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Abstract

As all kinds of physics-based and data-driven models are emerging in the fields of hydrologic and hydraulic engineering, Bayesian

model averaging (BMA) is one of the popular multi-model methods used to account for the various uncertainty sources in

the flood modeling process and generate robust ensemble predictions based on multiple competitive candidate models. The

reliability of BMA parameters (weights and variances) determines the accuracy of BMA predictions. However, the uncertainty

in the BMA parameters with fixed values, which are usually obtained from the Expectation-Maximization (EM) algorithm,

has not been adequately investigated in BMA-related applications over the past few decades. Given the limitations of the

commonly used EM algorithm, the Metropolis-Hastings (M-H) algorithm, which is one of the most widely used algorithms in

the Markov Chain Monte Carlo (MCMC) method, is proposed to estimate the BMA parameters and quantify their associated

uncertainty. Both numerical experiments and the one-dimensional HEC-RAS models are employed to examine the applicability

of the M-H algorithm with multiple independent Markov chains. The performances of the EM and M-H algorithms in the

BMA analysis are compared based on the daily water stage predictions from 10 model configurations. The results show that

the BMA weights estimated from both algorithms are comparable, while the BMA variances obtained from the M-H MCMC

algorithm are closer to the given variances in the numerical experiment. Moreover, the normal proposal distribution used in

the M-H algorithm can yield narrower distributions for the BMA weights than those from the uniform prior. Overall, the

MCMC approach with multiple chains can provide more information associated with the uncertainty of BMA parameters and

its prediction performance is better than the default EM algorithm in terms of multiple evaluation metrics as well as algorithm

flexibility.
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Conclusions
• MCMC method with multiple independent chains is applicable in the BMA

analysis and can demonstrate a full view of the uncertainty of BMA
weights and variances.
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• Law of total probability

Quantify the uncertainty in BMA parameters (weight & variance):

• estimate the BMA parameters using different numbers of samples in 
each Markov chain with the Metropolis-Hastings (M-H) algorithm

• compare the performance of EM and M-H MCMC algorithms for 
estimating the BMA parameters

• estimate the BMA weights using different proposal distributions in 
the M-H MCMC algorithm

• investigate the impact of different conditional PDFs of the predictor 
variable on the BMA parameters

Study stream
Channel length 

(km)
Average channel 

width (m)
Channel slope 

(%)

White 6.76 64 0.0631

East Fork San 
Jacinto

50.11 76 0.0438

✓ ✗

• combine estimations from 
multiple competing models

• BMA weights are interpretable

• provide a prediction 
distribution of variables of 
interest

• EM algorithm yielded fixed BMA 
weights and variances

• Conditional PDF is limited by 
Gaussian assumption

• Markov Chain Monte Carlo 
(MCMC) is rarely examined in 
BMA analysis
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Ensemble 
flood 

modeling

Model 
structure

Model 
parameter

Model 
input

Multi-model method

• physics-based and data-
driven models

• No “perfect” single model 

• “Equifinality” in 
hydrologic & hydraulic 
modeling

• Fixed estimates cannot fit 
all kinds of scenarios
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• Expectation-Maximization (EM) algorithm
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Research Objectives

Study stream
Upstream USGS 

gauge
Downstream USGS 

gauge

Simulation 
Period

(100 days)

White 03348000 03348130
2021-3-15 to 

2021-6-22
East Fork San 

Jacinto
08070000 08070200

2021-4-15 to 
2021-7-23

Methodology
• Numerical experiment (ensemble of 10 members)

D = 100 days of daily water stage data (in meters)

f1 = D+ ε, where ε ~ N (0, 0.062) f2 = D+ ε, where ε ~ N (0, 0.062)

f3 = D+ ε, where ε ~ N (0, 0.122) f4 = D+ ε, where ε ~ N (0, 0.122)

f5 = D+ ε, where ε ~ N (0, 0.182) f6 = D+ ε, where ε ~ N (0, 0.182)

f7 = D+ ε, where ε ~ N (0, 0.242) f8 = D+ ε, where ε ~ N (0, 0.242)

f9 = D+ ε, where ε ~ N (0, 0.302) f9 = D+ ε, where ε ~ N (0, 0.302)

• Ensemble flood modeling in 1D HEC-RAS

No. Channel Roughness Upstream Flow Input HEC-RAS Plan Files

1 0.8n 0.8Q g01 & u01

2 0.8n Q g01 & u02

3 0.8n 1.2Q g01 & u03

4 n 0.8Q g02 & u01

5 n Q g02 & u02

6 n 1.2Q g02 & u03

7 1.2n 0.8Q g03 & u01

8 1.2n Q g03 & u02

9 1.2n 1.2Q g03 & u03

10 Average of simulations from No.1-No.9

Note: n is the Manning’s n value for the main channel in the original HEC-
RAS models, Q is the streamflow from USGS gauge stations, g** represents
a geometry file of a HEC-RAS project, and u** represents a flow data file of
a HEC-RAS project.

• BMA analysis & Metropolis-Hastings (M-H) algorithm
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• Evaluation metrics for model performance3

% %obs 90N
UC1 100

n

−= 

%
2

2

obs

RMSE
UC2 1 NSE 100


= − = 

( ) ( ) ( ) %2 2 2BMA BMA

obs obs

y
UC3 1 KGE r 1 1 1 100

y




= − = − + − + − 

( | |) %2UC4 1 R 1 Slope 100= − + − 

, ,( )
n 2

obs i BMA ii 1
y y

RMSE
n

=
−

=


Results and Discussion
• Effect of sample sizes in M-H MCMC algorithm

• BMA weight and standard deviation of Model 1 (f1)

No.
EM 

weight
EM σ 
(m)

MCMC weight
(Uniform & Normal)

MCMC σ 
(m)

Given σ 
(m)

1 0.492 0.04 0.332 & 0.354 0.05 0.06

2 0.497 0.04 0.320 & 0.35 0.04 0.06

3 0.0002 0.02 0.068 & 0.062 0.08 0.12

4 0 0.05 0.059 & 0.053 0.09 0.12

5 0 0.08 0.040 & 0.034 0.14 0.18

6 0 0.02 0.044 & 0.033 0.12 0.18

7 0 0.11 0.035 & 0.029 0.16 0.24

8 0 0.05 0.032 & 0.028 0.20 0.24

9 0.01 0.001 0.037 & 0.028 0.20 0.30

10 0 0.09 0.033 & 0.028 0.21 0.30

Algorithm
RMSE

(m)

Average 90% 
prediction 

interval (m)
UC1 (%) UC2 (%) UC3 (%) UC4 (%)

EM 0.041 0.19 5.00 1.61 1.06 2.00

MCMC 
(Uniform)

0.037 0.47 0.00 1.33 1.04 1.66

MCMC 
(Normal)

0.037 0.41 0.00 1.33 0.96 1.64

• Influence of conditional PDFs in BMA analysis

Algorithm
RMSE

(m)

Average 90% 
prediction 

interval (m)
UC1 (%) UC2 (%) UC3 (%) UC4 (%)

Normal PDF 0.421 1.32 13.00 7.54 5.69 7.76

Gamma PDF 0.419 1.34 11.00 7.48 5.67 7.71

https://www.weather.gov/hazstat/

