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Key Points:6

• An exact solution is manufactured for a realistic thermochemical mantle convec-7

tion flow in two dimensions.8

• An exact solution is highly useful for software verification and validation for prob-9

lems featuring sharply varying thermochemical flows.10

• Maple™ is used to assist with symbolic computations, and the resulting formulas11

are also provided in Fortran and Python.12
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Abstract13

In this study, we manufacture an exact solution for a set of 2D thermochemical mantle14

convection problems. The derivation begins with the specification of a stream function15

corresponding to a non-stationary velocity field. The method of characteristics is then16

applied to determine an expression for composition consistent with the velocity field. The17

stream function formulation of the Stokes equation is then applied to solve for temper-18

ature. The derivation concludes with the application of the advection-diffusion equation19

for temperature to solve for the internal heating rate consistent with the velocity, com-20

position, and temperature solutions. Due to the large number of terms, the internal heat-21

ing rate is computed using Maple™ , and code is also made available in Fortran and Python.22

Using the method of characteristics allows the compositional transport equation to be23

solved without the addition of diffusion or source terms. As a result, compositional in-24

terfaces remain sharp throughout time and space in the exact solution. The exact so-25

lution presented allows for precision testing of thermochemical convection codes for cor-26

rectness and accuracy.27

Plain Language Summary28

We manufacture an exact solution for a set of 2D thermochemical mantle convec-29

tion problems, for which both thermal and compositional gradients impact buoyancy.30

Such problems must typically be solved approximately via computer models and are no-31

toriously difficult to solve accurately. Our derivation uses a mathematical technique known32

as the method of characteristics that allows us to solve for composition and tempera-33

ture variables without adding artificial terms to the model equations. Accordingly, our34

solution is able to feature sharp compositional gradients, which are difficult to model nu-35

merically. The exact solution facilitates the testing of thermochemical convection codes36

for both correctness and accuracy.37

1 Introduction38

1.1 Motivation39

Buoyancy is the primary driving force behind convection in the Earth’s mantle. Con-40

tributing factors to buoyancy in the mantle include lateral contrasts in temperature and41

composition. In the case of thermochemical flows, mantle buoyancy depends upon both42

of these factors. Heat sources and sinks affecting the thermal state of the Earth’s man-43

tle include radiogenic heating, heating from the outer core, and cooling at the Earth’s44

surface (Turcotte & Schubert, 2002). Thermally driven buoyancy instabilities can arise45

when the rate of thermal transport via advection exceeds that of diffusion. Such situ-46

ations include the rise of hot upwellings from the core and the descent of cold downwellings47

from the surface (e.g., a subducting slab). Buoyancy instabilities can also be caused by48

lateral variations in thermal boundary conditions. Lateral contrasts in mantle compo-49

sition can occur for several reasons, including transitions between oceanic and continen-50

tal lithosphere, rapid subduction of oceanic lithosphere, and deep dense compositional51

piles. The Earth’s Large Low Shear wave Velocity Provinces (LLSVPs) may also be in-52

fluenced by thermal and compositional gradients (Davies et al., 2015; McNamara, 2019).53

Geophysical flows involving sharp compositional contrasts are notoriously difficult54

to model numerically. Challenges include both spurious oscillations and extraneous dif-55

fusion (Lenardic & Kaula, 1993). Numerical methods employed to minimize these er-56

rors include the use of particles (Tackley & King, 2003), level sets (Hillebrand et al., 2014),57

and hybrid methods (Samuel & Evonuk, 2010).58

Another even more fundamental challenge is to ensure the software that implements59

the numerical solution has been coded correctly. By definition, model developers pro-60
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duce code to solve problems for which solutions are unknown. The verification and val-61

idation process in modeling and simulation often involves qualitative comparison with62

accepted published results or quantitative comparison with a highly accurate “reference63

solution”. In the latter case, it can be questionable practice to use one’s own software64

for verification purposes, or it potentially forces the developers to learn and use other65

software. Accordingly, the presence of an exact solution with which numerical solutions66

can be compared is highly desirable, especially if it is realistic. In this paper, we describe67

a realistic 2D thermochemical mantle convection problem for which we manufacture an68

exact solution.69

1.2 Solution Features70

Exact solutions applicable to mantle convection codes have been presented for sit-71

uations including Stokes flow with lateral viscosity variations (Zhong, 1996; Duretz et72

al., 2011; Pusok et al., 2017; Samuel, 2018), material deformation (Enright et al., 2002),73

and compositional convection (Gassmöller et al., 2019). However, our manufactured so-74

lution includes both thermal and compositional buoyancy effects, has a non-stationary75

velocity field (Brunton & Rowley, 2010), and does not require the addition of source or76

diffusion terms in the compositional transport equation. We believe that the inclusion77

of these features brings the problem closer to practical thermochemical mantle convec-78

tion models and allows for a greater range of numerical testing. For instance, having a79

combination of thermal and compositional buoyancy effects allows testing the numer-80

ical accuracy of the correlation between temperature and composition over a range of81

buoyancy ratios. Further, a non-stationary velocity field allows for testing the efficacy82

of numerical schemes for temporally variable velocity fields.83

Additionally, deriving an exact solution without requiring compositional sources,84

sinks, or diffusion ensures that compositional contrasts remain sharp, which is typically85

the desired behavior in mantle convection studies. To accomplish this, we employ the86

method of characteristics (Courant & Hilbert, 2008) for the analysis of compositional87

transport. The method of characteristics has been previously applied to enhance the nu-88

merical techniques for modeling compositional transport in geodynamic flows (De Smet89

et al., 2000; Gerya & Yuen, 2003). In this study, we focus on applying the method of char-90

acteristics to facilitate an exact solution to the compositional transport problem.91

1.3 Derivation Outline92

The primary steps of the derivation are as follows.93

1. Prescribe a stream function that varies in time and space and corresponds to a94

velocity field that is reasonable for mantle convection.95

2. Apply the method of characteristics to find the time-dependent solution for the96

composition field that matches the stream function.97

3. Solve for the temperature given the stream function and the composition field by98

applying the stream function formulation of the Stokes equation.99

4. Determine the internal heating rate that corresponds to the stream function, tem-100

perature, and composition fields using the advection-diffusion equation govern-101

ing temperature.102

The remainder of this paper provides details of the steps just described in the con-103

text of a rectangular 2D domain with specific initial conditions, boundary conditions,104

and stream function to yield a realistic velocity field. We note that the use of a prescribed105

stream function to study compositional convection has been used previously (Kellogg &106

Turcotte, 1990).107
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2 Method108

2.1 Governing Equations109

Although effectively solid over short time periods, the mantle acts as a highly vis-110

cous fluid over geologic time (Schubert et al., 2001). Mathematically, the mantle is typ-111

ically modeled using a set of conservation equations obtained from fluid dynamics and112

thermodynamics. Specifically, the continuity equation specifies the conservation of mass,113

the Navier–Stokes equation models the conservation of momentum, and an advection-114

diffusion equation governs the conservation of energy. In addition, an advection equa-115

tion is used to model compositional transport of distinct mantle components. We em-116

ploy the Boussinesq approximation to simplify the effect of density variations. The in-117

finite Prandtl number approximation is also used, for which the inertial terms in the Navier–118

Stokes equation are considered negligible (resulting in Stokes flow).119

In the case of 2D incompressible flow in Cartesian coordinates, we may use the stream120

function formulation to simplify the treatment of the conservation of mass and momen-121

tum. Specifically, the non-dimensional biharmonic equation, given by122

∂4ψ

∂x4
+

∂4ψ

∂x2∂z2
+
∂4ψ

∂z4
= RaT

∂T

∂x
−RaC

∂C

∂x
, (1)123

may be used, where ψ is the stream function; T and C are the temperature and com-124

position fields; x and z are the horizontal and vertical (increasing opposite to the direc-125

tion of gravity) position coordinates; and RaT and RaC are the thermal and composi-126

tional Rayleigh numbers (Batchelor, 1967; van Keken et al., 1997). We note that equa-127

tion 1 is the isoviscous form of the biharmonic equation. In principle, it is possible to128

include viscosity variations in the following derivation of a manufactured solution. How-129

ever, this complicates the symbolic computations required to find formulas for the tem-130

perature and internal heating rate. Accordingly, we leave the inclusion of variable vis-131

cosity for a future study.132

The velocity (v) is computed from the stream function using133

v = (u,w) =

(
∂ψ

∂z
,−∂ψ

∂x

)
, (2)134

where u and w are the horizontal and vertical velocity components, respectively. We note135

that equation 2 yields a velocity that is inherently divergence free. The stream function136

formulation reduces the number of scalar equations to be solved and removes the need137

to solve for the pressure, at the expense, however, of solving a higher-order equation.138

The non-dimensional conservation equations for energy and composition are139

∂T

∂t
+ v · ∇T = ∇2T +H, (3)140

and141

∂C

∂t
+ v · ∇C = 0, (4)142

respectively, where H is the internal heating rate and t is time.143

The thermal Rayleigh number is144

RaT =
αρ0g δT D

3

κη0
, (5)145

where α is the thermal expansivity; ρ0 is surface density with C = T = 0; g is the grav-146

itational acceleration; δT is the temperature difference across the mantle; D is the man-147

tle thickness; κ is thermal diffusivity; and η0 is the surface viscosity. The compositional148

Rayleigh number is149

RaC =
δρC gD

3

κη0
, (6)150
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where δρC is the compositional density contrast between enriched and ambient mantle151

materials.152

2.2 Problem Setup153

2.2.1 Problem Domain and Initial Conditions154

We assume a problem domain [0, λ] × [0, 1] in the x-z plane, where λ > 0 is the155

aspect ratio of the convecting cell.156

We require initial conditions for both composition and temperature. For compo-157

sition, we select a two-layer initial state with a sharp contrast between layers that we158

denote by C(x, z, t = 0) = C0(z). In principle, this initial state may be achieved us-159

ing C0(z) = H
(
1
2 − z

)
, where H(·) is the Heaviside function. However, we assume that160

the compositional interface be of non-zero thickness (see section 4.3), which is accom-161

plished using the logistic function as a smooth approximation to the Heaviside function162

C0(z) = [1 + exp [−2k (zI − z)]]
−1
, (7)163

where k controls the sharpness of the interface at z = zI . For temperature, we have164

T (x, z, t = 0) =
1

RaT

[
−
π3

(
λ2 + 1

)2
λ3

cos (πx/λ) sin (πz) f (t = 0) +RaCC0(z) + (RaT −RaC)(1− z)

]
,

(8)165

which is a hybrid between a conductive and layered profile (with layers corresponding166

to the initial composition field), with a sinusoidal perturbation. The perturbation is scaled167

by the initial value of the function f(t), which controls the time dependence of the pre-168

sumed ψ (see section 3.1.1). This particular initial condition for T was chosen to sim-169

plify the treatment of internal heating in the derivation. However, other choices, such170

as a purely conductive profile, are possible with the appropriate choice of fB(z, t) in equa-171

tion 43 below (see section 3.1 for details).172

We note that the above initial conditions for C and T imply stable buoyancy for173

t = 0. For our problem, convection is initiated by lateral gradients in the internal heat-174

ing rate (see section 3.1.5).175

2.2.2 Boundary Conditions176

To form a well-posed problem, boundary conditions are required for temperature177

and the velocity field. Our goal in selecting boundary conditions is to match realistic man-178

tle convection models as closely as possible. For temperature, we select insulating side-179

walls (∂T/∂x = 0 at x = 0 and x = λ) and isothermal horizontal boundaries, T (x, z =180

0, t) = Tbot and T (x, z = 1, t) = Ttop), where181

Tbot =
RaC
RaT

[C0(0)− 1] + 1 (9)182

and183

Ttop =
RaC
RaT

C0(1). (10)184

The values of Tbot and Ttop were selected to simplify the derivation of T and are consis-185

tent with the initial condition. Note that Tbot and Ttop approach values of unity and zero,186

respectively, as the value of k increases. With these boundary conditions, the flow is char-187

acterized by mixed heating modes: basal and internal. For the velocity field, we choose188

impermeable (u = 0 at x = 0 and x = λ, w = 0 at z = 0 and z = 1) and free-slip189

(∂u/∂z = 0 at z = 0 and z = 1, ∂w/∂x = 0 at x = 0 and x = λ) boundaries. Note190

that boundary fluxes of composition are zero due to the use of impermeable boundary191

conditions for velocity.192
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2.2.3 Diagnostics193

The root-mean-square (RMS) velocity over the problem domain is defined as194

vRMS =

√
1

λ

∫ 1

0

∫ λ

0

[u2 + w2] dxdz (11)195

and characterizes the overall vigor of convection. The entrainment is given by196

E =
1

λzI

∫ 1

zR

∫ λ

0

C dxdz, (12)197

which quantifies the proportion of material with C = 1 above a reference height of zR.198

In this study, we use zR = zI . These quantities have been used to help quantify the ac-199

curacy of numerical solutions in thermochemical convection studies (van Keken et al.,200

1997; Tackley & King, 2003; Samuel & Evonuk, 2010; S. J. Trim et al., 2020, 2021). We201

report the RMS velocity and entrainment for the manufactured solution in section 3.2.202

3 Results203

3.1 Derivation of the manufactured solution204

We proceed with our derivation of the manufactured solution by finding the shape205

of the characteristic orbitals for a presumed stream function, followed by determining206

the time evolution along those orbitals. The method of characteristics can then be ap-207

plied to find the solution for composition expressed as a transformation of its initial con-208

dition. The solution for temperature is then found from the biharmonic equation. Lastly,209

the internal heating rate for this problem is found from the advection-diffusion equation210

for temperature.211

3.1.1 Establishing the characteristic orbitals212

Equation 4 can be expressed in 2D Cartesian coordinates as213

∂C

∂t
+ u

∂C

∂x
+ w

∂C

∂z
= 0. (13)214

We seek to describe the evolution of a characteristic curve with coordinates x(t) and z(t).215

Along this characteristic, we have C = C(x(t), z(t), t) with time derivative given by216

dC

dt
=
∂C

∂x

dx

dt
+
∂C

∂z

dz

dt
+
∂C

∂t
. (14)217

Comparing equations 13–14, we extract a system of characteristic ODEs,218 
dx/dt = u,

dz/dt = w,

dC/dt = 0.

(15)219

Because dC/dt = 0 along a characteristic, we have C(x(t), z(t), t) = C(x0, z0, 0), where220

x0 = x(0) and z0 = z(0). If we can solve for x0 and z0 in terms of x(t), z(t), and t,221

we can obtain the exact time-dependent solution for C.222

To obtain a suitable velocity field, we assume a stream function that satisfies the223

boundary conditions (see section 2.2.2) and is given by224

ψ(x, z, t) = sin(πx/λ) sin(πz)f(t), (16)225

where f(t) is an integrable function of time. Using equation 2 in conjunction with equa-226

tion 15, we obtain the characteristic ODEs governing the trajectories x(t) and z(t), namely227 {
dx/dt = π sin (πx/λ) cos (πz) f(t),

dz/dt = −π
λ cos (πx/λ) sin (πz) f(t).

(17)228
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Dividing equations and rearranging gives229

1

λ
cot(πx/λ)dx = − cot(πz)dz. (18)230

Integrating both sides of equation 18 gives231

1

λ

[
λ

π
ln | sin(πx/λ)|+D1

]
= −

[
1

π
ln | sin(πz)|+D2

]
, (19)232

where D1 and D2 are constants of integration. Rearranging terms and applying the prop-233

erties of logarithms gives234

ln | sin(πx/λ) sin(πz)| = −π(D1/λ+D2). (20)235

Exponentiating both sides results in236

| sin(πx/λ) sin(πz)| = D, (21)237

where D ≡ exp[−π(D1/λ+D2)] is a constant. Sample contours of D for λ = 1, corre-238

sponding to characteristic orbital trajectories, are shown in figure 1. For the character-239

istics corresponding to a given value of D, equation 21 gives us the shape of the orbital240

path. However, we still need to determine the time dependence of the evolution of the241

characteristics to complete the solution.242

3.1.2 Time evolution of characteristics corresponding to 0 < D < 1243

The initial condition for C consists of horizontal layers. Accordingly, equation 7244

is independent of x, and we need only analyze the time dependence of z as governed by245

dz/dt in equation 17. Consequently, we must eliminate the cos(πx/λ) term from dz/dt246

in equation 17. The Pythagorean identity gives247

cos(πx/λ) = S(x)

√
1− sin2(πx/λ), (22)248

where the function S(x) is defined by249

S(x) =

{
+1 if x ≤ λ/2,

−1 if x > λ/2,
(23)250

and is used to ensure the correct sign for the cosine function about x = λ/2. Using equa-251

tion 21 in equation 22, we obtain252

cos(πx/λ) = S(x)

√
1− D2

sin2(πz)
. (24)253

Substitution of equation 24 into equation 17 for dz/dt gives254

dz

dt
= −π

λ
f(t)S(x)

√
sin2(πz)−D2

= −π
λ
f(t)S(x)(±iD)

√
1− 1

D2
sin2(πz)

=
iπD

λ
f(t)S(x)

√
1− 1

D2
sin2(πz),

(25)255

where we have retained the negative of the plus-minus sign to preserve the sign of the256

vertical velocity component. Rearranging equation 25 and multiplying both sides by π257

gives258

d(πz)√
1− 1

D2 sin
2(πz)

=
iπ2D

λ
f(t)S(x)dt. (26)259
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Figure 1. Sample contours of D, corresponding to characteristic orbitals, from equation 21

with λ = 1. Contour values range between 0.1–0.9 and are shown at intervals of 0.1. The value of

D increases toward a value of unity at the center of the domain.
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Integrating equation 26 along a particular characteristic, we obtain260 ∫ πz

πz0

d(πz)√
1− 1

D2 sin
2(πz)

=
iπ2D

λ

∫ t

0

f(t′)S(x)dt′, (27)261

where we have used t′ to indicate the dummy variable of integration for time. We may262

evaluate the left side of equation 27 in terms of incomplete elliptic integrals of the first263

kind, giving264

F

(
πz

∣∣∣∣ 1

D2

)
− F

(
πz0

∣∣∣∣ 1

D2

)
=
iπ2D

λ

∫ t

0

f(t′)S(x)dt′. (28)265

We note that the left side only depends on the values of z0 and z along a characteris-266

tic orbital corresponding to the value of D (for 0 < D < 1). Importantly, the value267

of the left side does not depend on the path taken along the orbital between the verti-268

cal positions of z0 and z. Accordingly, we may simplify the integral on the right side by269

selecting paths x(t) along which the function S(x) does not change sign. However, for270

x ̸= λ/2, each z value corresponds to two possible x values (one on either side of x =271

λ/2, as seen in figure 1). To account for all possible situations, we select two paths with272

x ranges given by: 1) x ≤ λ/2 and 2) x > λ/2. Path 1 starts with x0 < λ/2, ends273

with x ≤ λ/2, and has x(t) ≤ λ/2 for the entire range of integration:274

F

(
πz

∣∣∣∣ 1

D2

)
− F

(
πz0

∣∣∣∣ 1

D2

)
=
iπ2D

λ

∫ t

0

f(t′)dt′. (29)275

We note that this formula also applies for any case for which x ≤ λ/2. Path 2 starts276

with x0 > λ/2, ends with x > λ/2, and has x(t) > λ/2 for the entire range of inte-277

gration:278

F

(
πz

∣∣∣∣ 1

D2

)
− F

(
πz0

∣∣∣∣ 1

D2

)
=
iπ2D

λ

∫ t

0

−f(t′)dt′. (30)279

We note that this formula also applies for any case for which x > λ/2.280

Isolating the z0 terms for all cases, we obtain281

F

(
πz0

∣∣∣∣ 1

D2

)
=

{
F (πz| 1

D2 )− iπ2D
λ

∫ t

0
f(t′)dt′, if x ≤ λ/2,

F (πz| 1
D2 ) +

iπ2D
λ

∫ t

0
f(t′)dt′, if x > λ/2,

= F

(
πz

∣∣∣∣ 1

D2

)
− S(x)

iπ2D

λ

∫ t

0

f(t′)dt′.

(31)282

We may use the Jacobi elliptic function cn to extract the cosine of the elliptic amplitude,283

giving284

cos(πz0) = cn

{
F

(
πz

∣∣∣∣ 1

D2

)
− S(x)

iπ2D

λ

∫ t

0

f(t′)dt′
∣∣∣∣ 1

D2

}
. (32)285

Finally, taking the inverse cosine gives286

z0 =
1

π
arccos

[
cn

{
F

(
πz

∣∣∣∣ 1

D2

)
− S(x)

iπ2D

λ

∫ t

0

f(t′)dt′
∣∣∣∣ 1

D2

}]
. (33)287

Equation 33 applies to all characteristics for 0 < D < 1. This covers the ma-288

jority of the domain, but it does not include the domain boundaries (D = 0) nor the289

center of the domain (D = 1). These two special cases for D are now addressed.290

3.1.3 Time evolution of characteristics for D = 0 and D = 1291

For D = 0, the characteristic orbital overlaps with the boundary of the domain.292

For the horizontal boundaries (z = 0, 1), impermeability requires that z0 = z. For the293
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vertical boundaries (x = 0, λ), equation 25 gives294

dz

dt
= −π

λ
f(t)S(x)

√
sin2(πz)−D2

= −π
λ
f(t)S(x)|sin(πz)|.

(34)295

Rearranging terms and integrating both sides gives296 ∫ z

z0

csc(πz)dz = −π
λ

∫ t

0

f(t′)S(x)dt′. (35)297

We are able to drop the absolute value sign for the left-hand integrand due to the range298

of z. Also, the value of x along the vertical boundaries, denoted by xb, is either 0 or λ.299

Accordingly, x = xb is constant in the right-hand integrand, and S(xb) can be brought300

outside of the integral. After integrating and isolating terms that depend on z0, we ob-301

tain302

ln | csc(πz0) + cot(πz0)| = ln | csc(πz) + cot(πz)| − π

λ
S(xb)

∫ t

0

f(t′)dt′

≡ Q(z, t),

(36)303

where we use Q(z, t) to represent the right side of the equation to simplify the notation304

that follows. To solve equation 36 for z0 = z0(z, t), we make use of the substitution Z0 =305

cot(πz0). For computational convenience, we presume a range of (−π/2, π/2]− {0} for306

the corresponding inverse cotangent function, which will be used to recover z0. Taking307

the exponential of both sides of equation 36 and applying the Z0 substitution gives308

eQ = | csc(πz0) + cot(πz0)|

= | ±
√
1 + Z2

0 + Z0|,
(37)309

where the plus-minus sign is positive for Z0 ≥ 0 and negative for Z0 < 0. Equation 37310

has the admissible solution311

Z0 = −1

2

[
e−Q − eQ

]
. (38)312

Accordingly, for D = 0 at the sidewalls, we have313

z0 =

{
1
π arccot (Z0) , if Z0 ≥ 0,

1 + 1
π arccot (Z0) , if Z0 < 0.

(39)314

For D = 1 in the problem domain, examination of equation 21 reveals that the315

corresponding characteristic orbital consists of a single point at (x, z) = (λ/2, 1/2). Sub-316

stituting D = 1 and z = 1/2 into the right side of equation 25 results in dz/dt = 0,317

giving z0 = z.318

3.1.4 Solutions for C and T319

Combining the results from sections 3.1.2 and 3.1.3, we obtain320

z0 =



z, if z = {0, 1} or (x, z) = (λ/2, 1/2),
1
π arccot (Z0) , if x = {0, λ} and Z0 ≥ 0,

1 + 1
π arccot (Z0) , if x = {0, λ} and Z0 < 0,

1
π arccos

[
cn

{
F

(
πz

∣∣∣∣ 1
D2

)
− S(x) iπ

2D
λ

∫ t

0
f(t′)dt′

∣∣∣∣ 1
D2

}]
, otherwise,

(40)321

which summarizes the evolution of characteristics for this problem. Equation 40 was de-322

rived along characteristics for a given D. However, a more general form of the right side323
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may be achieved by applying the identity from equation 21. This substitution results in324

a formula that applies to characteristics everywhere in the problem domain.325

According to the method of characteristics, the time-dependent solution for C is326

expressed as a transformation of its initial condition. Following this procedure results327

in328

C(x, z, t) = C0(z0) = [1 + exp [−2k (zI − z0)]]
−1
, (41)329

where we may use equation 40 for the value of z0.330

Substituting equation 16 into equation 1 and integrating with respect to x gives331

RaTT −RaCC = −
π3

(
λ2 + 1

)2
λ3

cos (πx/λ) sin (πz) f (t) + fB(z, t), (42)332

where fB(z, t) is an arbitrary function independent of x. Solving for T gives333

T (x, z, t) =
1

RaT

[
−
π3

(
λ2 + 1

)2
λ3

cos (πx/λ) sin (πz) f (t) + fB(z, t) +RaCC

]
. (43)334

We now aim to select fB(z, t) to satisfy the isothermal boundary conditions for T at z =335

0 and z = 1. Due to impermeability at the boundaries, the initial condition results in336

C(x, z = 0, t) = C0(0) and C(x, z = 1, t) = C0(1). Therefore, we may select fB =337

(RaT −RaC)(1− z) to ensure that T (x, z = 0, t) = Tbot and T (x, z = 1, t) = Ttop (see338

section 2.2.2). This gives339

T (x, z, t) =
1

RaT

[
−
π3

(
λ2 + 1

)2
λ3

cos (πx/λ) sin (πz) f (t) +RaCC + (RaT −RaC)(1− z)

]
.

(44)340

Furthermore, it can be verified that ∂T/∂x = 0 at x = 0 and x = 1. This requires341

showing that ∂C/∂x = 0 at x = 0 and x = 1 and may be done using the symmetry342

of z0 about those boundaries. This symmetry can be established using equation 33 and343

noting that D is symmetric about the sidewalls. Accordingly, T satisfies both isother-344

mal conditions at the horizontal boundaries and insulating conditions at the vertical bound-345

aries.346

3.1.5 Determining the expression for H347

Once the time-dependent solution with suitable boundary conditions is known, we348

may use equation 3 to solve for H giving349

H(x, z, t) =
∂T

∂t
+ v · ∇T −∇2T. (45)350

Explicit evaluation of equation 45 is formidable due to a large number of terms. To this351

end, a Maple™ (Maple 2022, 2022) script has been used to perform the symbolic com-352

putations required. Routines that calculate H(x, z, t) based upon the formula derived353

using Maple™ are available in Fortran and Python on GitHub and Zenodo (see section 6354

for details).355

3.2 Benchmark Quantities356

Equation 11 can be used in conjunction with equation 2 to compute the RMS ve-357

locity as358

vRMS(t) =
π
√
λ2 + 1

2λ
|f(t)|. (46)359

The vRMS only depends on λ and f(t), which are both known a priori. Accordingly, vRMS360

does not explicitly depend on the evolution of C, T , or H.361
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The entrainment, given by equation 12 with equation 41 as the integrand, is more362

difficult to calculate. We were unable to find a closed-form solution. The next best al-363

ternative is to perform numerical integration, which introduces a small amount of nu-364

merical error due to spatial discretization. However, the result does not suffer from ac-365

cumulation of error over time because temporal discretization is not required. In this pa-366

per, we use the composite midpoint rule for the numerical integration of entrainment.367

Both the RMS velocity and the entrainment may be used for benchmarking purposes.368

3.3 Sample Results369

3.3.1 Temporally periodic flow370

In this example, we present a flow that is periodic in time. Sample plots of tem-371

perature, composition, and internal heating rate using f(t) = a sin(πbt) with λ = 1,372

a = 100, b = 100, zI = 0.5, k = 35, and RaT = 1 × 105 are shown in figure 2, where373

the buoyancy ratio is given by B = RaC/RaT . At t = 0, there are no lateral varia-374

tions in buoyancy, corresponding to a velocity field of zero throughout the domain. Lat-375

eral gradients in thermal buoyancy are generated by the internal heating rate, which starts376

the flow for t > 0. At t = 0.005, we have a hot upwelling of compositionally dense ma-377

terial on the right and a cold downwelling of ambient material on the left, resulting from378

counterclockwise flow. At t = 0.01, the counterclockwise flow has caused the compo-379

sitionally dense material to descend through the left portion of the domain. Correspond-380

ingly, the ambient material has ascended through the right portion of the domain, re-381

sulting in a “jelly roll” pattern. The temperature fields for buoyancy ratios of 0.5 and382

1 are similar in character overall. However, there is an additional thermal gradient in383

z throughout the domain for the B = 0.5 case, due to the term (RaT−RaC)(1−z)/RaT384

in equation 44. For B = 1, we have RaT = RaC which nullifies the contribution of385

that term.386

We also observe thin columns of hot compositionally dense and cold composition-387

ally buoyant material for t > 0 along the bottom right and top left sides, respectively.388

These sharp gradients of C and T are due to impermeable boundary conditions and a389

lack of diffusion. Impermeability results in boundary material being trapped along its390

boundary. Also, the velocity of boundary material approaches zero as the domain cor-391

ners are approached. This leads to the side wall material lagging behind nearby mate-392

rial in the domain interior, generating sharp gradients. In addition to zero compositional393

diffusivity, H exactly cancels thermal diffusion (see equation 45 and section 4.4). Accord-394

ingly, the absence of diffusion preserves the sharp gradients in C and T near the side walls.395

396

Snapshots of H corresponding to the cases shown in figure 2 are presented in fig-397

ure 3. Due to the range of H values for these plots, a symmetric log scale was used for398

the color scale for internal heating magnitudes greater than unity. For −1 < H < 1,399

a linear color mapping is used to avoid difficulties that a log scale would encounter near400

H = 0.401

The internal heating rate impacts the thermal buoyancy so that the resulting ve-402

locity field is consistent with the assumed stream function in equation 16. At t = 0,403

H encourages counterclockwise flow in the upper and lower portions of the domain. How-404

ever, counterclockwise flow is inhibited near the material interface, resulting in a low-405

velocity counterclockwise flow to start. At t = 0.005, H enhances counterclockwise flow406

in most of the domain, resulting in vigorous flow. Finally, at t = 0.01, H acts to gen-407

erate clockwise flow because the choice of f(t) leads to a flow reversal at this time. For408

t = 0 and 0.01, the behavior of H is quite similar for B = 0.5 and 1. However, for t =409

0.005, long wavelength H gradients independent of the compositional interface differ be-410

tween B = 0.5 and 1.411
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Figure 2. Plots of C and T using f(t) = a sin(πbt) with λ = 1, a = 100, b = 100, zI = 0.5,

k = 35, and RaT = 1 × 105. Temperature snapshots for buoyancy ratio values of 0.5 and 1.0 are

shown. Time values are given in the leftmost portion of the figure.
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Figure 3. Plots of H using f(t) = a sin(πbt) with λ = 1, a = 100, b = 100, zI = 0.5, k = 35,

and RaT = 1 × 105 are shown for buoyancy ratio values of 0.5 and 1.0. Time values are given

in the leftmost portion of the figure. Note that a symmetric log scale is used for the color bar,

except for −1 < H < 1, where a linear color mapping is used.
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Plots of the velocity components and magnitude in terms of λ and f(t) are shown412

in figure 4. For this sample problem, the leftmost column (i.e., λ = 1) applies, where413

the extreme values of u, w, and |v| depend on the value of f(t).

Figure 4. Plots of u, w, and |v| for λ = 1 and λ = 3/2. Note that the color scale bounds de-

pend on f(t).

414

The exact RMS velocity and approximate entrainment values corresponding to the415

selected parameters are shown in figure 5. Due to the choice of f(t), the velocity field416

is temporally periodic and has zero magnitude at times 0 and 0.01.417

The initial entrainment is slightly above zero due to the reference z value (zR =418

zI) being situated in the center of the compositional interface. Accordingly, there is a419

small amount of dense material that is already above zR at t = 0. Subsequently, the420

entrainment steadily rises to a peak value of approximately 0.7388 at t = 0.0062. Af-421

terward, the head of the compositionally dense region begins to descend below zR, lead-422

ing to a decrease in entrainment. Finally, the entrainment value at t = 0.01 is approx-423

imately 0.5903.424

We have selected the above parameters to be approximately consistent with a ther-425

mochemical mantle convection model with a thermal Rayleigh number of 105. For in-426

stance, for the same domain and boundary conditions, the RMS velocity of purely ther-427

mal convection at steady state has been observed to be under 200 units (see case 1b from428
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Figure 5. Plots of vRMS and E using f(t) = a sin(πbt) with λ = 1, a = 100, b = 100, zI = 0.5,

k = 35, and RaT = 1 × 105. The entrainment was calculated using the composite midpoint rule

with a uniformly spaced 401× 401 grid.
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Blankenbach et al. (1989)). The mean RMS velocity for our sample parameters is 100
√
2 ≈429

141.4 units, which may be reasonable given that half the domain contains intrinsically430

dense material.431

3.3.2 Approaching a steady state432

In contrast to the example shown in section 3.3.1, we now present a case that ap-433

proaches a steady state flow. Specifically, we use f(t) = a sin(πbt)e−ct + d with λ =434

3/2, a = 600/(π
√
13), b = 100, c = 50, d = 4500/(π

√
13), zI = 0.2, k = 35, RaT =435

1 × 106, and RaC = 8 × 105. Figure 6 shows snapshots of C and T for several time436

values between 0 and 0.1. At t = 0, the solution begins with a basal layer of hot com-437

positionally dense material that is 0.2 units thick. Subsequently, the basal layer begins438

to undergo shearing in a counterclockwise direction. Early evolution of C for t = 0 to439

t = 0.005 is shown in figure 7, where we observe the transformation of the initial dense440

layer into a spiraling band due to rotational shear. Unlike section 3.3.1, the flow con-441

tinues in a counterclockwise direction as time elapses. By t = 0.025 (figure 6), the dense442

material has been sheared into a spiral pattern. The number of spiral turns is propor-443

tional to the number of mantle overturns. This quantity can be estimated by integrat-444

ing the RMS velocity with respect to time, which estimates the number of transits across445

the depth of the mantle, and dividing by four. For t = 0.025, we have approximately446

five overturns. By t = 0.05, nearly ten overturns have occurred, corresponding to an447

increase in spiral turns. Continued shearing results in thinning of the spiral layer. By448

t = 0.075, we have approximately 14 overturns, with a further decrease in spiral layer449

thickness. Finally, by t = 0.1, approximately 19 overturns have occurred and the flow450

is near a steady state. The spiral layer has become even thinner due to shearing.451

It is interesting to note that compositionally dense material is localized to the outer452

perimeter of the domain, even as t approaches infinity. Specifically, the dense material453

cannot pass the characteristic orbital given by the largest value of D within the basal454

layer at t = 0; the orbital barrier is given by D = sin(πzI) ≈ 0.588 (see figure 1 for455

reference). Strictly speaking, this D value holds for C > 0.5 because we used the cen-456

ter of the initial compositional interface in our calculation. The orbital barrier for the457

remaining dense material corresponds to a slightly larger D, due to the thickness of the458

compositional interface at t = 0.459

Snapshots of H for the same times in figure 6 are shown in figure 8. Here H can460

be described as a superposition of features corresponding to 1) the compositional layer461

and 2) a long wavelength gradient stemming from terms independent of C in equation 44.462

For all times shown, the long wavelength component introduces asymmetry that promotes463

counterclockwise flow. For t = 0, we observe that compositionally dense material is heated464

internally between x = 0 and x ≈ 2λ/3, while material just above the interface is cooled465

internally. At t = 0.025, we observe that the dense material spiral is heated near the466

compositional interface, while the less compositionally dense material just beyond the467

interface is cooled. This trend holds for t ≥ 0.025 but becomes less pronounced as time468

increases. We also note that the innermost spirals in H are located closer to the domain469

center than those of C or T (see figure 6). The H spirals corresponding to D > 0.588470

only impact material with C < 0.5 (with the majority near or at C = 0). For t ∈ [0.05, 0.1],471

the spiral band becomes thinner as time elapses, similar to C and T . In addition, it is472

observed that the innermost position of the spiral band does not change significantly.473

As before, figure 4 shows the velocity components and magnitude in terms of λ and474

f(t). For this problem, the rightmost column in the figure (i.e., λ = 3/2) applies, where475

extreme values of u, w, and |v| depend on the value of f(t).476

Figure 9 shows the exact RMS velocity and the approximate entrainment versus477

time for this sample problem. The RMS velocity gradually approaches a steady-state value478

of 750 units. As time increases, the RMS velocity oscillates with decreasing amplitude479
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Figure 6. Plots of C and T using f(t) = a sin(πbt)e−ct + d with λ = 3/2, a = 600/(π
√
13),

b = 100, c = 50, d = 4500/(π
√
13), zI = 0.2, k = 35, RaT = 1 × 106, and RaC = 8 × 105. Time

values are given in the leftmost portion of the figure.
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Figure 7. Plots of C at early stages of evolution using f(t) = a sin(πbt)e−ct + d with λ = 3/2,

a = 600/(π
√
13), b = 100, c = 50, d = 4500/(π

√
13), zI = 0.2, k = 35, RaT = 1 × 106, and

RaC = 8× 105. Time values are given in the leftmost portion of the figure.
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Figure 8. Plots of H using f(t) = a sin(πbt)e−ct + d with λ = 3/2, a = 600/(π
√
13),

b = 100, c = 50, d = 4500/(π
√
13), zI = 0.2, k = 35, RaT = 1 × 106, and RaC =

8× 105. Time values are given in the leftmost portion of the figure. A symmetric log scale is used

for the color bar, except for −1 < H < 1, where a linear color mapping is used.
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about the steady-state value. The steady-state RMS velocity value was selected (via d)480

to be a bit less than that observed in previous benchmarks for thermal mantle convec-481

tion (see problem 1c from Blankenbach et al. (1989)). It was presumed that the pres-482

ence of dense material consisting of 20% of the domain volume would result in a decreased483

RMS velocity.

Figure 9. Plots of vRMS and E using f(t) = a sin(πbt)e−ct + d with λ = 3/2, a = 600/(π
√
13),

b = 100, c = 50, d = 4500/(π
√
13), zI = 0.2, k = 35, RaT = 1 × 106, and RaC = 8 × 105.

The entrainment was calculated using the composite midpoint rule with a uniformly spaced 751×
501 grid.

484

As in section 3.3.1, the initial entrainment is slightly above zero due to zR being485

situated in the center of the compositional interface. The entrainment sharply increases486

until reaching a peak value of approximately 0.9575 at t = 0.0025 (C shown in figure 7).487

Following that, the entrainment quickly reaches a quasi steady state beyond about t =488

0.02 with an average entrainment value of 0.6923. During that period, the amount of dense489

material that is transported above zR nearly matches the amount of dense material that490

descends below zR.491

4 Discussion492

4.1 Use in mantle convection codes493

In this study, we have manufactured an exact solution for a problem that can be494

set up in many mantle convection codes. We now discuss the necessary steps for code495

setup to generate numerical solutions for comparison with the manufactured solution pre-496

sented in this paper. The setup steps are as follows:497
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1. Select values for physical constants λ, zI , k, RaT , and RaC .498

2. Select a function f(t) and values for any associated parameters (e.g., a and b for499

f(t) = a sin(πbt)).500

3. Set initial conditions according to section 2.2.1.501

4. Set boundary conditions according to section 2.2.2.502

5. Set the internal heating rate according to the routines provided via GitHub/Zenodo503

(see section 6 for details).504

After these setup steps are complete, the model can be run forward in time with the set-505

tings that require testing (e.g., resolution, particle count, time integration scheme, etc.).506

We note that time accuracy can be precisely quantified using the derived solutions; the507

inability to precisely quantify time accuracy has been a challenge for thermochemical con-508

vection codes (van Keken et al., 1997).509

Steps 1–3 are straightforward. For particle methods, step 4 may pose a challenge510

in terms of setting up the initial condition for C due to the requirement of a specific thick-511

ness and gradient in the compositional interface. If particles track both compositions (e.g.,512

the ratio method outlined in Tackley and King (2003)) and can support intermediate C513

values between 0 and 1, the interface can be precisely set using equation 7. However, if514

only one composition is tracked (e.g., the absolute method described in van Keken et al.515

(1997) and Tackley and King (2003)) or particles do not support intermediate C values,516

equation 7 is more difficult to satisfy for the interface. One possibility is to select k so517

that the initial interface thickness matches that which is available in the code. However,518

this does not guarantee that the gradient of C will match that of equation 7. This lim-519

itation may lead to discrepancies between the numerical and manufactured solutions. In520

addition, initializing particles along the domain boundaries may help to resolve the sharp521

gradients observed there.522

Step 5 may also require some extra programming if internal heating rates that vary523

in space and time are not available in the code of interest. For a successful test, the vari-524

able internal heating rate must be updated sufficiently often in the code (e.g., once per525

stage of a Runge–Kutta time integration scheme).526

To calculate H correctly, numerical implementations of elliptic integrals of the first527

and second kinds are required and must allow a Jacobi amplitude range of at least [0, π].528

Additionally, implementations of the Jacobi elliptic functions (sn, cn, dn) must permit529

complex first arguments. Both the elliptic integral and Jacobi elliptic functions must al-530

low elliptic parameter values greater than unity. We note that this functionality is not531

standard in all software packages. However, the Fortran (and Python) routines provided532

in section 6 satisfy these requirements by applying generalizations to the algorithms pre-533

sented in Fukushima (2012, 2013).534

Due to a large number of terms and relatively expensive function evaluations for535

F and cn, the calculation of H may be non-trivial. Because H takes the form of a source536

term in equation 3 and is time varying, it needs to be evaluated each time the numer-537

ical method makes a right-hand side function evaluation. This may adversely impact the538

computation time required to generate numerical approximations to the exact solution.539

We note that T values can be negative or exceed unity in the solution. Accordingly,540

numerical schemes must allow such values for T . Also, codes must allow top and bot-541

tom boundary temperatures other than zero and unity for best results (see section 2.2.2).542

4.2 Testing with a Convection Code543

In this section, we test the functionality of the software used to compute H with544

the convection code ProjecTracer (S. J. Trim et al., 2020). The code features a particle-545

in-cell method for the advection of both temperature and composition, while velocity (via546
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a stream function formulation) and thermal diffusion are computed on an Eulerian mesh547

using centered finite differences. Our calculations were produced using a uniform Eu-548

lerian mesh consisting of n×n (n ranges between 200 and 800) cells with fourth-order549

finite differences. Each Eulerian dual grid cell was initialized with 60 tracer particles and550

bilinear shape functions were used to interpolate particle values to the Eulerian grid. Time551

integration was performed using the explicit two-stage, second-order midpoint Runge–552

Kutta method with a Courant factor of 0.99. We consider the temporally periodic prob-553

lem from section 3.3.1 with B = 0.5.554

Figure 10 shows a comparison between numerical and exact solutions for C, T , and555

ψ at t = 0.0025 for n = 800. We observe that the numerical results generally match556

the exact solution. However, the numerical solution did not capture the sharp gradients557

near the domain boundaries for C and T in the exact solution. This may be due to an558

overestimation of thermal diffusion at the boundaries in the numerical solution. Plac-559

ing tracer particles specifically on the domain boundaries improved accuracy in the nu-560

merical results. However, it is expected that mesh refinement near the boundaries would561

improve accuracy further. Also, the magnitude of ψ is underestimated in the numeri-562

cal solution, likely due to the accumulation of error over time.563

Figure 11 shows time series of vRMS, the logarithm of the vRMS error magnitude,564

and the entrainment for different values of n. We observe that the numerical solutions565

approach the exact (or semi-exact in the case of entrainment as in section 3.2) solution566

as n increases. For the time interval considered, errors may be within an acceptable tol-567

erance, particularly for large n. However, error is observed to accumulate over time. Ac-568

cordingly, for longer integration times it may be a challenge to maintain an acceptable569

error tolerance. This is a common occurrence in practice due to a combination of many570

factors including sensitivity of the equations, the numerical method employed, and floating-571

point arithmetic. In such situations, increasing the spatial resolution or decreasing the572

time step size may lead to improved results.573

4.3 Thickness of the compositional interface574

The interface thickness between distinct compositions must be non-zero for the in-575

ternal heating rate to remain bounded. For example, if the Heaviside function is used576

to specify the initial condition for C, then H contains terms including the Dirac delta577

function and its derivatives. This poses a challenge for convection codes because it is not578

practical to implement an internal heating rate that is not bounded. For these reasons,579

we have selected a smooth approximation to the Heaviside function for the initial con-580

dition for C. However, with a sufficiently large k value, the interface thickness can in prin-581

ciple be made as sharp as needed.582

4.4 The sharpness of temperature contrasts583

In situations where the stream function (or velocity field) is smooth, gradients in584

temperature are of similar sharpness to those of composition. This similarity can be seen585

by examining equation 1. This is also the case for our manufactured solution and can586

be seen in figure 2.587

Additionally, from equation 45 it is observed that H is partially comprised of a neg-588

ative diffusion term. Accordingly, H contributes to the sharpness of temperature gra-589

dients in the exact solution.590

Therefore, the numerical method used for the advection-diffusion equation for tem-591

perature should be capable of handling sharp gradients. One possibility is to apply par-592

ticle methods for temperature in a similar fashion to their use for composition (Gerya593

& Yuen, 2003; S. J. Trim et al., 2020).594
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Figure 10. Snapshots of C, T , and ψ at t = 0.0025 using f(t) = a sin(πbt) with λ = 1,

a = 100, b = 100, zI = 0.5, k = 35, RaT = 1 × 105, and RaC = 0.5 × 105. Numerical results

computed using ProjecTracer are shown in the left column, and exact solutions are shown in the

right column.
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Figure 11. Time series of vRMS, the logarithm of the vRMS error magnitude, and the entrain-

ment using f(t) = a sin(πbt) with λ = 1, a = 100, b = 100, zI = 0.5, k = 35, RaT = 1 × 105, and

RaC = 0.5 × 105. Results were obtained using ProjecTracer with a n × n Eulerian mesh, where

n is given in the plot legends. Inset plots are shown for a more precise view of final evolution.

For vRMS, the exact solution is shown for reference. For entrainment, a semi-exact curve is shown

for reference, calculated by applying the composite midpoint rule with a uniform 800×800 mesh

according to section 3.2.
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4.5 Extension to 3D595

Extension of the derivation to 3D would also provide a useful test of code accuracy596

and correctness beyond 2D flows. However, several complexities would need to be ad-597

dressed for a 3D manufactured solution, including an increased number of variables and598

equations. For instance, using poloidal-toroidal decomposition, we can describe the flow599

velocity with two scalar potentials. In that case, the 3D Stokes equation can be reduced600

to two scalar equations (Chandrasekhar, 2013). The determination of suitable charac-601

teristic orbitals would also be more challenging and may involve multiple parameters (as602

opposed to just D in the 2D case). Nonetheless, a 3D solution would be helpful for test-603

ing community codes and is worthy of future exploration.604

5 Conclusions605

Using the method of characteristics, a manufactured solution is derived for isovis-606

cous 2D thermochemical mantle convection models for a prescribed stream function. Ex-607

act expressions for velocity, temperature, composition, and internal heating rate are de-608

rived. Due to the large number of terms, the expression for the internal heating rate is609

found using computer algebra software and is provided on GitHub and Zenodo in Maple™,610

Fortran, and Python (see section 6). The solution features a non-stationary velocity field,611

thermal and compositional buoyancy effects, and a sharp compositional interface. The612

method of characteristics facilitates a solution without additional diffusion or source terms613

in the compositional transport equation, allowing the preservation of sharp compositional614

interfaces in time and space. For the problem posed, the sharpness of temperature con-615

trasts is similar to that of composition. The exact solution can be used to test the cor-616

rectness and accuracy of thermochemical mantle convection codes and allows precise eval-617

uation of the accuracy of numerical solutions for all problem variables in time and space.618

6 Open Research619

Software-related files and data supporting this article are maintained on GitHub620

(https://github.com/seantrim/exact-thermochem-solution) and archived on Zen-621

odo (S. Trim, 2023a). Files include a computer algebra script for Maple™ (Maple 2022,622

2022) that was used for the symbolic computation of H. In addition, Fortran files con-623

taining the formula for H, translated from Maple™ results, and related functions/routines624

are provided. Scripts for Python compatibility are also available.625

Calculations in section 4.2 were performed using ProjecTracer, available on GitHub626

(https://github.com/seantrim/ProjecTracer) and Zenodo (S. Trim, 2023b).627

Figures in this article were made using SageMath (SageMath, 2022), Gnuplot (Williams628

et al., 2021), GIMP (GIMP: GNU Image Manipulation Program, 2021), and MATLAB®
629

(MATLAB, 2022). SageMath (https://www.sagemath.org), Gnuplot (http://www.gnuplot630

.info), and GIMP (https://www.gimp.org) are available via free licenses. Plots of C,631

T , and H were made using the perceptually uniform batlow color map (Crameri et al.,632

2020) and is available on Zenodo (Crameri, 2021). Maple™ (https://www.maplesoft633

.com) and MATLAB® (https://www.mathworks.com) have commercial licenses but are634

often available through institutional access. Maple™ is a trademark of Waterloo Maple635

Inc.636
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