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Abstract

By solving Laplace’s tidal equations along the equatorial Pacific thermocline, assuming a delayed-differential effective gravity

forcing due to a combined lunar+solar (lunisolar) stimulus, we are able to precisely match ENSO periodic variations over wide

intervals. The underlying pattern is difficult to decode by conventional means such as spectral analysis, which is why it has

remained hidden for so long, despite the excellent agreement in the time-domain. What occurs is that a non-linear seasonal

modulation with monthly and fortnightly lunar impulses along with a biennially-aligned “see-saw” is enough to cause a physical

aliasing and thus multiple folding in the frequency spectrum. So, instead of a conventional spectral tidal decomposition, we

opted for a time-domain cross-validating approach to calibrate the amplitude and phasing of the lunisolar cycles. As the lunar

forcing consists of three fundamental periods (draconic, anomalistic, synodic), we used the measured Earth’s length-of-day

(LOD) decomposed and resolved at a monthly time-scale [1] to align the amplitude and phase precisely. Even slight variations

from the known values of the long-period tides will degrade the fit, so a high-resolution calibration is possible. Moreover, a

narrow training segment from 1880-1920 using NINO34/SOI data is adequate to extrapolate the cycles of the past 100 years (see

attached figure). To further understand the biennial impact of a yearly differential-delay, we were able to also decompose using

difference equations the historical sea-level-height readings at Sydney harbor to clearly expose the ENSO behavior. Finally, the

ENSO lunisolar model was validated by back-extrapolating to Unified ENSO coral proxy (UEP) records dating to 1650. The

quasi-biennial oscillation (QBO) behavior of equatorial stratospheric winds derives following a similar pattern to ENSO via the

tidal equations, but with an emphasis on draconic forcing. This improvement in ENSO and QBO understanding has implications

for vastly simplifying global climate models due to the straightforward application of a well-known and well-calibrated forcing.

[1] Na, Sung-Ho, et al. “Characteristics of Perturbations in Recent Length of Day and Polar Motion.” Journal of Astronomy

and Space Sciences 30 (2013): 33-41.
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Laplace developed his namesake tidal equations to mathematically explain the behavior of tides by .magim

applying straightfon/vard Newtonian physics. In their expanded form, known as the primitive equations,

Laplace's starting formulation is used as the basis of almost all detailed climate models. The concise

derivation for a model of ENSO depends on reducing Laplace's tidal equations along the equator.
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The same appoach for ENSO can be used to model QBO.

Only the draconic cycle is used as forcing leading to regularity
1950 1960 1910 19m 1990 2000 21m) 21m)

3
......FF: FFFFaFFaF ma F... 1951

.5 ml“All’li llMllill
- training interval 7‘13!) acceleration 30 hPa iQBO model

l

I‘IlllIlll IliiIl‘
cums-umF.

This shows excellent cross-validattion with a small training interval

- training interval 7‘13!) acceleration 30 hPa iQBO model
calms-mum

The full 080 is recovered by integrating the acceleration

1950 1960 1970 1950 1990 man 2010

I
ma

7050 Model 730 We Velozitv Dara

”mam”...

The Chandler wobble provides more evidence that the draconic

cycle controls the angular variations, and not a resonance
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