
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
86
68
20
9e
54
2
9
63
8f
.3
97
26
93
59
3e
34
1d

3.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Finding the Root Causes of Statistical Inconsistency in Community

Earth System Model Output

Daniel Milroy1, Dorit Hammerling2, and Alison Baker1

1Affiliation not available
2National Center for Atmospheric Research

November 22, 2022

Abstract

Baker et al (2015) developed the Community Earth System Model Ensemble Consistency Test (CESM-ECT) to provide a

metric for software quality assurance by determining statistical consistency between an ensemble of CESM outputs and new

test runs. The test has proved useful for detecting statistical difference caused by compiler bugs and errors in physical modules.

However, detection is only the necessary first step in finding the causes of statistical difference. The CESM is a vastly complex

model comprised of millions of lines of code which is developed and maintained by a large community of software engineers and

scientists. Any root cause analysis is correspondingly challenging. We propose a new capability for CESM-ECT: identifying the

sections of code that cause statistical distinguishability. The first step is to discover CESM variables that cause CESM-ECT to

classify new runs as statistically distinct, which we achieve via Randomized Logistic Regression. Next we use a tool developed

to identify CESM components that define or compute the variables found in the first step. Finally, we employ the application

Kernel GENerator (KGEN) created in Kim et al (2016) to detect fine-grained floating point differences. We demonstrate an

example of the procedure and advance a plan to automate this process in our future work.
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Introduction
Baker et al. [1] developed the Community Earth System Model En-
semble Consistency Test (CESM-ECT) to provide a tool for software
quality assurance by determining statistical consistency between an
ensemble of CESM outputs and new test runs. The test has proved
useful for detecting statistical difference caused by compiler bugs and
errors in physical modules, but does not indicate the causes of statis-
tical difference. The CESM is a vastly complex model comprised of
millions of lines of Fortran code which is developed and maintained
by a large community of software engineers and scientists. Any root
cause analysis is correspondingly challenging. We propose a new ca-
pability for CESM-ECT: identifying the sections of code that cause
statistical distinguishability. We focus on the first model time steps,
as divergence between the ensemble and modified runs occurs rapidly,
and we wish to detect differences as early as possible. Figure 1 rep-
resents our process for finding the root causes, which we detail in the
following sections.
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Figure 1: Workflow for identifying the root cause of statistical inconsistency
in the CESM.

Overview

The CESM-ECT determines if new model output is statistically distinct
from an accepted ensemble by examining principal components (PCs) of
the Community Atmospheric Model (CAM) output variables. From a
determination of distinguishability in terms of PCs, our first challenge
is to identify the untransformed CAM variables that manifest differently
between experimental and ensemble outputs. Next we perform static
source code analysis to identify code sections of CESM that define, com-
pute, or modify the variables found in the first step. We achieve this by
constructing an Abstract Syntax Tree (AST) representation of the code,
which we then convert into a directed graph. With graph analysis we can
locate crucial code modules and subprograms. Finally, we will employ
the Kernel Generator (KGen) application created in Kim et al. [2] to
detect fine-grained floating point differences at runtime in the selected
subprograms and identify responsible code sections.
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Identifying CAM Variables

To find CAM variables influenced by a modification to CESM, we run
the modification with 30 different O(10−14) K perturbations to the initial
atmospheric temperature field. We perform 30 runs as a sanity check
to ensure that the response is the same across perturbations. Double
precision floating point outputs are written for each CESM time step
from 0 to 10, inclusive. We then compare the area-weighted global mean
values of the ensemble with those of the experimental set for each variable
at each time step and each perturbation. The comparison consists of
computing whether values are equal after being rounded to the same
number of significant figures. In every case we have examined, the set
of different variables is the same across perturbations, so we directly
compare the null perturbation of the ensemble and experiment. This
simple method of value comparison can flag a large percentage of the
CAM variables, in which case we may have to explore alternative ways
to reduce this number for tractable analysis.

Illustration

Generating an AST is typically done to compile source code. However, we
use an AST to build a graphical representation of variable relationships
in the CESM.
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Figure 2: Example statement in three forms: a.) source code, b.) source
code converted to an AST, and c.) AST assignment statements into a
directed graph.

Test Case

The example considered here is the “CLM_ALBICE_00” experiment
from [4], which CESM-ECT finds to produce statistically distinguishable
output. This experiment is a modification to the CLM parameter which
controls the fraction of incident solar radiation absorbed by glacial ice.
We set the visible and near-infrared albedos to 0, ensuring that the ice
absorbs all radiation in this range of wavelengths. Note that this modi-
fication to the CLM affects 10 CAM variables by the second time step,
as can be seen in Figure 3. We proceed with the objective of identifying
the statements that modify the 10 variables.
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Figure 3: CLM_ALBICE_00 experiment from [4] compared to an unmod-
ified run. The vertical labels are CAM variables. The color designates
equality after being rounded to the indicated number of significant figures.
A greater number indicates greater numerical similarity. Black signifies that
the variables are not computed. Note that there is no difference between
the unmodified and CLM_ALBICE_00 runs prior to time step 2.

Initial Findings

From the 10 CAM variables identified in time step two of Figure 3, the
AST graph tool identifies all assignment statements that modify the 10
variables. It forms the induced subgraph on these edges and computes the
eigenvector centrality of the subgraph. This ranks the nodes that mod-
ify the CAM output variables by relative centrality, which by extension
admits an ordering of assignment locations.

AST to Directed Graph

We analyze several classes of AST statements: subroutines and func-
tions, uses, interfaces, and assignments. We are principally interested in
assignments, as they alter variable values. However, the other statement
classes are of ancillary interest, as variables cannot be connected correctly
without them. Assignments are encoded into a directed graph, with the
assigned variable (left hand side) as the target, and the expression (right
hand side variables) as the sources. See Figure 2 for a simple exam-
ple. After being encoded from an AST into a directed graph, the CESM
consists of approximately 130,000 nodes (variables) and 300,000 edges
indicating relationships through assignment. Figure 4 is a representation
of the MG1 microphysics module as a subgraph of CESM.

Figure 4: CAM MG1 microphysics module as a directed subgraph of CESM.

Future Work

With a list of critical code regions obtained via the procedure described
above, we will use KGen capabilities to extract these sections and com-
pile them as independent executables. KGen can then be used to identify
variables whose RMS values are significantly different than those com-
puted on an executable compiled on an accepted machine and configu-
ration. Given four CAM output variables known to be related to sta-
tistical inconsistency on the Mira supercomputer [3], the AST digraph
method correctly indicates that relevant assignments occur in the MG1
microphysics module (Figure 4). Furthermore, since Fused Multiply-Add
(FMA) instructions were determined to cause the statistical distinctness,
our goal is to find subsections of MG1 (and other CESM modules) that
are sensitive to FMA.
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