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Abstract

Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our

computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods

for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression

algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of

the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional

simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original

data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that

the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid

to accurately modeling the original dataset–one year of daily mean temperature data–particularly with regard to the inherent

spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data

can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.
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Introduction
High resolution climate simulation runs typically executed on high
performance computing systems produce massive datasets. Scientists
use large ensembles of model runs and perform intercomparison stud-
ies of climate models, which raises data storage concerns. For exam-
ple, CMIP 6 is expected to produce more than 10 Petabytes of data,
and half of the supercomputer budget for The National Center for
Atmospheric Research (NCAR) has now been spent on storage hard-
ware. Storing data is becoming a bottleneck for climate researchers
that are dependent on numerical simulations. Compressing data is a
natural solution. We propose a lossy statistical compression method
that saves a subset of summary statistics and a statistical model,
which is then used for decompression.

Compression Methods

There are two types of compression methods: lossless and lossy. Sup-
pose the original data is X and compressed data is C. We annotate
the compression process as following: X → C. Furthermore, we anno-
tate the decompression process as C → X̃ where X̃ is the output of
decompression. Lossless compression implies that X = X̃ , whereas lossy
compression implies X ≈ X̃ .

Data

We use daily mean temperature data from the CESM-LE project, which
has a grid of 190 × 288 resolution in latitude × longitude. This gives us
about 20 million floating point numbers per one year period.
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Figure 1: Maps of (a) sample mean, (b) seasonal cycle, (c) standard de-
viation of deseasonalized data (all in Celsius), and (d) normalized forecast
standard deviation (unitless). The black crosses indicate the locations of
the time series plotted in Figure 6.
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Statistical Compression Overview

Suppose X is the data vector (i.e. 20 million temperature values). In
statistical compression, we partition the data vector as X = (X1, X2),
and we store C = (X1, P (X2|X1)), where P (X2|X1) is a conditional
probability distribution for X2 given X1. The cost of storing a probabil-
ity distribution is equal to the cost of storing the parameters needed to
characterize the probability distribution.
Thus, in statistical compression there are two related challenges, (1) par-
titioning the data into the stored and unstored parts X1 and X2, and (2)
picking a reasonable probability distribution P (X2|X1).
At decompression, we compute X̃2 as either the conditional expectation
X̃2 = E(X2|X1) or as a simulation from the probability distribution
X̃2 ∼ P (X2|X1), giving X̃ = (X1, X̃2). Thus in statistical compres-
sion, some features X1 are preserved exactly, while other features X2 are
approximated or simulated according to a conditional probability distri-
bution.

Data Transformation

Suppose Y (x, t) is temperature at pixel x and day t. The discrete Fourier
transform (DFT) over time is

Y(x, ω) = 1
T

T∑
t=1

Y (x, t) exp(−iωt).

The data Y (x, t) can be recovered via an inverse DFT, and so we can
represent the full dataset as X being the set of all Fourier coefficients at
all locations x and frequencies ω, and X1 is the subset of these Fourier
coefficients that we preserve exactly.

Probability Distribution

A Fourier representation for the data is convenient because the coeffi-
cients from different frequencies ω1 and ω2 are approximately uncorre-
lated under a stationary model. This makes it theoretically convenient
when defining P (X2|X1), and computationally convenient when comput-
ing X̃2.
We model Y(x, ω) as a Gaussian process in space x, and uncorrelated
across ω. The Gaussian processes are nonstationary and have parame-
ters that depend on frequency ω, intended to capture that fact that low
frequency coefficients are more spatially correlated than high frequency
coefficients. Real Part, frequency 3 Imaginary Part, frequency 3
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Figure 2: Maps of pixelwise Fourier coefficient values for frequency 3 and
180. The maps are shown for the real and imaginary part separately.

Results
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Figure 3: Maps of pixelwise RMSPE. Units are degrees Celsius.

Selection algorithm Comp. Ratio land ocean all runtime
20:1 0.6864 0.2780 0.4367 4.33

sequential 10:1 0.4203 0.1888 0.2762 8.30
5:1 0.1991 0.1150 0.1444 14.13
20:1 0.6937 0.3239 0.4618 1.15

distributed 10:1 0.4202 0.2153 0.2896 1.63
5:1 0.1971 0.1225 0.1479 2.32

Table 1: RMSPEs and run times for three different compression ratios
and the two different greedy selection algorithms. Means are pixel area
weighted averages. Runtimes are shown in hours.

Selected Summary Statistics

Given a compression ratio, there is a fixed budget for the number of
Fourier coefficients that can be stored. Selecting optimal subset is an
intractable problem. Instead, we propose two versions of greedy selection
algorithm: sequential and parallel. After initial interpolation using the
selected coefficients, we repeatedly add a handful amount of Fourier coef-
ficients in the order of largest discrepancy between the interpolated value
and the original value until the storage allocated for summary statistics
is full. Interpolated values are updated after each selection. The main
difference between the sequential and parallel version is that in sequen-
tial version selection is considered across every frequency while in parallel
version each node performs selection for its assigned frequency.
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Figure 4: Each of the map indicates selected coefficients for the corre-
sponding compression ratio and frequency.
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Figure 5: Maps of log contrast variances. First column are average North-
South contrast variances, middle column are east-west contrast variances,
and third column are one-step temporal contrast variances. First row is
computed from the original data, second through fourth rows from condi-
tionally simulated data at the three compression levels, and the last row is
from conditional expectation data at 20:1 compression ratio.
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Figure 6: Original and 10:1 decompressed time series plots for Chicago
(black), Mumbai (magenta), south Atlantic Ocean (blue), and Ross Island,
Antarctica (green).
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