can be further broken down into other 2n components. 51 falls between 32
and 64 therefore we can subtract 32 from 51.

51-32=19

19 is the remainder but it can be further broken down into other 2n components. 19 falls between 16 and
32 therefore we can subtract 16 from 19.

19-16=3.

3 is the remainder and since it is a single digit remainder, we stop our operation here.

Therefore the final equation will look like this

f(x)=m243 = m128×m64×m32×m16×m3

That is how the table can be used quickly to break down any number into its 2n components

3. Discussion

If this ngazi method is coded into a computer software then we will create computers that can calculate
exponential functions much faster than they currently do. This method is very important because exponential
function calculations are done everyday in fields such as engineering, mathematics and computer science. In
fact since this method will vastly improve computer efficiency in calculating exponential functions then this
method will contribute greatly towards finding the solution to the discrete logarithm problem through the
use of discrete exponentiation. Let me explain what the discrete logarithm problem is. Unsolved problems
website explains this problem very well.

“Suppose that we have an equation

y=gx mod p.

Where all four variables are integers, and g and p are very large prime numbers, say, greater than 100 digits.
Given g, p and x, it takes a modern-day computer only a fraction of a second to calculate y. The Discrete
Logarithmic Problem (DLP), is given g, p and y, can we find x, even if we have a million computers and

9
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a million years at our disposal?[6] The discrete logarithm is the inverse of the discrete exponentiation in a
finite cyclic group.[7] This concept is important in

internet security. A recent finding is that Diffie-Hellman security is not as watertight as was initially
believed.[8] Even though digital computers are efficient in computing, they still have challenges in solving
two problems, factoring integers and finding discrete logarithms.[9] In common culture, In the famous maths
drama television programme called Numbers, discrete logarithm were mentioned in the season 2 episode “In
plain sight”.[10]

This author’s reply to the discrete logarithm problem is that it is possible to find x in finite time using ngazi
method and rearranging the equation as will be shown later. This author believes that we can solve this
problem even if we are given only g,p and y. This is so because this new method reduces tremendously the
number of multiplication operations that are needed to solve this problem. The following procedure should
be followed in order to make finding solutions to discrete exponentiation and by extension discrete logarithm
problems easier.

Since we don’t have x in gx, we have no choice but to use the trial and error method. Some trial and error
methods are more efficient than others in predicting what the value of x would be. However, whatever method
is used, one must be prepared to carry out several rounds of calculations until one obtains the value of x. In
the simplest example, suppose we assume that x is 1 then

y=g1 mod p. We then calculate g1÷p. We then check whether the remainder of this operation is equal to y.
If it is, then we have found the solution to x. If it is not, then we must proceed with our calculations. We
can set x to be 2. y=g2 mod p. We can then calculate g2÷p and then we can check whether the remainder
of this operation is y. If it is not then we can set x to be 3 and then proceed to calculate g3 mod p. Of course
we can go on and on setting x to any value and each time using the ngazi method to calculate gx. We can
repeat this operation until we find x. Of course since the ngazi method is vastly more efficient in calculating
exponential functions, then it will take a finite amount of time to find x in the equation y=gx mod p as long
as x is not an infinite value. Of course there are more efficient methods of guessing x instead of just following
the number line 1,2,3,4,5, we can use more efficient methods of guessing x and this will save time. It will
definitely take a finite period of time to get the answer to that equation.

One last thing that has to be said about the discrete logarithm problem is that it is a problem now better
solved via the route of discrete exponentiation. The method of discrete exponentiation that I have explained
above can be improved and made more efficient. The problem with the method above is that we require the
computer to calculate gx mod p and then find out whether the remainder of this operation has the same
value as y. However, this method can be extremely inefficient and time-consuming if the remainder itself is
a big number. This big number will take up a lot of precious computer memory and will also consume a
lot of computing power and time during its calculation. This author has found a novel and more efficient
method of calculating the discrete exponential function in such a way that the remainder does not need to
be calculated in full.

Given y=gx mod p and we know the values for g,p and y, is it possible to find x in finite time?

To avoid calculating and manipulating the remainder, we shall have to rearrange the equation above.

The equation gx mod p has a remainder value of y (where y>0). Therefore this means that

gx is not divisible by p since gx÷p produces a remainder y. gx can be understood to be the sum of a number t
which is divisible by p and a remainder y which is not divisible by p. Therefore we can subtract the remainder
y from gx to obtain the number which is divisible by p.

y=gx mod p

gx-y=t

10
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Now, the value gx-y is divisible by p because it does not have the remainder y. Since gx-y is divisible by p,
the next step would be divide gx-y by p.

(gx-y)÷p

So we can confidently say that the value (gx-y)÷p is definitely an integer and that means it does not have a
remainder or decimal points. The problem that remains however, is that we do not know what the value of
x is. This will force us to do trial and error to get x. Therefore we can feed in arbitrary values for x, we can
either follow a systematic approach, for example, 1,2,3,4,5 for values of x or any other suitable approach can
be used. This author prefers the systematic approach where the values of x are input starting from 1,2,3,4,5
up to x without skipping any number until x is found. So how will we know when we have found x?

Let us suppose we set x to be 1 as shown (g1-y)÷p. If the result of this calculation has a remainder or a
decimal then 1 is not the value for x and we must set x to be 2.

If the computer calculates the equation (g2-y)÷p and then gives an output with decimals then it is clear that
this equation has a remainder and therefore we must set x to be 3 and this process goes on and on as long
as this equation produces decimal points. It is prudent to program the computer to stop the calculation at
the 1st decimal point to save computer power and time. We no longer need to calculate the whole remainder
because we no longer need to compare the remainder with y. This act of comparing, after every calculation,
whether the remainder is equal to y would have consumed immense computer power and time but because
we no longer need to compare the remainder with y then computer resources are conserved. So how will we
know when we have found x? It is very simple. We will know that we have found x when the calculation
(gx-y)÷p does not give us any decimals. Therefore when we feed in a certain value of x and fail to get a
remainder then that value of x is the one we were looking for. Therefore the computer can be programmed
to stop the calculation only when a given value of x in the equation (g1-y)÷p=h produces an integer value
for h. In conclusion, if h is an integer value then we have found x, however if it a decimal or a fraction then
we haven’t found x. Just to summarize, this new approach is more efficient than the previous one because

1. The entire remainder does not need to be calculated. In fact when the first decimal has been calculated
then the operation is stopped and the computer moves on to the next value of x. For computers that produce
results of division operations in fraction form, the computer can be programmed to terminate calculation
after the first digit of the remainder has been calculated. The computer does not need to calculate all the
digits of the remainder. Therefore there will be no computer power and time spent calculating this large
remainder.

2. The second advantage is that because the entire remainder is not calculated, this means that it does not
need to be stored or retrieved at a later date for comparison with y. Because the remainder will not be stored
then there will be no memory used for this process.

3. The third advantage is that after every round of calculation, the remainder was supposed to be compared
with y to find out whether they have the same value, this would have been an inefficient process. However,
we no longer need to compare the remainder with y and therefore we save on computer power and time that
would have been used to compare these two large numbers.

This new method can also be used in the creation of new and more efficient computer math libraries that cal-
culate exponential functions. It is important that computer libraries that deal with mathematical calculations
should be as fast as possible.

Indeed, this new method can be used in any area that uses exponential functions in their calculations.

4. Conclusion

The conclusion is that this paper presents an entirely new way of calculating exponential functions. This
method uses the 2n sequence at its foundation. This method is vastly more time saving and energy saving
because one performs very few multiplication operations once an exponent has been broken down into its 2n

components.
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