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Abstract

Evaluation of the performance of hydrologic and hydraulic models is a crucial step in the modeling process. Considering the

limitations of single statistical metrics, such as the Nash Sutcliffe efficiency (NSE), the Kling Gupta efficiency (KGE), and the

coefficient of determination (R2), which are widely used in the evaluation of model performance, an evaluation framework that

incorporates multiple criteria and based on the generalized likelihood uncertainty estimation (GLUE) is proposed to demonstrate

the uncertainty in the evaluation criteria and hence to quantify the overall uncertainty of flood models in a comprehensive way.

This framework is applied to the one-dimensional HEC-RAS models of six reaches located in States of Indiana and Texas of

the United States to quantify the uncertainty associated with the channel roughness and upstream flow input. Specifically, the

effects of different prior distributions of the uncertainty sources, multiple high-flow scenarios, and various types of measurement

errors (white noise, positive bias, and negative bias) in observations on the evaluation metrics are investigated by using the

bootstrapping method and Monte Carlo simulations. The results show that the model performances based on the uniform and

normal priors are comparable. The distributions of all the evaluation metrics in the framework are significantly different for

the flood model under different high-flow scenarios, and it further indicates that the metrics are essentially random statistical

variables. Additionally, the white-noise error in observations has the least impact on the metrics, while the positive and

the negative biases would have opposite impacts, which depends on whether the model overestimated or underestimated the

hydrologic variable.
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Introduction

Image source: https://www.usatoday.com/picture-gallery/news/weather/2022/06/14/major-flooding-mudslides-yellowstone-national-park/7618177001/

Data source: https://www.weather.gov/hazstat/

➢Flood & Flood model 

• Flooding is one of the most 
devastating natural disasters 
in the world

• Evaluation of reliability and 
accuracy of model predictions 
is a critical issue

• How to demonstrate and 
quantify the uncertainty in 
evaluation metrics?
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• Uncertainty in evaluation criteria for flood models

Introduction
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(Choi, 2022; Clark et al., 2021; Knoben et al., 2018; D. Liu, 2020; Rogelis et al., 2016; 

Siqueira et al., 2018; Towner et al., 2019)

➢ Statistical metrics

❑ Reliability of prediction 

distribution

❑ MSE/RMSE, NSE, KGE, 

R2, etc.

➢ Limitations

❑ No “perfect” single metric

❑ No broad consensus on 

uncertainty quantification 

for flood models

Model 
evaluation

Quantitative 
analysis

Prediction 
distribution

Deterministic 
prediction 

Qualitative 
analysis

Visual 
comparison



➢ Objectives: quantify uncertainty in evaluation metrics

✓ revisit the statistical meanings of existing metrics and propose an 

integrated evaluation framework

✓ investigate the effect of different prior distributions in GLUE 

analysis on the uncertainty metrics

✓ evaluate the effect of different high-flow scenarios on the 

uncertainty metrics

✓ explore the impact of different types of measurement errors on the 

uncertainty metrics

Introduction
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(Anscombe, 1973; Nagelkerke, 1991; Nash and Sutcliffe, 1970; Gupta et al., 2009)

Integrated Evaluation Framework
➢ Uncertainty coefficients
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90% prediction interval of water 

stage distribution
α

average interval width ≤ 0.3 m 0.1

0.3 m < average interval width ≤ 0.9 m 0.25

0.9 m < average interval width ≤ 1.2 m 0.5

1.2 m < average interval width ≤ 1.8 m 0.25

average interval width > 1.8 m 0.1

• Values of the empirical factor (α) in IUC

Accuracy

α in 
IUC

Reliability

Integrated Evaluation Framework
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Study Area and Data

FEMA model source: https://dnrmaps.dnr.in.gov/appsphp/model/index.php

https://webapps.usgs.gov/infrm/estbfe/ 8Simulation period: 200 days (summer & fall in 2021)

Study Stream

(State-No.)

Channel 

length 

(km)

Average 

channel 

width (m)

Channel 

slope (%)

Hart (IN-1) 8.45 16 0.1037

Deep (IN-2) 19.55 48 0.0095

Delaware White

(IN-3)
6.76 64 0.0631

Gibson White

(IN-4)
70.38 182 0.0087

West Fork San 

Jacinto

(TX-1)

56.31 227 0.1624

East Fork San 

Jacinto

(TX-2)

50.11 76 0.0438

https://dnrmaps.dnr.in.gov/appsphp/model/index.php
https://webapps.usgs.gov/infrm/estbfe/


➢ Uncertainty quantification based on GLUE 

for FEMA models (1D HEC-RAS)

Methodology

9

Sampling 
from prior 

distributions 
of 

uncertainty 
sources

Model 
ensemble 

and multiple 
model runs

Multiple 
results and 
compare to 

observations 
based on 

Likelihood

Estimate 
uncertainty 
based on 

behavioral 
outputs

• Generalized likelihood uncertainty estimation (GLUE)

incorporates both Monte Carlo sampling and the Bayesian 

analysis (Beven and Binley, 1992). 



➢ Uncertainty quantification 

based on GLUE for FEMA 

models (1D HEC-RAS)

Uncertainty 

Type

Uncertainty 

Source

Prior Distribution-1

(Uniform)

Prior Distribution-2

(Normal)

Model 

Parameter

Channel 

roughness (n)
U (0.8n, 1.2n) N (n, 0.1n)

Input Data
Upstream flow 

input (Q)
U (0.8Q, 1.2Q) N (Q, 0.1Q)

Methodology
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400 (=20×20) model configurations (plan files) in HEC-RAS

• Likelihood function: 2
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➢ Effect of different prior distributions in GLUE
Results and Discussion

Uniform Prior Normal Prior

Model Type Mean (U) 90% CI (U) Mean (N) 90% CI (N)

IN-4

UC1 (%) 57.36 [52.00, 63.50] 59.67 [54.00, 65.50]

UC2 (%) 22.88 [18.72, 27.86] 23.06 [18.76, 28.06]

UC3 (%) 29.36 [25.34, 33.41] 29.22 [25.56, 33.47]

UC4 (%) 21.42 [19.71, 23.15] 21.58 [19.88, 23.35]

IUC (%) 40.55 [35.20, 45.01] 39.62 [30.95, 45.91] 11



➢ Evaluation under different high-flow scenarios

UC distributions of IN-4 modelWater stage predictions of IN-4 model

Results and Discussion

12



➢ Integrated evaluation framework for flood models

Water stage predictions of TX-1 model

≥ 

Per

(%)

IUC

(%)

90% 

width

(m)

RMSE

(m)

Ratio 

of sd

Ratio 

of 

mean

r slope

0 14.96 0.16 0.23 0.85 1.00 0.98 1.00

10 14.92 0.17 0.24 0.84 1.00 0.98 1.00

20 15.19 0.18 0.26 0.83 1.00 0.97 1.00

30 15.84 0.20 0.27 0.82 1.00 0.97 1.00

40 17.57 0.21 0.29 0.81 1.00 0.97 1.00

50 18.65 0.23 0.31 0.78 1.00 0.97 1.00

60 18.82 0.25 0.34 0.77 1.00 0.97 1.01

70 19.28 0.29 0.39 0.76 0.99 0.97 1.01

80 29.33 0.34 0.46 0.73 0.99 0.96 1.01

90 40.70 0.39 0.64 0.80 0.97 0.93 1.03 13

Results and Discussion



➢ Impact of various measurement errors

Water stage predictions of IN-4 model

UC distributions of IN-4 model

Results and Discussion
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Type of 

errors

Type 

of UC

Mean 

(%)

Relative 

change 

(%)

Type 

of UC

Mean 

(%)

Relative 

change 

(%)

No 

errors

UC1

57.50 /

UC2

22.57 /

WN 57.35 -0.26 22.58 0.04

PB 55.36 -3.72 21.52 -4.65

NB 59.11 2.80 23.69 4.96

No 

errors

UC3

29.20 /

UC4

21.40 /

WN 29.20 0.00 21.40 0.00

PB 28.39 -2.77 20.97 -2.01

NB 30.03 2.84 21.83 2.01

No 

errors

IUC

40.95 /

WN 40.87 -0.20

PB 39.49 -3.57

NB 42.15 2.93

➢ Impact of various measurement errors

UC distributions of IN-4 model

Results and Discussion

15



• A uniform prior in the GLUE analysis is adequate for the 

uncertainty quantification in the absence of solid prior knowledge.

• Evaluation metrics (UCs) are random variables: conditional on a 

specific flow scenario; present a statistical distribution.

• White-noise measurement errors have the least impact on UCs.

• The integrated evaluation framework based on GLUE can be 

applied to any other hydrologic variables.

Conclusions

16
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THANK YOU
“No one trusts a model except the man who wrote it; 

everyone trusts an observation except the man who 

made it.”

– Harlow Shapely

Email: huan1441@purdue.edu


