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Abstract

The European eel (Anguilla anguilla) is critically endangered throughout its distribution range. Knowledge about age distribu-
tion of future spawners (silver eels) is essential to monitor the status and contribute to the recovery of this species. Determination
of age in anguillid eels is challenging, especially in eels from the northern part of the distribution area where growth is slow
and age at maturation can be up to 30 years or more. Eels from the river Imsa in Norway have been monitored since 1975
and this reference time-series has been used to assess the stock at the European level. Population dynamics in this catchment
were analyzed during the late 1980s by estimating ages on whole cleared otoliths. However, techniques for revealing annual
increments on otoliths have evolved over the years sometimes yielding significant differences in age estimates. In this study, the
historical otolith data were reanalyzed using a grinding and polishing method rather than reading the whole otolith. The new
age estimates were considerably higher than the previous ones, sometimes by up to 29 years. Since the 1980s, mean age of silver
eels only slightly increased (from 19 to 21 years in the 2010s). This was mainly due to the disappearance of younger silver eels
(less than 15 years) in the 2010s. The new age estimates agreed with the steep decline in recruitment which occurred in the
late 1980s in the Imsa catchment. Growth (30 mm y-1) has not changed since the 1980s, although density in the catchment
has decreased. Revealing and reading age of slow growing eels remain a challenge but adding a measure of otolith reading
uncertainty may improve age data collection and contribute to recovery measures for this species.

Keywords

Anguilla anguilla , ageing method, catchment, endangered species, growth, migration, otolith, river, sex
ratio

Introduction

Despite their remarkable ability to adapt to all kinds of environments, the European eel, Anguilla anguilla,
population has been in decline, at least since the 1960s (ICES, 2019; Dekker & Beaulaton, 2016). Recruitment
to freshwater habitats decreased by more than 90% in the early 1980s and since 2008 the European eel has
been listed as Critically Endangered on the International Union for Conservation of Nature (IUCN) red list
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(Jacoby & Gollock, 2014). Causes of the decline are related to habitat loss, overfishing, climate change,
pollution, parasites and diseases (Aschonitis et al., 2017; Drouineau et al., 2018).

The European eel is semelparous and panmictic (Als et al., 2011). It spawns in the Sargasso Sea, but is
distributed across Europe, from northern Norway to northern Africa and far into the Mediterranean (Schmidt
& Regan, 1923; Dekker, 2003a). Larvae drifting with the Gulf Stream metamorphose into glass eels when
they reach the continental shelf. These glass eels colonize coastal and freshwater habitats where they spend
their growth phase until they start to mature into silver eels which will migrate back to the Sargasso Sea for
spawning (Bertin, 1956; Tesch, 2003).

The status of the stock is primarily assessed through time series of recruiting glass eels (or elvers) to freshwater
at different monitoring stations across Europe (ICES, 2000). A severe reduction in glass eel recruitment,
more marked in the northern part of the distribution area, became apparent in the early 1980s (Moriarty,
1986,1990; Dekker, 2003b, 2004; ICES, 2016; Bornarel et al., 2017). However, signs of decrease in the
standing stock (yellow stage) date from the 1960s (Aalto et al., 2016; Dekker, 2003c).

At some of the monitoring stations, like in the river Imsa, Norway, both upstream ascending elvers and
downstream migrating silver eels are trapped and counted (Sandlund et al., 2017). The Imsa reference time-
series was started in the 1970s, and the age distribution and the population dynamics in this catchment
were especially studied in the 1980s and 1990s, yielding fundamental knowledge on the ecology of European
eels (Vøllestad et al., 1986; Vøllestad & Jonsson, 1986, 1988; Vøllestad, Jonsson, Hvidsten, & Næsje, 1994).
Following the awareness of the European eel population crash, countries across Europe developed manage-
ment plans in accordance with a European Union Regulation (EC 1100/2007). Although a non-EU country,
Norway followed in 2010, with a ban on eel fishing and the Imsa time-series became even more relevant to
monitor the local sub-stock (Poole et al. 2018).

Knowledge on age structure is essential to assess the status of a population. Determination of age in fish is
challenging, especially in long-lived species such as the European eel. For this species, otoliths (or earstones)
are prepared so that annual rings (annuli), marking periods of fast and slow growth, become visible and
can be counted to give an age estimate (Moriarty, 1973, 1983, Svedäng, Wickström, Reizenstein, Holmgren,
& Florenius, 1998). Four main methods have been used for preparing otoliths: 1) Grinding and polishing,
2) slicing, 3) burning and cracking, and 4) clearing of whole otoliths in ethanol (in toto method). It has
been debated what is the better method (Vøllestad & Næsje, 1988; ICES, 2009). Different methods yield
different estimates (Moriarty & Steinmetz 1979). The suitability of each method depends on the age and
growth of individuals (Vøllestad, Lecomte-Finiger, & Steinmetz, 1988). For example, burning and cracking is
more suitable for slow-growing eels, because of the shape of their otolith and the numerous but short growth
increments (Vøllestad & Næsje, 1988). The “in toto” method (clearing whole otoliths) is fast and inexpensive,
but best suited for young eels (Vøllestad and Næsje, 1988). During recent years, a manual regarding the best
practice for ageing eels has been developed (ICES, 2009, 2011). However, methods are still debated due to
a general lack of validation and of different growth patterns in such a widespread species.

Once annuli are revealed, interpretation remains challenging. For example, traumatic events, such as high
temperatures in the summer, diseases, or stress can cause supernumerary check or “false” checks (Domingos,
Costa, & Costa, 2006; Graynoth, 1999; ICES, 2009; Tzeng, Wu, & Wickström, 1994; Svedäng et al., 1998).
In addition, observations can vary between readers, over time and between laboratories.

Age estimates have been validated in some cases using chemical marking of otoliths (Chrisnall & Kalish
1993; Dekker, 1986; Oliveira, 1996; Svedäng et al., 1998), external color marking (Chisnall & Kalish 1993;
Poole & Reynolds 1996) or indirect methods using individual mark-recapture techniques (Poole & Reynolds
1996; Beentjes & Jellyman, 2015), or by introducing eels in a pristine waterbody (Vøllestad & Næsje 1988;
Wickström, Westin, Clevestam, 1996; ICES, 2009). However, validations for the European eel have been
done mostly on young individuals with a maximum age of 14 years and unfortunately, there are still too few
examples of validation of ageing methods in eels.

In the earlier years (1980-90s), the age of silver eels from the river Imsa was determined using the in
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toto method (IT), and it was later suspected that these ages were underestimated. Since the otoliths had
been maintained, it was decided to reanalyze them using the consensus method: grinding and polishing
method (GP) and to compare both age estimates. Additionally, new otolith samples were collected in the
2010s and treated in the same way (GP method) to investigate possible changes in their age distribution
of silver eels since the decline of the population (Poole et al., 2018). Finally, using this new dataset, the
possible relationship between the number of ascending recruits and the number of descending silver eels was
examined to reanalyze previous models (Vøllestad & Jonsson 1988) established for the Imsa eel stock during
the period 1975-1987.

Material and Methods

Study location

The river Imsa in southwestern Norway (Figure 1) is an unregulated oligotrophic system. The catchment
covers an area of 12800 ha, of which 1536 ha (12%) is lake surface (major lakes are Imsvatnet, 40 ha, and
Storavatnet, 819 ha). A trap catching descending silver eels as well as ascending juveniles is located about 100
m from the river outlet in the sea. The distance from the trap, which has been in operation since 1975, to the
upper end of eel habitat in the catchment is set at 20 km, and the eels ascend the system up to an altitude of
approximately 215 m above sea level (Vøllestad & Jonsson 1988). Descending, predominantly silver, eels are
caught in a Wolf trap (apertures 10 mm, inclination 1:10). The juveniles entering this watershed are small
yellow eels (elvers or recruits) that are typically 70-90 mm long and weighing less than 1.0 gram, although
a few individuals may be larger. The distance from the nearest lake along the free-flowing river to the fish
trap is 970 m. There has been no stocking of eels in this watershed. Before 2006, there was a restricted
seasonal yellow and silver eel fishery upstream of the trapping station. The number of ascending recruits and
descending silver eels is given per calendar year.

Wolf traps with aperture 10 mm generally catch all eels larger than approximately 25 cm in length, which
includes all silver eels in the river Imsa (Vøllestad & Jonsson, 1986). The elver trap leads all ascending
recruits into a capture chamber where their numbers are recorded, and sub-sampling of size is performed,
before they are released to continue upstream. The traps are checked twice every day (at circa 08:00 and
15:00 h).

Otolith data and age determination

Otoliths from the historical collection (collected in the 1980s and 90s) were initially read in toto by clearing
them in 96% ethanol for 18-24 h before counting the annuli directly using a stereo microscope and 96%
ethanol as refraction medium (Vøllestad, 1985). These otoliths were, since then, stored dry in an envelope,
each labeled with length, sex and stage (yellow or silver). For the reanalysis, a subsample was selected from
years with the highest sampling effort (1982, 1986, 1991 and 1992).

The more recent otoliths (from the 2010s) were sampled from eels caught during their downstream run in
the river Imsa. Twenty-five silver eels were sacrificed per year (61 eels in 2016). Length, weight, fin and eye
diameters were measured for stage determination (Durif, Dufour, & Elie, 2005; Durif, Guibert, & Elie 2009).
The eels were dissected for sex determination and removal of otoliths. Otoliths from the 2010s were not
analyzed using the old in toto method.

A total of 798 fish were processed. All otoliths (historical and new) were prepared by grinding, etching and
staining and read according to the protocol described in ICES (2009, 2011) (Figure 2). The year 0 band was
assigned as the first winter after the oceanic migration,i.e . it marked the beginning of the continental life
stage. The last year was defined as the outer edge of the otolith since eels were caught during the fall season.
Some otoliths had clear and regularly spaced annuli (Figure 2A). Others presented numerous tight rings,
unevenly spaced, which sometimes joined in a “bundle” or fused into one large annulus on the other side
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of the otolith (Figure 2B, 2C). Whether these bundles represent one or several years is unknown. Here, we
assumed that some of the marks forming a bundle represented false checks and thus one bundle represented
one year. Otoliths were read by 2 or 3 observers, or for some samples by the same observer twice, but the
second time several months after the first reading. As expected, some otoliths were easier to interpret than
others, and the age estimates did not always agree between observers. To characterize the uncertainty in
the readings, we assigned each age estimate with an Otolith Uncertainty Index (OUI) corresponding to how
much the observations differed between observers/observations:

• OUI level 1: differences less than 3 years
• OUI level 2: differences between 3 to 5 years
• OUI level 3: differences of more than 5 years.

Calculations and statistics

Indicative growth rate of each individual was calculated by dividing the body length LT (mm) of the eel
minus 70 mm, which is the mean size of glass eels when they recruit to European coasts (Elie, 1979; Svedäng
et al., 1996), by the continental age.

Differences in mean age and mean length between decades and between OUI levels were tested using linear
regression models. Differences in proportion of OUI levels between decades were tested using a Chi-square
test. Differences between length-weight relationships were tested with ANCOVA after the variables were
log-transformed to investigate changes in condition over the decades. Statistics were carried out using the
statistical software R (R Core Team, 2019, v. 3.6.0).

Results

Age estimates

Otoliths from 41 eels (5%) were unreadable and were excluded from the analyses and the following percentages
(Table 1). Most otoliths were assigned an OUI (Otolith Uncertainty Index) level 2, indicating a 4 to 5
years uncertainty (47%). OUI level 1 otoliths (1 to 3-year uncertainty) represented 14%, and OUI level 3
(over 5-year uncertainty) represented 39% of the otoliths analysed. Age varied with OUI (R2=0.04, F(2,
753)=17.8, p<0.0001): uncertainty increased with age. Length did not vary between OUI levels (R2=0.006,
F(2, 750)=2.2, p=0.11). The proportion of OUI level 3 otoliths was different across decades (Χ2=45.729,
df=4; p<0.0001): 51% in the 1980s, 28% in the 1990s and 34% in the 2010s.

Estimated ages from the IT method were always lower than from the GP method (Figure 3). Differences
varied between 0 and 29 y with a mean and a median equal to 11 y. The correlation between age estimates
was significant (R2= 0.05, F(1, 586)=30.8, p<0.0001), but still too low to infer one estimate from the other
(Figure 3). The new and old age distributions were different from each other (Figure 4).

Comparison of new age estimates and length at silvering over the years

Out of the 798 eels, 751 were females, 43 males, and 4 undifferentiated. Ninety-three percent were at the
silver stage, the remaining were either yellow or intermediate.

Mean age at silvering (all years) was 19 y for females and 15 y for males (Table 1). During the last decade
(2010s), mean age of females significantly increased compared to the 1980s and 90s (Table 1). This is due to
the disappearance of young silver eels (<15 y) during the 2010s (Figure 5). This corresponds to the lowest
recruitment level which was reached in the 2000s (Figure 6), thus 12 to 15 years before the 2010s sampling.

Mean body length increased significantly from the 1980s to the 2010s (Table 1, Figure 7). Female length
increased by 8 cm over the 30-year period (Table 1). When male silver eels were still caught in the trap,
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these migrated at a length of around 40 cm. In the 2010s, male eels disappeared, as did the contingent of
smaller female silver eels (around 50 cm). We found no differences in length-weight relationship between
decades (F(2, 241)=1.37, p=0.26).

Growth

Growth estimated based on the GP method were highly variable, and age of female eels was only slightly
related to their body length (R2=0.08). Mean growth calculated over the entire freshwater stage of the eels
by using the new age estimates (GP method) was 30 mm y-1 in females (min-max: 16 - 64 mm y-1) and 24
mm y-1 in males (min-max: 15 - 37 mm y-1). Growth calculated with the old estimates (IT method) was 77
mm y-1 for females and 72 mm y-1 for males.

Linking annual numbers of recruits and silver eels

Both the number of ascending recruits (elvers) and descending silver eels have changed substantially during
the period from 1975 to 2017 (Figure 3). The number of ascending recruits demonstrated large annual
variation during the period 1975-1990, with a minimum of 2400 and a maximum of 46 200 eels, and a mean
number of 19 000 (± SD 15 200). From 1991 to 2017, the annual numbers of ascending recruits declined to
a much lower level, varying between 5 and 8 878 eels, with a mean of 2 555 (± SD 2 512). The number of
descending silver eels changed abruptly in 1988, from a mean of 5 854 (± SD 1 180) eels during 1975-1988,
to 2 183 (± SD 785) during 1989-2017.

The age distribution of the female silver eels migrating to the sea each year included up to 31 age classes
(from 8 years to 39 years old). Thus, each year’s silver eel run represented more than 20 age classes of
recruits. We attempted to fit a Recruit-Stock analysis model by assigning descending silver eels to recruit
cohorts according to mean decadal age distributions but found no significant relationship.

Discussion

Although widely geographically spread out, all European eels spawn in the Sargasso Sea and form one
panmictic population. Some of their biological characteristics, such as age at maturation, growth, fecundity,
can vary greatly depending on where they spend their growth phase, the yellow stage. It is unknown whether
eels from certain regions contribute more to the spawning stock and whether this may change from year to
year. The success of Anguilla anguilla as a species is probably linked to its incredible plasticity in terms
of life-history strategies and biological characteristics. In the context of the decline, it is essential that all
components of the population contribute to the spawning stock. The decline in recruitment has been more
pronounced in the North than in the rest of Europe (1.9% versus 8.9% of the references levels in 1960-1979,
ICES 2019). Norway represents the limit of the distribution area and it is there that changes in densities
are more likely be detected. The time-series from the river Imsa is important for monitoring the stock. The
Norwegian red list assessment for eel has also been based on this time-series. The previous assessment has
used a mean age at maturation of 8 years based on the previous studies (Vøllestad &Jonsson, 1986, 1988).
The present study reporting a mean age of 19 years for female silver eels will likely have an impact on the
next revision of the Norwegian red listing (currently assessed as Vulnerable, VU).

Otolith processing methods and reading uncertainty

As expected, there were large differences in age estimates of eels between the two different methods, in toto
(IT) and grinding and polishing (GP). The age difference was 11 y on average with a maximum of 29 y.
The differences were not systematic, but ages using GP were always older than using IT. The present study
confirms that GP is a better method for estimating age in the European eel than clearing of whole otoliths
in ethanol. Cracking and burning was previously tested on otoliths of Imsa eels, but the burnt otoliths were
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difficult to read (Vøllestad & Jonsson, 1988). Revealing annuli on the otoliths is not the only challenge
related to age estimation in eels. A proper validation of age determination is still lacking, especially for older
eels (over 20 years) from northern latitudes, where growth is slow. In other words, it is uncertain whether all
the annuli represent winter marks, since some can be very tightly distributed, forming bundles of annuli. In
the present study, it was considered unlikely that all these bundled marks represented an annual increment;
rather, one year was assigned to each bundle. In the absence of definitive annulus identification this was the
best approach. It may have led to some under-estimation, but this was to some degree accounted for in the
Otolith Uncertainty Index (OUI).

Further, in our study, 5% of the otoliths were unreadable. In comparison, this proportion was 10-30% for eels
caught in Mediterranean lagoons where eels frequently change salinity and habitat (Panfilli and Ximenes,
1994). Still, 39% of the otoliths from the Imsa were difficult to read (OUI, level 3: uncertainty > 5 years).
These may have qualified as “unreadable” by Panfilli and Ximenes (1994), but here we chose to assign a
high uncertainty rather than discarding them.

Using otoliths of known age, Svedäng et al. (1998) showed that younger eels were consistently over-aged
while older eels were under-aged. The reason for overestimations was the presence of supernumerary zones
in younger eels that were misidentified as annuli. For older eels, it is difficult to detect annuli in the outer
slow-growing part of the otolith. An additional inconsistency was found in readings by the same reader over
time which could vary up to 6 years (Svedäng et al., 1998). The unknown age of glass eels at metamorphosis
may add one to two years of uncertainty to the total age. Similarly, the outer bands may not be fully revealed
at the edge of the otolith by a polishing and grinding method causing an under-ageing.

Some otoliths, however, are very clear and can be easily interpreted. Therefore, it is important to include
some measure of confidence around the age determination, at least, until there is a proper age validation
method. We suggest a simple method by implementing an otolith uncertainty index (OUI) such as described
in the present study. Depending on the type of output where age data is needed, ranging from population
dynamics models to management advice, subsets of data can be selected based on their OUI. The development
of machine learning methods for automatic otolith image analyses is promising (Moen et al., 2018). An OUI
index will also be useful in that sense, for selecting suitable learning datasets.

Evolution of the age distribution of silver eels in the river Imsa

As expected, age at silvering varied greatly in the eels from the river Imsa (females: 8-35 years; males: 9-23
years), but the overall mean varied only slightly across decades (from 19 to 21 years in the 2010s). Since
most age readings had an associated uncertainty of 3 to 4 years, this 3-year increase is meaningless, although
statistically significant. Actually, given the disappearance of young silver eels (less than 15 y) during the more
recent decades, it is surprising that the mean and median age were not more affected. However, mean age of
silver eels is bound to increase even more in the river Imsa with the consistently low numbers of ascending
recruits the last 2-3 decades. But in 2009 and 2014, elver recruitment increased and almost reached the
10 000-individual threshold. An effect on the number of silver eels might not be detected before at least
10-15 years later. If these two peaks do affect the number of silver eels, it will not happen before 2022. In
any case, if recruitment does not improve, this increase will be short-lived, and perhaps non-detectable due
to the low levels during most of the last 15 years.

Length at silvering

Eels are present in many types of habitats and salinities: coastal, lagoons, lakes, rivers, marshes, fjords, and
estuaries. Length (and not only age) distributions can vary greatly among these habitats (Vøllestad 1992;
Vøllestad & Jonsson 1986; Svedäng, Neuman, & Wickström, 1996; Holmgren, Wickström, & Clevestam, 1997;
Melia et al., 2006; Durif et al., 2009; Poole et al. 2018). All eels need to accumulate fuel for the sustained
high-intensity swimming necessary for the journey to the Sargasso Sea, but females will face higher energetic
demands in order to produce eggs. This leads to different life-history strategies and a sexual dimorphism
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based on differences in length at maturity (Bertin, 1956; Tesch, 2003). Male eels migrate at around 35 cm
(in this study 40 cm), minimizing the duration of their yellow stage, while females migrate at sizes of 40 to
130 cm, optimizing their size to reach a higher fecundity (Helfman, Facey, & Hales, 1987; Vøllestad, 1992;
Tesch, 2003; Durif et al., 2009). In the northern part of the distribution area, eels (males and females) are
on average larger than in southern areas, and this has been linked to the increasing distance they have to
swim to reach the spawning area (Tesch, 2003; Durif et al, 2009; Vøllestad, 1992). Yet in the present study,
which was located at a relatively high latitude (58.90 N), most female eels migrated at a body length around
60 cm and a small contingent of eels migrated at body length around 40-55 cm. Possibly, some eels could
have stopovers on their way to the Sargasso Sea; but in the case of Norway, there is no obvious location for
a stopover, since silver eel spawners take the northern route (north of the Shetlands) rather than through
the Dover straight (Kettle, Vøllestad, & Wibig, 2011; Westerberg, Sjöberg, Lagenfelt, Aarestrup, & Righton,
2014). The best gonad-to-body size ratio under experimental artificial maturation, was found in eels longer
than 70 cm (Durif, Dufour, & Elie, 2006). Once a specific size is reached, a period of high growth probably
triggers silvering (Huang et al., 1998; Durif et al., 2005). Recent work in reproductive endocrinology has
identified the kisspeptin system as essential for the onset of puberty in mammals but also in teleost fish
(Seminara et al., 2003; Zohar et al., 2010; Pasquier et al., 2018). In eels, kisspeptins regulate the expression
of gonadotropins. They may be the link between environmental factors and the reproductive axis through
the regulation of growth hormone (Huang et al, 1998; Zohar et al., 2010; Kim, Choi, Park, & Choi, 2015).

Growth of eels

The new age estimates using the grinding and polishing (GP) method indicate that eels in the river Imsa
spend a substantially longer period as yellow eels in freshwater than previously thought (Vøllestad & Jonsson,
1986). Previous estimates of silver eels in the river Imsa, suggested a mean age of 5 years for male and 8
years for female silver eels (Vøllestad et al., 1986), while the new estimates indicated a mean age of 15 years
for males and 19 years for females. At the time it was concluded that eels in the river Imsa grew quickly,
with a mean size increment of around 70 mm y-1, which is comparable to growth in brackish water and
in southern Europe (Rossi & Colombo 1976; Vøllestad, 1985; Acou et al., 2003). In the river Imsa, slower
growth is more likely (this study: 30 mm y-1, because at these latitudes the growth season is shorter than
in southern Europe as eels stop feeding when the water is colder than 8-10 (Vollestad et al., 1986; Riley,
Walker, Bendall, & Ives, 2011; Westerberg & Sjoberg, 2015). This was also visible through the patterns
of the annuli. Tight, numerous rings are interpreted as short growth seasons. Our method to determine
growth rate was simple and did not take into account changing growth rates over the lifetime. The new mean
growth estimate in the river Imsa is 30 mm y-1, which is less than half of what was previously documented.
This new value is in line with newer growth estimates of eels in freshwater and in the northern part of the
distribution range (Aprahamian 2000; Arai, Kotake, & McCarthy, 2006; Lin, Lozys, Shiao, Iizuka, & Tzeng,
2007; Simon, 2007, 2015; Silm, Bernotas, Haldna, Jarvalt, & Noges, 2017).

Growth of eels in the river Imsa has not changed since the 1980s. This was contrary to what was expected.
Water temperature has also increased due to climate change and this has provided longer growth seasons.
Additionally, a reduced number of ascending recruits has led to a lower density of yellow eels in the freshwater
habitat; this should have resulted in better growth and faster onset of the silvering process, leading up to
silver eel descending at a younger age in recent years than in previous periods. Early analyses based on
different ageing methodology did indicate density-dependent mortality in Imsa (Vollestad & Jonsson, 1988),
opening the possibility also for density-dependent growth.

There were very few individuals younger than 15 years in the samples from 2012-2016. This agrees with
the large reduction in recruitment from the late1990s. The recruitment has remained low since then, with
almost no recruitment in several years in the mid-2000s and later (Figure 6). This gives us extra confidence
in the new age estimations. Silver eels younger than 15 years from 2012-2016 have entered the river after
1997-2001, hence with the large decline in recruitment a large decline in this age group was also expected.
The IT method would have estimated most eels sampled in the 2010s to be around 10 years old with a cutoff
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value at 5 years, meaning a decline around 2007-2011. This was not the case and therefore estimates from
the GP method are more likely.

Sex ratio

Male eels have always been scarce in the river Imsa; in the 1980s they represented 3-7% of the total run, but
they all disappeared in the 2010s (Poole et al, 2018). Sex determination in eels is metagamic, meaning it
is non-genetic (Geffroy & Bardonnet, 2016). Sex ratios are indeed skewed at individual localities and there
is a geographic bias associated with latitude and longitude (Helfman et al. 1987; Oliveira, McCleave, &
Wippelhauser, 2001; Davey & Jellyman, 2005). The general pattern is that male eels are more abundant
at southern latitudes and mainly in the lower reaches of rivers, whereas females dominate at higher lati-
tudes and with increasing distance to the sea. Additionally, high eel densities are usually associated with
higher proportions of males (Parsons, Vickers, & Warden, 1977; Beentjes & Jellyman, 2003, 2015; Davey
& Jellyman 2005; Laffaille, Acou, Guillouet, Mounaix, & Legault, 2006; Harrison, Walker, Pinder, Briand,
& Aprahamian, 2014); although, a study done in a laboratory showed opposite results (Huertas & Cerda,
2006). This later study, and others, also suggest that sex determination occurs during the first 3 months of
growth (Davey & Jellyman, 2005; Huertas & Cerda, 2006).

The density factor may affect sex ratio through 1) food availability, depletion of food resources and lower
growth or 2) through social interactions: possibly through odors of conspecifics or even through cannibalistic
behaviors which would skew the sex ratio since females are larger than males (Davey & Jellyman, 2005).

Eel density in the Imsa catchment has severely decreased following the decline in recruitment since the late
2000s (Figure 6). However, in our study, growth has remained unchanged over the decades, and therefore
cannot explain the disappearance of male eels. Therefore, social interactions (i.e.: density-dependence) are
probably important for determining sex in eels.

Link between ascending recruits and descending silver eels

In the light of the low annual number of ascending juvenile eels and the relatively high number of silver eels, a
mean age of silver eels at 19 years for females and 15 years for males indicates that mean annual mortality in
freshwater has to be very low (<<10%). The termination of eel fishing in the Imsa water course in 2006 has
likely contributed to a reduced freshwater mortality, but natural mortality may anyway appear to have been
very low all through the study period. In a river-lake system mainly inhabited by invertebrate-feeding brown
trout (Salmo trutta ), whitefish (Coregonus lavaretus ), Arctic charr (Salvelinus alpinus ) and three-spined
sticklebacks (Gasterosteus aculeatus ), the main predation mortality in eels is likely restricted to the very
early yellow eel stages. There are reports of minks being caught in the trap and which probably also cause
some mortality.

Because of the long residency in freshwater (>15 years) for eels in the river Imsa, even a time series of more
than 40 years is too short to allow a robust analysis of the relationship between the number of ascending
recruits and the resultant number of descending silver eels. The wide silver eel age distributions, together
with the stochastic environmental effect on the silvering process and annual number of descending eels, mask
any potential signal from the variation in number of recruits. The annual variation in the number of recruits
will be reflected in a large number of silver eel cohorts, resulting in a very smoothed signal from the variation
in recruits. For example, as the age variation in female silver eels in river Imsa spans 35 years (minimum age
= 5 years, maximum age = 39 years), a time series of 44 years (since 1975) will only include the complete
number of silver eels for approximately five cohorts of recruits. In addition, as the environmental and habitat
variables may have changed substantially during the 44 year period (for example temperature, Poole et al.,
2018), we cannot expect a stable relationship between the numbers of ascending recruits and silver eels
over the years, and attempting to split the time series into periods with relatively similar environmental
conditions and fit models to these will be futile.
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In addition, we know little about the factors governing growth, mortality and strategic choices during
the freshwater life phase of eels, so it will be difficult to parameterize a model adequately. For example,
how should we include the effect of density in the model? Will reduced overall densities mainly affect
densities in unfavorable habitats or habitats further from the sea (above the lakes), while density remain
high in favorable habitats, as indicated by Boulenger et al. (2016)? Will the effect of increased density be
increased mortality, due to more competition for resources or more predation from older eels, or reduced
growth due to displacement to lower quality habitats? At very low densities, other effects like Allee effects,
depensatory mechanisms, changing sex-ratios or life history strategies can also obscure the relationship (see
references in Poole et al., 2018; Sandlund et al., 2017). One should also note that developing river-wise
stock-recruitment models for European eel is not possible. The species is panmictic (Palm, Dannewitz,
Prestegaard, & Wickstrom, 2009; Als et al., 2011), with a biology that implies a weak, or no, connection
between the number of silver eels leaving any watercourse for spawning in the Sargasso Sea and the number
of glass eels returning to that watercourse.

In conclusion, the method of revealing annuli is one of the elements that can improve the precision and the
accuracy of age estimates. Grinding and polishing the otolith seems a better method than reading the age “in
toto” for older eels with a lifetime of more than one decade. However, beyond the method, there are two types
of errors associated with age determination in fish: a process error related to how well the otolith reflects the
complete growth record of the fish throughout its lifetime, and observation errors linked to the interpretation
of these annuli (Campana, 2001). In eels, several studies have verified the correspondence between otolith
structures and seasonal increments (Moriarty, 1983; Chrisnall & Kalish 1993; Oliveira, 1996; Svedang et
al., 1998), however, reading age of slow-growing eels remains a challenge. Separating false checks from real
winter marks will require a proper validation of the growth increments, especially for the northern part of
the distribution area where growth is slower and occurs over a shorter period. The new age distribution we
determined, however, was consistent with the dynamics of elver recruitment in the river Imsa since 1975.
This gives us some extra confidence in our age determination: eels have been spending on average 19 years
in freshwater since the 1980s and this has only slightly increased during the 2010 (mean of 21 years). Still,
the variation around these numbers is considerable, from 5 to 39 years, and this means that eels from up
to 34 cohorts of recruits (elvers, small yellow eels) can be included in each year’s group of descending silver
eels. In this case, developing a model that links annual numbers of ascending recruits and silver eels is likely
futile.
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Anguilla anguilla (Linnaeus, 1758), in Estonian lakes. Journal of Applied Ichthyology, 33 (2), 236-241.
doi:10.1111/jai.13314

Simon, J. (2007). Age, growth, and condition of European eel (Anguilla anguilla ) from six lakes in the River
Havel system (Germany). ICES Journal of Marine Science, 64 (7), 1414-1422. doi:10.1093/icesjms/fsm093

Simon, J. (2015). Age and growth of European eels (Anguilla anguilla ) in the Elbe River system in Germany.
Fisheries Research, 164 , 278-285.

Svedäng, H., Wickström, H., Reizenstein, M., Holmgren, K., & Florenius, P. (1998). Accuracy and precision
in eel age estimation, using otoliths of known and unknown age. Journal of Fish Biology, 53 (2), 456-464.

Svedäng, H., Neuman, E., & Wickström, H. (1996). Maturation patterns in female European eel: age and
size at the silver eel stage. Journal of Fish Biology, 48 , 342-351.

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.

Tesch, F. W. (2003). The Eel (5th edition ed.). Oxford: Blackwell Publishing.

13



P
os

te
d

on
A

u
th

or
ea

16
J
an

20
20

—
C

C
B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
57

91
8
89

2.
26

75
26

92
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Tzeng, W. N., Wu, H. F., & Wickstrom, H. (1994). Scanning electron-microscopic analysis of annulus mi-
crostructure in otolith of European eel, Anguilla anguilla . Journal of Fish Biology, 45 (3), 479-492.

Vøllestad, L. A. (1985). Age determination and growth of yellow eels,Anguilla anguilla (L.), from a brackish
water, Norway.Journal of Fish Biology, 26 (5), 521-525.

Vøllestad, L. A. (1992). Geographic variation in age and length at metamorphosis of maturing European eel:
environmental effects and phenotypic plasticity. Journal of Animal Ecology, 61 , 41-48.

Vøllestad, L. A., & Jonsson, B. (1986). Life-history characteristics of the European eel Anguilla anguilla in
the Imsa River, Norway.Transactions of the American Fisheries Society, 115 (6), 864-871.

Vøllestad, L. A., & Jonsson, B. (1988). A 13-year study of the population dynamics and growth of the Euro-
pean eel Anguilla anguilla in a Norwegian river: evidence for density-dependent mortality, and development
of a model for predicting yield.Journal of Animal Ecology, 57 , 983-997.

Vøllestad, L. A., Jonsson, B., Hvidsten, N. A., Naesje, T. F., Haralstad, O., & Ruud-Hansen, J. (1986). En-
vironmental factors regulating the seaward migration of European silver eels (Anguilla anguilla ). Canadian
Journal of Fisheries and Aquatic Sciences, 43 , 1909-1916.

Vøllestad, L. A., Jonsson, B., Hvidsten, N. A., & Næsje, T. F. (1994). Experimental test of environmental
factors influencing the seaward migration of European silver eels. Journal of Fish Biology, 45 , 641-651.

Vøllestad, L. A., Lecomte-Finiger, R., & Steinmetz, B. (1988). Age determination of Anguilla anguilla (L.)
and related species. EIFAC Occasional Paper, 21 , 1-28.

Vøllestad, L. A., & Naesje, T. F. (1988). Reading otoliths of eels,Anguilla anguilla (L.), of known age from
Kolderveen, The Netherlands. Aquaculture and Fisheries Management, 19 , 387-391.
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Table 1. Summary of the otolith sample collected from silver stage European eel caught in a Wolf-trap from
the river Imsa (Norway). OUI: Otolith Uncertainty Index describing the level of uncertainty when otolith
was read by different readers, level 1: 1 to 3 years, level 2: 4 to 5 years, level 3: more than 5 years.

Year Number of fish sampled Number aged Number not readable Percent not readable Age of females (mean ± SD; years) Length of females (mean ± SD; cm) Number of eels in OUI level 1, 2, and 3 respectively Age of males (mean ± SD; years) % of males

1980s 326 282 22 7% 19±4 60±7 28/107/147 14±4 8%
1990s 336 304 12 4% 19±5 63±11** 54/159/91 15±3 5%
2010s 136 129 7 5% 21±4* 68±7** 11/74/44 none 0
SUM 798 757 41 5% 19 15 5% (7% excluding the 2010s)

*Mean age of females became significantly higher only in the 2010s, R2=0.03, F(2, 712) = 10.23, p<0.0001;
t-tests 1980s vs. 1990s: p=0.34 and 1980s vs. 2010s: p<0.0001.

**Mean length of females increased significantly between each decade, R2=0.09, F(2, 744) = 35.73;
p<0.0001); t-tests 1980s vs. 1990s and 1980s vs 2010s: p<0.0001.

Figure 1 . Map of the study area showing the location of the river Imsa and of the trap capturing out
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migrating silver eels (Anguilla anguilla ).

Figure 2 : European eel otoliths after grinding, polishing, etching and staining. Annual rings are numbered
on the pictures. Each otolith was assigned an Otolith Uncertainty Index (OUI) which corresponds to differ-
ences in readings between observers, level 1: less than 3 years, level 2: 3 to 5 years, level 3: more than 5
years. 2A: 15 years, OUI 1, body length: 67 cm, (In toto estimate: 9 years). 2B : 18 years, OUI 2, body
length: 69 cm, (In toto estimate: 6 years). 2C: 20 years, OUI 3, body length: 67 cm, (In toto estimate: 9
years).

Figure 3 : Differences in age estimates of eel (Anguilla anguilla ) between two methods either by reading
the otoliths in toto (lower end of the bar) or grinding and polishing (top end of the bar).

Figure 4 : Age distribution of European eels from the river Imsa (Norway) based on otoliths read whole (“in
toto” method: IT; grey bars) or grinded and polished (GP; white bars). The IT and GP age distributions
were significantly different from each other (Kolmogorov-Smirnov, D=0.925, p<0.0001).

Figure 5 : Age distribution of European eel (undifferentiated: yellow; males: blue, females: red) caught
during their downstream migration in the river Imsa between 1982 and 2016. Mean (equal to median, shown
as arrows) ages of females was 19 y in the 1980s and 1990s, and 21 y in the 2010s.

Figure 6 : Annual number of European eels recorded in the traps in the river Imsa, 1975-2018. (A) upstream
migrating recruits (mostly young of the year elvers) in the spring; the inset zooms on the period 1992-2019
and (B) downstream migrating silver eels in the fall.

Figure 7 : Length distribution of out-migrating European eel (undifferentiated: yellow; males: blue, females:
red) caught during their downstream migration in the river Imsa between 1982 and 2016. Mean length of
females (closed arrow) was 60 cm in the 1980s, 63 cm in the 1990s and 68 cm in the 2010s. Median lengths
(open arrows) were 61 in the 1980s and 1990s and 69 in the 2010s.
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