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Abstract

The spatial and time characterisation of trapped charged particle trajectories in magnetospheres has been extensively studied

using dipole magnetic field structures. Such studies have allowed the calculation of spatial quantities such as equatorial loss

cone size as a function of radial distance, the location of the mirror points along particular field lines (’L shells’) as a function

of the particle’s equatorial pitch angle, and time quantities such as the bounce period and drift period as a function of the

radial distance and the particle’s pitch angle at the equator. In this study, we present analogous calculations for the ‘disc-like’

field structure associated with the giant rotation-dominated magnetosphere of Jupiter as described by the UCL/Achilleos-Guio-

Arridge (UCL/AGA) magnetodisc model. We discuss the effect of the magnetodisc field on various particle parameters, and

make a comparison with the analogous motion in a dipole field.
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Abstract
The spatial and time characterisation of trapped charged particle trajectories in magnetospheres has been exten-
sively studied using dipole magnetic field structures. Such studies have allowed the calculation of spatial quantities
such as equatorial loss cone size as a function of radial distance, the location of the mirror points along particular
field lines (’L shells’) as a function of the particle’s equatorial pitch angle, and time quantities such as the bounce
period and drift period as a function of the radial distance and the particle’s pitch angle at the equator.

In this study, we present analogous calculations for the ’disc-like’ field structure associated with the giant rotation-

dominated magnetosphere of Jupiter as described by the UCL/Achilleos-Guio-Arridge (UCL/AGA) magnetodisc

model. We discuss the effect of the magnetodisc field on various particle parameters, and make a comparison

with the analogous motion in a dipole field.

Introduction
Conservation of the first adiabatic invariant µ, defined as the ratio of the kinetic energy as-
sociated with the gyratory motion perpendicular to the magnetic field (with velocity v⊥) to the
intensity of the field B, µ = mv2⊥/(2B) implies that the quantity sin2 α/B, where α is the pitch
angle of the particle with respect to the magnetic field, remains constant. Thus the pitch angle
becomes larger for more intense magnetic field.
In the guiding centre approximation, where particles are assumed to travel along the field line,
the mirror point magnetic latitude λm is defined implicitly in Bm by:

sin2 αeq =
Beq

Bm
, (1)

where αeq is the pitch angle of the particle at the equator with magnetic field Beq = B(Req, 0),
and Bm = B(rm, λm) the magnetic field at the ‘mirror point’ where the particle bounces back.
The bounce period τb and the azimuthal drift period τd related to the second and third adiabatic
invariants are then given by the following integrals (Baumjohann and Treumann, 1996):

τb = 4

∫ λm

0

ds

dλ

dλ

v‖
, (2)

τd =
2π

∆φ
τb, where ∆φ = 4

∫ λm

0

vD

r cosλ

ds

dλ

dλ

v‖
, (3)

where ds is an arc element of the particle’s path along its field line, ∆φ the rate of change of
longitude during one bounce period τb. The magnetic drift velocity vD is the sum of curvature
drift vc and gradient drift vg. A first order approximation of Taylor-expanding B about the guiding
centre gives the following expressions:

vD = vc + vg =
mv2

‖

q

Rc×B

R2
cB2

+
mv2⊥
2q

B×∇B

B3
, (4)

∆φ = ∆φc +∆φg, (5)

where q and Rc are the particle charge and the radius of curvature vector.
For a field line parameterised in polar coordinates r(λ), the element of arc length along a gen-
eral magnetic field is given by ds2 = dr2 + r2dλ2, and by definition dr/dλ = −rBr/Bλ, thus

ds/dλ = r(λ)(1 + B2
r /Bλ)

1/2. In addition since v2 = v2
‖
+ v2⊥ is a constant of motion and the

adiabatic invariant µ is conserved, we can write v‖ = v(1 − B/Bm)
1/2 and v⊥ = v(B/Bm)

1/2.

Thus the bouncing period τb can be expressed as:

τb = LRP
2(2m)1/2

W 1/2
Φ(Req, αeq), with Φ(Req, αeq) =

1

L

∫ λm

0

(

1 + B2
r /B2

λ

1 − B/Bm

)
1

2

r̂(λ)dλ, (6)

where r̂ = r/RP and L = Req/RP are normalised distance to the planetary radius RP, and W
the particle kinetic energy.
In polar coordinates r(λ), the radius of curvature vector Rc and curvature κ are given by the
expressions:

Rc =
(r2 + (dr/dλ)2)

3

2

∣

∣r2 + 2(dr/dλ)2 − rd2r/dλ2
∣

∣

n, and κ = 1/Rc, (7)

where n is the unit normal vector, and d2r/dλ2 can be expressed as function of Br, Bλ and their
first derivative with respect to λ. The drift period τd can be expressed as:

τd =
πqBPR2

P

3LW

Φ(Req, αeq)

Ω(Req, αeq)
, where Ω = Ωc + Ωg and, (8)

Ωc(Req, αeq) =
1

L2

∫ λm

0

(

1 +
B2
r

B2
λ

)
1

2 κ

B̂

(

1 −
B

Bm

)
1

2 dλ

3 cosλ
, (9)

Ωg(Req, αeq) =
1

L2

∫ λm

0

Br∇λB − Bλ∇rB

B2B̂m

(

1 + B2
r /B2

λ

1 − B/Bm

)
1

2 dλ

6 cosλ
, (10)

where B̂ = B/BP and B̂m = Bm/BP are normalised field strength to the field at the surface
equator BP, and ∇r and ∇λ are gradient components in polar coordinates.
Both periods can be approximated in the case of a dipole field by the following analytic expres-
sions (Öztürk , 2012):

τd
b ∼ LRP

2(2m)1/2

W 1/2
(1.31 − 0.57 sinαeq), (11)

τd
d ∼

πqBPR2
P

3LW

1

0.35 + 0.15 sinαeq
, (12)

We developed a MATLAB R© code to numerically solve the integrals Φ(Req, αeq) and Ω(Req, αeq)
for a prescribed magnetic field. The code was validated for a dipole field: (i) we estimated the
integrals Φ and Ω/Φ for a range of Req and αeq, (ii) we then computed the best fit to the following
function linear in sinαeq:

f (αeq) = a + b sinαeq. (13)

The fitted coefficients a and b are in very good agreement with the ones given by Eqs. (11–12)
and are summarised in the following table:

a b

Φd 1.28 −0.55

Ωd/Φd 0.35 0.14

Trapped Motion Properties for Jovian Magnetodisc

The UCL Magnetodisc model (Achilleos et al., 2010) uses the formalism developed in Caudal
(1986) to compute axisymmetric models of the rotating Jovian (or Kronian) plasmadisc in which
magnetic, centrifugal and plasma pressure forces are in equilibrium.
We use the output of the model for a standard Jovian disc configuration where the magne-
topause is located at 90RJ.
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Here we compare the dipole and magnetodisc field. Field lines are labelled with an ‘equivalent
dipole L’ parameter. For the dipole field, this parameter is equal to the equatorial distance of
the field line in RJ. For the magnetodisc field, this parameter is equal to the equatorial distance
to which the dipole field line, emanating from the same ionospheric foot point as the labelled
magnetodisc field line, would extend. The middle panel shows the equatorial distance Req in RJ
for dipole (green) and magnetodisc (blue) field lines having the same foot point on the planet
surface, as specified by the equivalent dipole L. The magnetodisc field is dipolar to a good
approximation for Req corresponding to L . 6.
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From left to right, the latitude for mirror point λm, and the two integrals Φ and Ω/Φ characterising
the bouncing and drift periods. The upper panels are for the dipole field and the lower ones
for the magnetodisc as the figure below. For the dipole, there is no dependency on Req for any

of the integral quantities due to the property of the field. For the magnetodisc, note how Φd,
thus the bouncing period drops for both large Req and αeq due to the strong decrease of λm
with increasing Req, reflecting the equatorial confinement of the plasma. From the Ω/Φ integral,
inversely proportional to the drift period, it can be seen that the drift period for large Req and αeq
is marginally less than the dipole value, which is the signature of the magnetic flux invariance
through the drift path (dipole and magnetodisc drift shells of the same equivalent L enclose
similar magnetic flux).
We then computed the fits to our results, using the following function with a correction term to
account for the magnetodisc structure (cross term bi-linear in L and sinαeq):

f (L, αeq) = a + b sinαeq + cL sinαeq, (14)

to find analytic approximation formulae similar to Eqs. (11–12) for the bounce and drift periods
of the Jovian magnetodisc studied here:

τm
b ∼ LRJ

2(2m)1/2

W 1/2
(1.27 − 0.37 sinαeq − 0.05L sinαeq), (15)

τm
d ∼

πqBJR
2
J

3LW

1

0.40 − 0.06 sinαeq + 0.04L sinαeq
. (16)

Curvature Versus Gradient Drift

Finally we examine the respective contribution of curvature drift rate ∆φc ∝ Ωc and gradient drift
rate ∆φg ∝ Ωg to the total azimuthal drift rate ∆φ ∝ Ω.
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Here we compare the percentage of drift due to curvature in the total azimuthal drift, as function
of Req and αeq, for the dipole case (left) and the magnetodisc (right). For the dipole field, the
drift contribution is not a function of Req, and for αeq ≪ 45 deg the curvature drift dominates as
λm becomes larger, while for αeq ≫ 45 deg the gradient drift dominates as the motion is confined
around the equator. The magnetodisc exhibits the same behaviour as the dipole for Req ≤ 6RJ
as expected, but for Req ≥ 6RJ the curvature drift largely dominates, even at large pitch angle
due to the equatorial confinement in the disc-like field structure.

Conclusion

We have presented a formalism to calculate the bounce and drift periods in the guiding centre
approximation for any prescribed magnetic field and applied it to nominal Jupiter’s magnetodisc.
We have derived analytic expressions for the bounce and drift periods for a magnetodisc struc-
ture, analogous to expressions for the dipole field.
Further studies are needed to check the validity range for these approximations, and how the
solar wind and supra-thermal population influence the bounce and drift periods (compressed
and expanded magnetosphere).
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