The conformation of acetaldehyde: a simple molecule, a complex explanation?

Henry Rzepa ${ }^{1}$
${ }^{1}$ Affiliation not available
April 17, 2023

The conformation of acetaldehyde: a simple molecule, a complex explanation?

HENRY RZEPA

- read reviews

WRITE A REVIEW

CORRESPONDENCE:
h.rzepa@imperial.ac.uk

DATE RECEIVED:

June 10, 2015
DOI:
10.15200/winn. 142795.56009

ARCHIVED:

April 02, 2015

CITATION:

Henry Rzepa, The
conformation of acetaldehyde: a simple molecule, a complex explanation?, The Winnower 2:e142795.56009, 2015, DOI: 10.15200/winn. 142795.56009
© Rzepa This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and redistribution in any medium, provided that the original author and source are credited.

There really are only two possibilities, the syn and anti. Well, I have discovered it is useful to start with a search of the Cambridge data base. With $\mathrm{R}=\mathrm{H}$ or C, X unspecified, acyclic and $\mathrm{T} \leq 175 \mathrm{~K}$, two searches were performed. The first identified the torsion around $\mathrm{O}=\mathrm{C}-\mathrm{C}-\mathrm{H}$. This clearly shows a maximum at 120° (with twice the probability), and a smaller one at 0°. This matches syn; the anti conformation above would be expected to have peaks at 60° and 180°; the latter in particular is singularly missing.

An alternative search is to define the distance between the oxygen and the H . For the syn conformer,
distances of ~ 2.5 and 3.1 Ă are expected; for the anti conformer, 2.7 and 3.3Ă. Again, syn matches better. Remember, searches based on the position of a hydrogen are less reliable than most, so these distributions provide only a statistical indication.

Now for a (ω B97XD/6-311G(d,p) calculation of the rotational barrier. The minima occur at torsions of 0,120 and 240°, matching syn, although the barrier is very low.

Now to try to find explanations. The standard one finds this in three effects:

1. Donation from two $\mathrm{C}-\mathrm{H}$ bonds ($\mathrm{R}=\mathrm{H}$ above) into the $\pi^{*} \mathrm{C}=\mathrm{O}$ NBO orbital (in the manner that was used to explain the cis-orientation of the two methyl groups in cis-butene).
2. Donation from the single co-planar $\mathrm{C}-\mathrm{H}$ bond into the $\sigma^{*} \mathrm{C}=\mathrm{O}$ NBO orbital (blue bonds above)
3. Pauli bond-bond repulsions between two filled NBOs.

Effect 1 has an NBO perturbation energy $E(2)$ of $7.0 \mathrm{kcal} / \mathrm{mol}$ for the syn conformer and 6.45 for the anti. The explanation is the $\pi^{*} \mathrm{C}=\mathrm{O}$ NBO "leans outward", overlapping better with the C-H bonds in the syn than in the anti. the One up to the syn! Effect 2 has values of 1.3 for thesyn and 4.1 for the anti. The latter now has the edge. But wait, there are other (smaller) interactions. The syn has an antiperiplanar orientation of the two $\mathrm{C}-\mathrm{H}$ bonds shown above ($\mathrm{X}=\mathrm{H}, \mathrm{red}$), $\mathrm{E}(2)=3.3$ vs 0.6 for the corresponding syn-planar orientation in the anti-conformation. It's now a tie; neck-and-neck.

Effect three suggests that the disjoint NLMO steric exchange energy is 54.34 for the anti and 53.88 (i.e. lower) for the syn. It is vaguely disappointing that no absolutely clear-cut explanation emerges. But then the difference (in total free energy) is only $1.4 \mathrm{kcal} / \mathrm{mol}$. But even this small difference in
energy can manifest in fairly clear-cut conformational preferences obtained from crystal structures. Ultimately of course, all effects in chemistry are reducible to the sum of lots of small effects (in other words unpredictable until one does the sum).

I cannot end without mentioning the largest of all the NBO interactions, namely the in-plane lone pair on the oxygen as donor and the aldehyde proton $\mathrm{C}-\mathrm{H}$ as acceptor $(\mathrm{X}=\mathrm{H})$. This has values of 29.3 for $\boldsymbol{s y n}$ and $28.8 \mathrm{kcal} / \mathrm{mol}$ for anti. This manifest (inter alia) in a greatly reduced C-H vibrational wavenumber ($\cup 2982$ for syn, $2900 \mathrm{~cm}^{-1}$ for anti) compared to the methyl C-H values ($\sim 3043-3164$).

So this tiny little molecule ended up a little less obvious than might have seemed at the outset. One can find interesting things in even the tiniest of things!

HC...C-H alignment. Click for 3D.

$\mathrm{O}=\mathrm{C}^{*} \ldots \mathrm{C}-\mathrm{H}$ alignment.
Click for 3D.

