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Abstract

The increase in human activities is one of the important factors affecting the value of ecosystem services. However, understanding

of the driving mechanisms of human activities is limited. We established a deep learning model to approximate the ecosystem

service value (ESV) of Nanjing City using 23 socioeconomic factors. A multi-view analysis was then conducted on feasible

impact mechanisms using model disassembly. The results indicated that factors such as the proportion of ecological waters

in the land-use structure and secondary industry output value had their own independent effects on ESV. Other intrinsically

related factors, for instance, industrial water consumption and industrial electricity consumption, were likely to be composited

together to affect ESV.

Introduction

Ecosystem services are the benefits that people obtain from various ecosystems that can be described and
measured (Tamayo et al. 2018; Costanza et al. 1997). Mendelsohn and Olmstead (2009) described the value
of ecosystem services (ESV) as “the sum of what all members of society would be willing to pay” for “the
economic benefit provided by environmental products or service” (Mendelsohn & Olmstead 2009). Hence,
the estimation of ESV can make a vital contribution to biodiversity protection and sustainable development
(Billé et al. 2012). Assessments of ESV at the national, regional, basin and even single ecosystem levels can
show how these services support our lives and how people develop natural resources rationally (Wei et al.
2018). The valuation methods now available are highly developed and can be mainly divided into behavioral
(revealed preference) methods and attitudinal (stated preference) methods (Mendelsohn and Olmstead 2009).
Behavioral methods attempt to calculate the environmental value of goods indirectly through market analysis
(Braden et al. 2010; Phaneuf et al. 2008; Harrington & Portney 1987). Attitudinal methods use subjectively
designed surveys to create a table of ecological value equivalents. Two common valuation systems include
the system created by Costanza in 1997 (Costanza et al. 1997) and the millennium ecosystem assessment
framework (Alcamo 2003).

However, the understanding of ESV is not comprehensive because multiple types of service interrelate in
complex and dynamic ways (Spake et al. 2017). The current research perspectives on ESV consider it to
be the result of a process: “human-driven factors of ecosystem change ecosystem process and functions
ecosystem services”. “Human-driven factors of ecosystem change” can be interpreted as basic socioeconomic
conditions, including population, GDP, industry structure, and energy consumption. “Ecosystem process and
functions” can be represented by land and land cover change at the geospatial level, which is traditionally
the most important part of the information used to estimate ESV (Barbier et al. 2011). However, how ESV
interacts with socioeconomic factors remains ambiguous (Meacham et al. 2016), which leads to difficulties
in the application of ESV in ecological management. In other words, even if a low ESV area is identified,
we still do not know how to promote it efficiently through regional planning or industry regulation. Studies
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started to include the socioeconomic drivers of ESV into consideration for the implementation of responsive
policies. Yang et al. (2019) found that ESV is tightly correlated with socioeconomic status. Wu et al. (2019)
found nonlinear relations between GDP and ESV and between population density and ESV, but no more
complete causality was explained.

As one kind of machine learning algorithm, deep learning is a multilayer perceptron neural network (Reichs-
tein et al. 2019). It offers significant breakthroughs in solving classification and nonlinear regression problems
(Sze et al. 2017). Deep learning can extract the valid features of data input through complex computational
models and represent them at a higher level of abstraction, eventually achieving complex self-learning func-
tions through multiple transformations and combinations (LeCun et al. 2015). Traditional evaluation and
analysis methods are often not sufficiently effective in describing the continuous and quantitative rules in
a complicated ecosystem (Moore et al. 2017). Deep learning may be an effective tool for dealing with this
problem.

In this work, deep learning was used to explore the relationships between “human drivers of ecosystem
change” and “ESV” on a dataset from Nanjing, China. The city of Nanjing is one of the megacities in the
Yangtze River basin; it has experienced rapid economic development since the 1970s that is still occurring
today (Li et al. 2016) (Figure S1). At the end of the 20th century, the urbanization of Nanjing entered an
accelerated phase, which led to a rapid increase in population, unreasonable industrial structure, unbalanced
land use, high energy consumption, and environmental degradation (Yuan et al. 2018; Shi et al. 2019). Over
the last two decades, the population has increased from 3 M to 8.5 M, and its GDP has increased from 338.12
billion CNY in 2008 to 1171.51 billion CNY in 2018. As an ecologically sensitive area, the changes in its
ecological system and services have been continuously monitored and studied. Taking ESV as a parameter of
the ecosystem, a better understanding of their internal driving mechanism will be conducive to optimizing
local policies and regional planning (Shiferaw et al. 2019).

Methods

Data preprocessing

The Terrestrial Ecosystem Service Value Distribution Database used in this study was constructed by Xie
using attitudinal methods (http://www.resdc.cn) (Table S1).

According to China’s green development policy (Ji et al. 2017), the factors related to ecological conditions
and sustainability were divided based on six aspects: resource utilization, environmental governance, envi-
ronmental quality, ecological protection, growth quality, and green life. Due to the spatial scale of this study,
natural conditions such as temperature, perception, and humidity are relatively similar across the city, so
they were not used as model input for differentiation. Taking the correlation with ESV and anthropogenic
controllability into account, 23 indexes from 2015 were chosen and altered from three perspectives (Table
S1) as input for the following ESV deep learning model. The data resources and spatial revolution of raster
data are shown in Table S1.

Multidata fusion on the same scale (Openshaw 1984; Perkins 2017; Hodgkinson and Andresen 2019) is
necessary to make labeled samples meet the common format and quantity requirements for deep learning
model training. Considering the area of Nanjing and the ecological significance of ESV, we used a 2*2 km
grid for data processing by grid transformation. A total of 2191 grid units were obtained as samples. The
socioeconomic data were allocated by key weighting factors (Table S2) using Eq. 1. Spatial socioeconomic
data with a resolution of 2*2 km were obtained.

Afi = Asi × Wfi
Wsi

(Eq. 1)

Afi: the values in 2*2 km units of the ith (No.) allocated indicators. Asi: the total value of the ith (No.)
allocated indicators in Nanjing City. Wfi: the values in 2*2 km units of the ith (No.) weighting factors. Wsi:
the total value of the ith (No.) weighting factors in Nanjing City.

Finally, data standardization was conducted as a standard procedure before training. Standard deviation
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standardization was used to eliminate the influence of the magnitudes. The land-use factors were represented
by individual area proportions (from 0% to 100%) for each type, which were then individually standardized.

Data modeling

Because of the complexity of the anthropogenic driving mechanisms, the relations among the 23 independent
variables and ESV cannot be described by the conventional linear model. We used a feed-forward dense
network as the deep learning model.

The network consists of 8 layers (4 dense layers), including 6 hidden layers in the network. Each layer has
a certain number of neurons and activation functions (Table 1). Nonlinear activation functions such as the
rectified linear unit (ReLU) were introduced in the 3rd and 5th hidden layers to learn the nonlinearity. The
ReLU function was used to avoid vanishing gradient problems. Additionally, the dropout rate was set to 0.3
in all dropout layers to avoid overfitting problems.

We partitioned 70% of the 2191 units as training samples and 30% as testing samples. In the training phase,
the optimizer and loss function were established based on adaptive moment estimation (ADAM) and the mean
square error (MSE). After conventional model optimizations were performed, the above hyperparameters
were determined. The corresponding model was trained and used in the study.

Table 1. The configuration of the model

Layer Operation Parameter Parameter

Input layer 23 Socioeconomic factors
1、2-hidden dense 128 linear

dropout 0.3 0.3
3、4-hidden dense 256 tanh

dropout 0.3 0.3
5、6-hidden dense 16 ReLU

dropout 0.3 0.3
Output layer dense 1 linear

Model analysis

We observed how ESV (Y) responded to the change in each influence factor (X) by sampling continuously
in the range of each input X. In the course of the concrete analysis, other factors were kept as the mean of
samples, and the values of the target factors were changed by adopting control variables. In addition, the
range of target X was regarded as its definition domain, called the sampling domain. The range of ESV
is called the response domain. The influence intensity of every X factor can be judged according to the
corresponding response domain, and the influence mode and potential mechanism can be judged according
to the variation trend of the function.

Results and discussion

Model performance

The model was trained for 200 epochs and showed a significant convergence trend. In terms of precision,
the Nash-Sutcliffe efficiency and root MSE (RMSE)-observation standard deviation ratio (RSR) were used
as indicators to reflect the model performance and reached values of 0.51 and 0.70 respectively, indicating
“satisfactory” performance. Spatially, the observed value and predictive value of each sample were visualized
with one set of legends showing similar spatial characteristics (Figure 1). However, overall, the sum of the
predictive values was lower than the ground truth sum.
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Figure 1. (a) Map of the observed ESV value in Nanjing. (b) Map of the predictive ESV value in Nanjing.

Single-factor response

23 X factors were divided into three categories, extremely significant influence intensity (ES), significant
influence intensity (S), and nonsignificant influence intensity (NS), according to the range of the response
domain (Table 2).

Table 2. The influence intensity and influence mode of 23 X factors

Index Original sampling domain Standardized sampling domain The range of response domain Function shape

2nd industry output value (million yuan) (0, 14000) (0, 14) 0.310 (ES) monotone decreasing
Water area (%) (0, 100) (0, 100) 0.236 (ES) monotone increasing
GDP (million yuan) (0, 10000) (0, 15) 0.181 (S) monotone increasing
Industrial water consumption (0, 40) (0, 14) 0.178 (S) monotone decreasing
Light index (-100, 600) (-2, 5) 0.162 (S) increasing with fluctuation
3rd industry output value (million yuan) (0, 1750) (-1, 5) 0.154 (S) monotone decreasing
Agricultural electricity consumption (0, 0.35) (-2, 3) 0.138 (S) monotone decreasing
Water consumption (kt) (0, 70) (0, 20) 0.138 (S) inverted U-shaped
Tourism output (million yuan) (0, 80) (-6, 1) 0.137 (S) increasing with fluctuation
1st industry output value (million yuan) (0, 35) (-2, 3) 0.13 (S) monotone decreasing
Woodland area (%) (0, 100) (0, 100) 0.103 (S) monotone increasing
Grassland area (%) (0, 100) (0, 100) 0.094 (NS) U-shaped
Residential electricity consumption (kw) (0, 20) (-1, 5) 0.089 (NS) monotone increasing
NDVI (0, 4) (-3, 3) 0.089 (NS) U-shaped
Population (person) (0, 250000) (0, 17.5) 0.088 (NS) U-shaped
Agricultural water consumption (kt) (0, 2.5) (-2, 3) 0.083 (NS) U-shaped
Electrical consumption (kw) (0, 800) (0, 20) 0.079 (NS) inverted U-shaped
Construction industry output (million yuan) (0, 175) (-1, 5) 0.071 (NS) inverted U-shaped
Industrial electricity consumption (kw) (0, 1000) (0, 14) 0.067 (NS) inverted U-shaped
Residential water consumption (kt) (0, 20) (-1, 5) 0.051 (NS) U-shaped
Construction land area (%) (0, 100) (0, 100) 0.042 (NS) monotone decreasing
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Index Original sampling domain Standardized sampling domain The range of response domain Function shape

Unused land area (%) (0, 100) (0, 100) 0.037 (NS) monotone increasing
Cultivated area (%) (0, 100) (0, 100) 0.017 (NS) monotone decreasing

The “2nd industry output value” was an extremely significant (ES) factor with the highest range in the
response domain. The monotonic decreasing function of the “2ndindustry output value” and ESV meant
that a more developed 2nd industry led to a lower ESV (Figure 2a). In addition, there were a series of
X factors with a relatively high range of response domains and significant influence intensities. Among
them, “GDP”, “light index” and “tourism output” had a positive impact on ESV, and “industrial water
consumption”, “3rdindustry output value”, “agricultural electricity consumption” and “1st industry output
value” had a negative impact on ESV. The function of the relationship between “water consumption” and
ESV adopted an inverted U-shaped curve. The inflection point of “water consumption” was approximately
10 kt, while ESV reached a maximum value of 810 k (Figure S2).

“Water area” was another extremely significant factor, and the areas of other types of land were all NS
factors except “woodland area” (S), which displayed the lowest range in the response domain compared with
other significant (S) factors. The “water area”, “woodland area” and “unused land area” had a positive
impact on ESV (Table 2). In contrast, the “cultivated area” and “construction land area” had a negative
impact on ESV. Moreover, the relationship between the “grassland area” and ESV displayed a U-shaped
curve that had an inflection point at approximately 80% of the grassland area (Figure 2b and Figure S2).

Other factors had a relatively low range of response domains, which meant that their influence was not
significant. However, the functions capturing the relationship between these NS factors and ESV almost
all assumed a U-shaped curve or an inverted U-shaped curve (Figure 2b and Figure S2). All the analyses
suggested that there is a response relationship between ESV and socioeconomic conditions. Therefore, the
ESV can be improved indirectly by adjusting these factors. However, understanding how to regulate and
control the above factors to achieve a balance between ESV and economic development still requires further
multifactor coupling research.

Figure 2. The functions of the relationships between standardized X factors and ESV

(a) The function of the relationship between nonland-use-type factors (changed from -3 to 3) and

5
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ESV; (b) The function of the relationship between land-use factors (changed from 0% to 100%) and ESV.

Multifactor response

It is difficult to achieve maximum ESV and adjust all socioeconomic factors to the optimum intervals because
of the complex coupling influence. We attempted to select several sets of factors with significant interactions
to identify which proportions could regulate them for the purpose of maximizing ESV. As a result, “the
proportion of construction” and “population”, “1st industry output value” and “population”, and “industrial
water consumption” and “industrial electric consumption” were chosen to analyze how they cooperatively
influence ESV.

This approach suggested that ESV is most affected by the population (Figure 3a). The population within
4 km2 should be controlled to be less than 20 k or approximately 120 k. In addition, ESV dropped sharply
with the increase in construction land when the population was 50 k. In contrast, ESV declined slowly
with the increase in construction land when the population was more than 100 k, which suggests that a
relatively single distribution of construction land will not place too much pressure on the ecosystem in
densely populated centers. However, controlling construction land still has a positive influence on ESV.
Therefore, the city center can sacrifice nonconstruction land for infrastructure construction and population
accommodation, and it will be necessary for it to reserve ecological space.

The surface of “1st industry output value” and “population” showed that there were two scenarios that
achieve higher ESV (Figure 3b). One scenario was when the population was nearly 0 and the output of the
1st industry was more than 15 million CNY. Under this scenario, the object region had a small population
but played an important role in agricultural production. The other scenario was when the population was
approximately 150 k and the 1st industry output value was less than 10 million CNY.

Regarding energy consumption, “industrial water consumption” was presumably the limiting factor compared
with “industrial electricity consumption” (Figure 3c). Industrial water consumption should be kept below
15 kt if one hopes to achieve a high ESV. When industrial electricity consumption was between 400 and 600
kw, ESV rapidly decreased with increasing industrial water consumption. This finding suggested that water
consumption needs to be restricted and reserved in industrial areas.

Figure 3 . The surface of ESV and three sets of coupling factors

6
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(a) The coupling influence of “the proportion of construction” and “population”; (b) The 3D surface of
ESV, “the proportion of construction”, and “Population”; (c) The coupling influence of “1st industry output
value” and “population”; (d) The coupling influence of “industrial water consumption” and “industrial
electric consumption”.

Urban cognizable synergistic features

As the activation function in the output layer is linear, it is possible to extract cognitive and comprehensible
features from the penultimate layer (Yu & Seltzer 2011). Nine features with bottom-up information were
interpreted and understood. Considering the range of Y and the weight of the features, significant features
that contained more information about the corresponding factors were selected. The features were named
according to X, which had a great influence on them, except feature 7, which contained information on almost
all the factors and features 9 and 15, which contained little information on any factors. Therefore, 6 cognizable
synergistic features integrated from multiple factors were extracted, including the urban expansion factor
(0.0133), land use-industrial structure-energy consumption structure (0.0146), land use-energy consumption
structure, agricultural development (0.0146), city-scale factor (0.0151) and tourism exploitation potential
(0.0138) (Table 3). Among these factors, the city-scale factor was the most significant urban cognizable
feature with the highest weight (0.0151), and it contained information about GDP, population and tourism
output. This finding demonstrated that the deep learning model may predict ESV by quantifying regional
characteristics, including land-use structure, energy consumption structure, industrial structure, and city
scale. Therefore, it is possible to adjust the urban macro characteristics to maintain or even improve the
regional ESV.

Table 3. The extraction and analysis of urban cognizable features

Number Weight Factors contained The weighted range of Y The name of urban cognizable features

Feature 1 0.0133 Light index 0.000508 Urban expansion factor
Cultivated area 0.000768
Residential electricity consumption 0.000365

Feature 3 0.0146 Light index 0.00083 Land use-industrial structure-energy consumption structure factor
Cultivated area 0.000902
Woodland area 0.00108
Grassland area 0.000862
Water area 0.001034
Unused land area 0.000916
2nd industry output value 0.000484
3rd industry output value 0.000488
Agricultural electricity consumption 0.000358
Industrial water consumption 0.000469
Residential water consumption 0.000543

Feature 6 0.0146 Woodland area 0.00106 Dynamic land use-energy consumption structure factor
Water area 0.001037
Construction land area 0.000803
Unused land area 0.001005
Construction industry output value 0.000309
Electrical consumption 0.000628
Industrial electricity consumption 0.000926
Residential electricity consumption 0.000424
Water consumption 0.000347
Agricultural water consumption 0.000369

Feature 8 0.0143 Light index 0.000645 Agricultural development factor
Cultivated area 0.000905
Unused land area 0.000978
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Number Weight Factors contained The weighted range of Y The name of urban cognizable features

1st industry output value 0.000547
Agricultural electricity consumption 0.00036
Residential electricity consumption 0.000439
Water consumption 0.000379

Feature 10 0.0151 GDP 0.000964 City scale factor
Population 0.001185

Feature 13 0.0138 Population 0.000885 Tourism exploitation potential factor
NDVI 0.000846
Agricultural water consumption 0.000819
Tourism output value 0.000632
Construction land area 0.000376

The extraction of urban cognizable synergistic features could be regarded as a form of dimensionality re-
duction in 23 X factors. Therefore, we compared urban cognizable features with the results of a principal
component analysis, which is a widely used technique in machine learning (Monedero et al. 2019). There
were 6 principal components, which all contained no more than 2 factors (Table S3). However, we could
not give definite practical meaning to the principal components, which meant that the extraction of urban
cognizable features has unique advantages as a new dimensionality reduction method.

Conclusion

The study proposed deep learning as a new, more effective approach to understanding the patterns, dynamics,
and driving factors of ESV that are crucial for coping with sustainability challenges. The findings of the model
analysis suggested that underlying social and economic conditions presumably influence regional ecological
functions through ESV.

Regarding Nanjing City, although the outputs of the 1st, 2nd and 3rdindustries all showed a decreasing trend
in ESV, the “2nd industry output value” had the highest influence intensity, indicating the urgency and
necessity of controlling its proportion. We propose that economic development, urbanization, and tourism
should be further accelerated and enhanced in Nanjing, because “GDP”, “light index”, “tourism output”
and “residential electricity consumption” all have positive influences on ESV. In addition, there should
be singleness in the urban function, which means that city space needs to be separated to serve different
functions. The extraction of high-level urban cognizable factors related to ESV in the penultimate layer may
be a new dimensionality reduction method, and the analysis suggested that the city scale of Nanjing can
truly affect the ESV. As a result, it is possible for decision-makers to provide policy guidance and adjust
urban features to realize the coordinated development of the regional economy and ecological functions. For
instance, the most suitable city scale can be found that is within the regional ecological carrying capacity.

In this work, the relationship between human socioeconomic development and ESV on the urban scale is at
the heart of our research. We built a deep learning model based on the limited socioeconomic factors (X)
to cognize it and obtained interesting and meaningful results. Furthermore, our point of view is that there
are likely to be obvious differences in the driving mechanisms under diverse regional and scale contexts.
Therefore, an important direction for further research is the investigation of more influence patterns and
mechanisms on diverse spatial scales and levels of socioeconomic development affecting the change in regional
ESV.
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