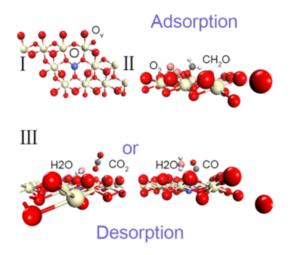
Formaldehyde Activation and Dissociation on Defective Co-doped $CeO_2(111)$: First-Principles Calculations

Ping Qian¹, Yajing Zhang², Yuqin Xiao², Lu Li¹, Chutian Wang², Xiao-Xu Wang¹, Keke Song², and Jian Xiaodong³

¹University of Science and Technology Beijing ²University of Science and Technology Beijing School of Mathematics and Physics ³National Supercomputer Center in Tianjin

May 5, 2020

Abstract


DFT+U calculations have been utilized to explore theoretically three potential pathways of HCHO oxidation on Co-doped $CeO_2(111)$ with O-vacancy herein. To begin with possible adsorption configurations and resultant adsorption strengths of HCHO on Co-doped $CeO_2(111)$ are presented, we conclude that HCHO adsorbed Co-doped $CeO_2(111)$ has the kinetic stability order of $E_{ads(Co-O-bridge)} > E_{ads(O-top)} > E_{ads(Ce-top-II)} > E_{ads(Ce-O-bridge)} > E_{ads(Ce-top)}$ with different adsorption locations. O-vacancy has further constructed artificially at the surface rather than subsurface to stimulate the catalytic activity of Co-doped $CeO_2(111)$ because of surficial lower O-vacancy formation energy compared to the subsurface. Based on Langmuir-Hinshelwood mechanism in which O_2 and HCHO are both co-adsorbed on the reduced ceria surface, three resultant individual reaction products, resulting from different pathways of HCHO oxidation on Co-doped $CeO_2(111)$ with O-vacancy, are identified in detail within the frame of transition state theory. It shows that, at Co-O bridge site, HCHO is oxidized to corbonate species with reactive energy barriers of TS1 of 0.71 and TS2 of 0.36 eV; at O top site, HCHO oxidized to CO need to overcome barriers of TS1 of 0.55 and TS2 of 0.06 eV; while at Ce-O bridge site, HCHO to CO₂ is the most difficult to proceed because of its highest energy barriers of TS1 of 0.96 and TS2 of 2.14 eV. We thus predict that the reaction pathway of HCHO to CO proceeds with the lowest overall barrier on defective Co-doped CeO₂(111). These findings provide clear insight into further exploration in formaldehyde activation processes.

Hosted file

paper.docx available at https://authorea.com/users/289387/articles/415398-formaldehydeactivation-and-dissociation-on-defective-co-doped-ceo2-111-first-principles-calculations

Hosted file

Table.docx available at https://authorea.com/users/289387/articles/415398-formaldehyde-activation-and-dissociation-on-defective-co-doped-ceo2-111-first-principles-calculations

In this work, we studied the co-adsorption behavior of CH2O and O2 on the defective Co-doped CeO2(111) using the first-principles calculations. By determining the adsorption location and dynamic potential energy changes, we can elucidate that catalytic oxidation HCHO reaction on the defective Co-doped CeO2(111) reduced the C-H bond cleavage energy barrier, which makes Co-doped CeO2(111) promising for practical applications as an excellent electrocatalyst candidate for catalytic oxidation.