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Abstract

High-quality digital rock images are essential for subsequent high-precision numerical simulations. But limited by the imaging

capability of computed tomography (CT), high resolution digital rock images with wide imaging field of view (FOV) cannot be

acquired simultaneously. To cope with this constraint, we propose a novel Multi Attention Super-Resolution Neural Network

(MASR) that enhances the resolution of images with wide FOV. Considering that textures and edges are more crucial in digital

rocks, MASR introduces the component attention mechanism of Component Divide-and-Conquer Super-Resolution (CDCSR)

model. By redesigning the hourglass network with spatial and channel attention mechanisms, proposing a spatial attention-based

mask module, and optimizing the component attention mask calculation process, MASR delivers higher information utilization

with fewer parameters and faster training than CDCSR. And we optimize the depth of MASR to trade off speed and super-

resolution quality. Furthermore, we retrained several state-of-the-art models. Through quantitative evaluations and qualitative

visualizations, it is verified that MASR can recover sharper edges while removing noise, and obtain digital rock images with

superior quality and reliability. The pixelwise relative errors of MASR reconstructions are reduced by 15% to 26% over bicubic

interpolation method. Our codes are publicly available at https://github.com/MHDXing/MASR-for-Digital-Rock-Images.
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Key Points: 7 

• A Multi Attention Neural Network model is proposed to enhance the resolution of digital 8 
rock CT images. 9 

• Based on the component attention model, the proposed model incorporates channel and 10 
spatial attention mechanisms to achieve higher performance with fewer parameters. 11 

• The proposed model can rely on low resolution images to recover sharp details and edges 12 
while suppressing noise, breaking through hardware limitations to boost digital rock 13 
quality. 14 
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Abstract 16 

High-quality digital rock images are essential for subsequent high-precision numerical 17 
simulations. But limited by the imaging capability of computed tomography (CT), high 18 
resolution digital rock images with wide imaging field of view (FOV) cannot be acquired 19 
simultaneously. To cope with this constraint, we propose a novel Multi Attention Super-20 
Resolution Neural Network (MASR) that enhances the resolution of images with wide FOV. 21 
Considering that textures and edges are more crucial in digital rocks, MASR introduces the 22 
component attention mechanism of Component Divide-and-Conquer Super-Resolution (CDCSR) 23 
model. By redesigning the hourglass network with spatial and channel attention mechanisms, 24 
proposing a spatial attention-based mask module, and optimizing the component attention mask 25 
calculation process, MASR delivers higher information utilization with fewer parameters and 26 
faster training than CDCSR. And we optimize the depth of MASR to trade off speed and super-27 
resolution quality. Furthermore, we retrained several state-of-the-art models. Through 28 
quantitative evaluations and qualitative visualizations, it is verified that MASR can recover 29 
sharper edges while removing noise, and obtain digital rock images with superior quality and 30 
reliability. The pixelwise relative errors of MASR reconstructions are reduced by 15% to 26% 31 
over bicubic interpolation method. Our codes are publicly available at 32 
https://github.com/MHDXing/MASR-for-Digital-Rock-Images. 33 

1 Introduction 34 

In recent years, digital rock technology has been playing an increasingly important role in 35 
oil and gas development, as it enables the study of pore morphology and network topology at the 36 
micro and nano scale (Yao et al., 2005). Moreover, it can be flexibly combined with numerical 37 
simulations to analyze the petrophysical and flow properties of rocks (Liu et al., 2018; 38 
Mostaghimi et al., 2013; Y Wang et al., 2018). X-ray computed tomography (CT) is the most 39 
direct, efficient and extensively used method to obtain three-dimensional (3D) digital rock 40 
images (Chung et al., 2019; Iglauer and Lebedev, 2018; Oluwadebi et al., 2019). In addition, CT 41 
does not destroy the rock during imaging, which ensures that the rock can be subsequently used 42 
for other experiments (Wildenschild and Sheppard, 2013). 43 

A qualified rock CT image should satisfy two requirements simultaneously: sufficient 44 
resolution and enough field of view (FOV) (Y Wang, 2018). In practical terms, however, these 45 
two conditions are in conflict with each other due to the imaging capability of the device. High 46 
resolution (HR) CT images are required to resolve minute structural features of rocks for 47 
subsequent simulations, yet the FOV of these images is usually not wide enough to characterize 48 
the heterogeneity of rocks at multiple scales (Li et al., 2017; Y Wang, 2018). 49 

Image super-resolution (SR) reconstruction is a method of recovering HR images from 50 
low resolution (LR) images (Z Wang et al., 2021). SR is a highly viable and effective method 51 
that can be used to enhance the resolution of digital rock images as much as possible while 52 
obtaining a large enough imaging FOV to surpass the limitations of physical imaging hardware 53 
(seen in Figure 1). Deep learning-based SR algorithms have become mainstream in recent years 54 
with their outstanding performance, outlawing previous traditional classical algorithms, 55 
including bicubic interpolation, iterative back-projection (Tekalp et al., 1992), neighborhood 56 
embedding method (Rahiman and George, 2017), sparse representation (Yang et al., 2010), etc. 57 
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In order to recover higher quality images using fewer parameters, we propose a novel 94 
Multi Attention Super-Resolution Neural Network (MASR) for the characteristics of digital rock 95 
images. MASR combines component, channel and spatial attention mechanisms to enhance 96 
feature extraction and improve information utilization. In addition, we propose a spatial 97 
attention-based component mask module to assist MASR in focusing on textures and details and 98 
improving performance. Thirdly, we optimize the component mask calculation process and 99 
investigate the effect of MASR depth on SR reconstruction performance in order to obtain higher 100 
quality images with as short training time as possible. Finally, because of the domain gap 101 
between digital rock CT images and photographs, we retrain EDSR, RCAN and CDCSR using 102 
digital rock CT images and compare them with MASR to verify that MASR has state-of-the-art 103 
performance. 104 

In the following sections of this paper, Section. 2 introduces several advanced super-105 
resolution model architectures and describes the principle of MASR. Section. 3 explores the 106 
appropriate network depth for MASR and evaluates the performance of MASR against other 107 
state-of-the-art models. Section. 4 provides the conclusions of this study and future research 108 
work. 109 

2 Deep learning-based SR models 110 

The study of this paper belongs to Single-Image Super-Resolution (SISR), and SISR 111 
refers to reconstructing a HR image from a single LR image. SISR is an ill-posed problem, since 112 
one LR image may correspond to multiple HR images (K Zhang et al., 2015). Deep learning-113 
based SR models try to learn a function ( )LRIF  through diverse structured neural networks that 114 
can obtain a SR image SRI  as close as possible to HR image HRI  based on an input LR image 115 

LRI . 116 

All deep learning-based SR models in this paper are Convolutional Neural Networks 117 
(CNNs), a type of deep, feedforward networks (LeCun et al., 2015) containing at least one 118 
convolutional layer. These CNN SR models can be considered as two parts: on the one hand, 119 
various combinations of neural network layers (primarily the activated convolutional layers) with 120 
diverse structures extract features from LR images. On the other hand, the upsampler maps and 121 
scales the features to the same size as HR images. 122 

A general convolutional layer usually requires the definition of two parameters, width F 123 
and kernel size k×k. After this convolution layer operation, c feature maps will be convolved by 124 
F group filters to F feature maps, where the shape of each filter is k×k×c. Aiming to develop 125 
complex representations, the feature maps output by the convolution layer are usually activated 126 
by a nonlinear function. The most simple and popular nonlinear activation function is Rectified 127 
Linear Unit (ReLU), with α=0 in Equation 1. If α is small and constant, Equation 1 denotes 128 
Leaky ReLU. And if α is a learnable parameter, Equation 1 is Parametric ReLU (PReLU). 129 
Sigmoid is a smoother activation function, as in Equation 2. 130 

 
,        if 0

( ) = 
if 0.

x x
f x

x xα
>

 ≤ ， 
 (1) 131 

 ( ) 1 (1 )xf x e−= +  (2) 132 

Currently in upsamplers, sub-pixel convolution layers (Shi et al., 2016) are more widely 133 
applied than deconvolution layers (Dong et al., 2016) due to their higher computational 134 
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efficiency, larger receptive field, and fewer checkerboard artifacts in the generated image. Sub-135 
pixel convolution layer achieves upsampling by convolving to add output channels and then 136 
reshaping them. In this layer, assuming the scaling factor is s, an input tensor of size h×w×c will 137 
initially be convolved into an output of size h×w×cs2. Then a shuffle operation is performed and 138 
the tensor is reshaped to the size of sh×sw×c. 139 

2.1 EDSR 140 

Based on the SRResNet (Ledig et al., 2017), EDSR (Lim et al., 2017) removes the batch 141 
normalization layers (Nah et al., 2017), which greatly reduces GPU memory consumption. 142 
Therefore, with the same computational resources, EDSR can boost the number of network 143 
layers (depth) to capture richer information and enhance the SR performance. Simply increasing 144 
the depth brings the problem of vanishing/exploding gradients and makes the model training 145 
more difficult. EDSR effectively prevents these from taking advantage of residual learning (He 146 
et al., 2016), i.e., retaining long and short skip connections in SRResNet. 147 

 148 

Figure 2. Architecture of the EDSR. The constant scaling layers in residual blocks scale the 149 
features by a certain multiplicity, which can greatly stabilize the training process when the model 150 
is large. 151 

The structure of EDSR (as shown in Figure 2) can be summarized in three parts：     152 
1) Width enhancement. The 3-channel LRI  is output by the first convolutional layer as a 256-153 
channel X. 154 
2) Residual group. X is mapped in order through 32 residual blocks and a convolutional layer as 155 
residual ( )XH . Then X adds directly to ( )XH  via a long skip connection to obtain ( )+X X X= H . 156 
This structure of residual learning is simple yet very effective and provides faster convergence at 157 
the early stage (He et al., 2016). 158 
3) Upsampler. X is scaled up to the same size as HRI  by the sub-pixel convolution layers and 159 
synthesized into a 3-channel SR image SRI  by the last convolution layer of F=3. 160 

In EDSR, the width of all convolutional layers except those in the upsampler is 256 161 
(F=256). The kernel size of all convolutional layers is 3×3. Each residual block comes with a 162 
short skip connection and consists of a convolutional layer with ReLU activation, another 163 
convolutional layer, and a constant scaling layer in sequence. 164 
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2.2 RCAN 165 

 166 

 167 

Figure 3. Top: Architecture of the RCAN. Bottom: Architecture of the Residual Channel 168 
Attention Blocks (RCABs) in RCAN. In the channel attention layer, feature maps are pooled into 169 
1×1 elements, which are actually learnable and assigned weights to different feature maps. By 170 
channel-wise multiplication, the channel attention layer highlights the more valuable feature 171 
maps. 172 

As shown in Figure3, the main structure of the RCAN is similar to the EDSR and also 173 
has long and short skip connections, which allows the network to bypass abundant low-174 
frequency information and concentrate recovery of high-frequency information (Y Zhang et al., 175 
2018). RCAN's parameters are greatly reduced attributed to its channel attention (CA) 176 
mechanism, which is implemented with residual channel attention blocks (RCABs). RCAN 177 
utilizes the sub-pixel convolution upsampling and 10 residual groups, with 20 RCABs in each 178 
residual group. In RCAN, F=64 and kernel size is 3×3. 179 

A RCAB has a short skip connection, consisting of two convolution layers with ReLU in 180 
between and a CA layer. CA layer will process Y of shape h×w×c into c 1×1 elements by global 181 
average pooling. The c elements go through a convolution layer with ReLU, another convolution 182 
layer and a Sigmoid activation function, and are producted channel-wise with Y to assign 183 
different weights to each channel. As a result, RCAB captures information about the 184 
interdependencies between different channels and highlights the more valuable features. 185 
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hourglass modules, which are based on CDCSR. An hourglass module can be seen as an 205 
encoder-decoder that captures features at different scales. In the encoder, a feature map of shape 206 
h×w is downsampled by the four maximum pooling layers to the size of h/24×w/24, and each 207 
pooling layer is preceded by a residual block (RB). The feature is then fed into the decoder by 208 
two RBs. The decoder performs four times nearest neighbor interpolation to restore the feature to 209 
the original size of h×w. At the corresponding scale, there is a skip connection between the 210 
decoder and the encoder. 211 

MASR divided the hourglass modules into three component-attentive blocks (CABs), 212 
handling flat, edges and corners, respectively. Each CAB incorporates two nearest neighbor 213 
interpolation upsamplers. One generates the intermediate SR image iI , and the other generates a 214 
component prediction mask iM . At the pixel corresponding to iI , the value of the mask is the 215 
probability of component i, where i denotes flat, edge or corner component. And the output of 216 
CAB is the element-wise product of iM and iI . MASR merges the SR results of the three 217 
components to form the final SR image, which can be expressed as 218 

 SR
flat flat edge edge corner cornerI I M I M I M= ⊗ ⊕ ⊗ ⊕ ⊗  (3) 219 

where ⊕  and ⊗  denote element-wise addition and multiplication. 220 

In the training stage, giving different weights to each CAB achieves different attention to 221 
the three components. MASR uses an Intermediate Supervision (IS) strategy, i.e., the CAB 222 
outputs the SR results directly without further input to the subsequent network. IS drives the 223 
CAB to focus on the recovery of a particular component, improving SR performance and 224 
accelerating convergence. 225 

2.3.2 Channel and spatial attention mechanism 226 

To reduce the parameters and further improve the network SR performance, MASR 227 
chose the strategy of decreasing the network width and increasing the network depth. We 228 
redesign the structure of RB in CDCSR and embed Multi-path Adaptive Modulation Block 229 
(MAMB) into MASR to exploit inter-channel and spatial information of feature maps (Kim et 230 
al., 2020). The structure of RB and MAMB is illustrated in Figure 5. The activation function in 231 
RB is LeakyReLU, and the role of the convolution layer with kernel size 1×1 is to adjust the 232 
number of channels. When the number of channels of RB input and output are the same, the 233 
identity layer indicates a skip connection, otherwise it performs convolution to match the 234 
channels of other path output. 235 

Since SR aims to recover high-frequency information such as textures and details, and 236 
variance is a frequency-related indicator, MAMB adopts global variance pooling to calculate the 237 
variance of each feature map. Using stacked convolutional layers to further extract features of 238 
the variance, MAMB implements the channel attention mechanism. 239 

Each feature map has a different texture meaning, and features vary spatially within each 240 
channel. For example, some channels require complex filters to extract high-frequency 241 
information such as edges and details, while others require simple filters to extract homogeneous 242 
flat components representing low-frequency information. In purchase to preserve the 243 
characteristics of each channel and extract the spatial information within the channel, MAMB 244 
performs independent convolution for each channel, i.e., depth-wise convolution (Howard et al., 245 
2017). MAMB achieves both channel and spatial attention mechanisms through a multi-path 246 
attention layer, which is expressed as follows 247 



manuscript submitted to Water Resources Research 

 

 [ ( ) ( ( )) ( )]var CA var SAZ Z Sigmoid Z Z Z= ⊗ ⊕ ⊕F F F F  (4) 248 

where Z denotes the feature maps input to attention layer, varF , CAF  and SAF  represent global 249 
variance pooling, channel attentional convolution, and depth-wise convolution, respectively,   250 
and ⊕  and ⊗  denote element-wise addition and multiplication. 251 

 252 

 253 

Figure 5. Top: Architecture of the MAMB. Bottom left: Architecture of the Residual Blocks 254 
(RBs) in MASR. Bottom right: Architecture of the Residual Blocks (RBs) in CDCSR. 255 

Width reduction. The addition of the multi attention mechanism improves the utilization 256 
of information and allows MAMB to reduce the width of the hourglass module. The widths of 257 
the four pairs RBs in CDCSR hourglass module are 128, 128, 256 and 256, while in MASR they 258 
are set to 96, 96, 128 and 128. 259 

Depth enhancement. Two Residual Inception Blocks (RIBs) are connected between 260 
hourglass modules in CDCSR. As shown in Figure 6, RIBs have a parallel cascade structure and 261 
concatenate feature maps produced by filters of different sizes (Szegedy et al., 2017). To 262 
improve the depth of CABs and fully utilize IS strategy, MASR replaces RIBs with MAMB 263 
group having a long skip connection. 264 
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As in Equation 5, CDCSR normalizes the values of masks with the Softmax function, 276 
which magnifies the value of a particular mask, making a pixel value in the final result overly 277 
dependent on the intermediate SR result of a particular CAB. SAM directly activates the mask to 278 
remove the Softmax, which ensures that the intermediate results of CAB complement each other 279 
and strengthen the connection between CABs. 280 

 ( ) ji MM
i

j
Softmax M e e=   (5) 281 

where iM  denotes the input mask, jM  is flat, edge or corner mask. 282 

2.3.4 Loss functions 283 

In SR tasks, loss functions are used to calculate image reconstruction error and guide the 284 
model optimization (Z Wang et al., 2021). In earlier times, deep learning-based SR models 285 
usually chose the pixel-wise L2 loss or mean squared error (MSE). But L2 loss penalizes larger 286 
errors and tolerates smaller errors, which causes the SR results to be too smooth (Z Wang et al., 287 
2021). Therefore, EDSR and RCAN employ the pixel-wise L1 loss that is more conducive to 288 
improving model performance. L1 loss and L2 loss are calculated as 289 

 1 , , , ,
, ,

1( , )SR HR SR HR
i j k i j k

i j k
L I I I I

hwc
= −  (6) 290 

 2
2 , , , ,

, ,

1( , ) ( )SR HR SR HR
i j k i j k

i j k
L I I I I

hwc
= −  (7) 291 

where i, j, k denote the pixel in row i and column j on channel k, and h, w, c are the height, width 292 
and number of channels of the evaluated images, respectively. 293 

To generate sharper images, CDCSR proposes a Gradient-Weighted (GW) loss, is 294 
defined as 295 

 1( , )

(1+ )(1+ )

SR HR
GW GW GW

SR HR SR HR
GW x x y y

L L D I D I

D G G G Gα α

 = ⊗ ⊗


= − −
 (8) 296 

where SR HR
x xG G− , SR HR

y yG G−  represent gradient difference maps between SR and HR in the 297 

horizontal and vertical directions, α  is a scalar weight, in this paper, 4α = , ⊕  and ⊗  denote 298 
element-wise addition and multiplication. 299 

CDCSR and MASR use IS strategy, in addition to GW loss, we also need to calculate the 300 
reconstruction error of SR results for each component, we use L1 loss as the IS criterion, and the 301 
total loss is 302 

 1= ( , )
i i

SR HR HR HR
GW i i i

i
L L L I M I Mα+ ⊗ ⊗  (9) 303 

where SR
iI  represents the SR result for flat, edge or corner components, and HR

iM  is the 304 
corresponding mask of SR

iI , iα  is the component attention weight, the weights of the flat, edge 305 
and corner are 1, 2, 5 in our experiments, ⊗  denotes element-wise multiplication. 306 
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3 Experiments 307 

3.1 Dataset 308 

All deep learning-based SR models in this paper are trained on the DeepRock-SR 2D 309 
dataset (Da Wang et al., 2019), which contains 4000 HR digital rock CT images each of 310 
sandstone, carbonate and coal at 500×500 pixels. And image resolution ranges from 2.7 to 25 311 
μm. The dataset is split into training, validation and test sets with 8:1:1 ratio. The degradation of 312 
HR images to LR images in the real world is very complex and unknown. To simulate the real 313 
situation as much as possible, all LR images are generated by ×4 downsampling from HR images 314 
with random kernels (box, triangle, lanczos2, or lanczos3), i.e., the size of LR images is 125×125 315 
pixels. 316 

3.2 SR quality measurements 317 

Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are the most 318 
widely used evaluation criteria in the SR reconstruction field (Z Wang et al., 2021). PSNR is 319 
defined as 320 

 
2

10PSNR 10 log ( )L
MSE

= ×  (10) 321 

where MSE is the mean squared error, or the pixel-wise L2 loss, as shown in Equation 6, L 322 
indicates the maximum value of pixels in the image, usually L=255. The larger the value of 323 
PNSR, the better the quality of SR reconstruction. 324 

SSIM is proposed taking into account the human visual system, based on independent 325 
comparisons of image luminance, contrast, and structures. For an image I, the luminance Iμ  and 326 
contrast Iσ   are estimated as the mean and standard deviation of the image intensity, 327 
respectively. Given two images x and y, SSIM is calculated as 328 

 1 2
2 2 2 2

1 2

(2 + )(2 + )
SSIM( , )=

( + )( + + )
x y xy

x y x y

C C
x y

C C
μ μ σ

μ μ σ σ+
 (11) 329 

where xyσ  is the covariance of x and y, 2
1 1( )C k L=  and 2

2 2=( )C k L  are constants used to maintain 330 

stability, L is the dynamic range of pixel values, k1=0.01 and k2=0.03. The closer SSIM is to 1, 331 
the more similar x and y are. 332 

3.3 Experimental settings 333 

The experiments are conducted on a high-performance computing cluster node containing 334 
forty Intel(R) Xeon(R) Gold 5218R CPUs @ 2.10GHz, two NVIDIA Tesla V100 32GB GPUs 335 
and 376GB RAM. The software environment consists of Red Hat Enterprise Linux Server 336 
release 7.8 (Maipo) OS, CUDA 11.0, and the deep learning framework Pytorch 1.8. 337 

Table 1. Hyperparameter settings for different SR models. 338 
Model Patch size Batch size Initial learning rate Decay epoch Optimizer 
EDSR 12×12 

12×12 32 

1×10-4 

160,200,230 

Adam 

1=0.9β  

2=0.999β  

RCAN 1×10-4 
CDCSR 48×48 2×10-4 
MASR 48×48 2×10-4 
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For training, MASR uses patches of size 48×48 cropped from random positions on LR 339 
images as input, with the corresponding HR patches as ground truth. MASR is trained using the 340 
Adam optimizer with exponential decay rates set to 1=0.9β  and 2=0.999β . The learning rate is 341 
initialized to 2×10-4, and halved at the {160, 200, 230}-th epoch. And training lasts 250 epochs 342 
with batch size of 32. The hyperparameter settings of other models are summarized in Table 1. 343 

3.4 Experimental results 344 

3.4.1 Network Depth 345 

In general, the deeper the model the better it is at extracting complex features, but it also 346 
means that the model has more parameters and consumes more memory and time. Therefore, we 347 
provide experimental evaluations to determine the appropriate depth of MASR. The network 348 
depth is a hyperparameter, so the experimental evaluation of it is performed on the validation set. 349 

Table 2. Performance comparison of the number of hourglass modules in MASR for training 350 
250 epochs. Bold indicates optimal performance and underline indicates suboptimal 351 
performance. 352 

Model Hourglass modules PSNR (dB) SSIM Training time (hours) Number of parameters 

MA
SR 

3 33.5242 0.7366 12.6 13.5M 
4 33.5999 0.7366 15.0 18.1M 
6 33.6145 0.7368 19.8 27.3M 
8 33.6145 0.7369 25.3 36.5M 

Evaluation on hourglass modules. MASR is constructed by connecting hourglass 353 
modules in series, and the number of hourglass modules determines the depth of MASR. For 354 
setting the number of MAMBs between two hourglass modules to 16, the experimental 355 
evaluation on the number of hourglass modules is shown in Table 2. There is a significant 356 
improvement in SR performance of the model when the number of hourglass modules is 357 
increased from 3 to 6, but the performance improvement of the model is weak when the number 358 
of hourglass modules is increased to 8. In addition, the computational complexity and the 359 
number of parameters increase almost linearly with the model depth. If the number of hourglass 360 
modules increases from 3 to 8, the training time becomes nearly 2 times longer. Thus, with a 361 
trade-off between model performance and speed, the number of hourglass modules in MASR is 362 
set to 6. 363 

Table 3. Performance comparison of the number of MAMBs in MASR for training 250 epochs. 364 
Bold indicates optimal performance and underline indicates suboptimal performance. 365 

Model MAMBs PSNR(dB) SSIM Training time (hours) Number of parameters 

MASR 

8 33.5770 0.7371 16.5 24.3M 
12 33.6081 0.7371 18.1 25.8M 
16 33.6145 0.7368 19.8 27.3M 
20 33.6210 0.7372 21.5 28.8M 
24 33.6196 0.7370 23.3 30.3M 

Evaluation on MAMBs. Another major factor affecting MASR depth is the number of 366 
MAMBs placed between every two hourglass modules. Setting up 6 hourglass modules, the 367 
effect of the number of MAMBs on the model performance is shown in Table 3. When the 368 
number of MAMBs is increased from 8 to 20, the model performance is consistently enhanced 369 
bringing a 0.044dB PNSR improvement. On the contrary, when the number of MAMBs turns to 370 
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20, the model performance slightly decreases. This is because MASR learns special features on a 371 
limited training set and overfitting occurs, resulting in poor generalization on the validation set. 372 
Hence, the appropriate amount of MAMB is selected as 20. 373 

3.4.2 Comparisons with state-of-the-art models 374 

We compare MASR with other state-of-the-art SR algorithms, including EDSR, RCAN, 375 
and CDCSR. The features between the digital rock images and the photographs differ 376 
significantly, i.e., there is a domain gap between the data. Therefore, the pretrained models on 377 
the photo should not be used directly for digital rock images SR, and these models need to be 378 
retrained for comparison. 379 

Table 4. Comparison of the number of parameters and the training time consumed by training 380 
250 epochs between different models. 381 

Model Training time (hours) Number of parameters 
EDSR 3.1 43.1M 
RCAN 10.5 16.5M 

CDCSR 26.6 39.9M 
CDCSR (Optimized) 11.8 39.9M 

MASR 21.5 28.8M 

The training time and the number of parameters of the models in this paper are listed in 382 
Table 4. Compared with EDSR, the parameters of RCAN are greatly reduced, but introducing 383 
the attention mechanism increases computational complexity and slows down the training speed 384 
to 0.3 times. CDCSR takes the Harris Corner detection method (Harris and Stephens, 1988) to 385 
compute component masks once per iteration, which makes CDCSR even less efficient. We 386 
optimize the CDCSR algorithm by saving the component masks before training so that there is 387 
no need to repeat the computation during training process. The optimized CDCSR is more than 388 
twice as efficient, and even after adding multiple attention mechanisms (i.e., MASR) training is 389 
still faster than the original CDCSR. 390 

Table 5. Performance comparison of different models on digital rock images test sets. Bold 391 
indicates optimal performance and underline indicates suboptimal performance. 392 

Model 
Coal  Sandstone  Carbonate 

PSNR (dB) SSIM 
 

PSNR (dB) SSIM 
 

PSNR (dB) SSIM 

Bicubic 41.5398 0.9443  27.3421 0.593  24.4485 0.4901 
EDSR 44.3677 0.9591  29.9944 0.6684  25.7138 0.5663 
RCAN 44.4417 0.9594  30.0368 0.6731  25.7838 0.5750 

CDCSR 44.2302 0.9585  30.0235 0.6736  25.8305 0.5780 
MASR 44.5157 0.9597  30.1527 0.6749  25.8675 0.5792 

Considering the different difficulties in SR recovery for various types of digital rock 393 
images, we verified the SR performance of each model on separate test sets for coal, carbonate 394 
and sandstone. The results of quantitative comparison are shown in Table 5 and Figure 8. The 395 
multiple attention mechanism improves the information utilization, so MASR achieves the best 396 
and most stable performance on different types of digital rock images with 72% of the CDCSR 397 
parametric number. Compared with the suboptimal model, the average PSNR of MASR 398 
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improves by 0.074 dB, 0.1159 dB, 0.037 dB, and the average SSIM improves by 0.0003, 0.0013, 399 
and 0.0012, for coal, sandstone, and carbonate test sets, respectively. All deep learning-based SR 400 
models are remarkably superior to the traditional bicubic interpolation method. On coal, 401 
sandstone and carbonate images, the pixelwise relative errors of MASR reconstructions are 402 
reduced by 20%, 26% and 15% over bicubic interpolation. 403 

 404 

Figure 8. Boxplots of the average PSNR of EDSR, RCAN, CDCSR and MASR on coal, 405 
sandstone and carbonate test sets. 406 

Figure 9 and Figure 10 visualize the SR results for coal and sandstone images. Coal and 407 
sandstone images have simple textures, hence various deep learning-based SR algorithms are 408 
able to recover high-quality features, and the performance gap between them does not seem to be 409 
as large as assessed by objective metrics. Nevertheless, MASR recovers sharper pore edges and 410 
more consistent details with ground truth. It is observed from Figure 11 that the performance 411 
superiority of MASR is more prominent for carbonate rock images with more complex texture 412 
and noise interference. Additionally, it is demonstrated by subjective evaluation that the deep 413 
learning-based SR algorithm not only recovers sharp edges and details, but also has natural 414 
smoothness to remove noise, which is exactly the SR result we desire for digital rock images. 415 
  416 

4 Conclusions 417 

We propose a MASR model to exceed hardware limitation and acquire CT digital rock 418 
images with wide FOV and HR. By redesigning the hourglass network and proposing a spatial 419 
attention-based mask, MASR integrates component, channel, and spatial attention mechanisms. 420 
To avoid overfitting and to trade-off SR accuracy and training speed, we explore the appropriate 421 
network depth for MASR through experimental evaluations, including the number of hourglass 422 
modules and MAMBs. The subjective and objective evaluations on coal, sandstone and 423 
carbonate images verify that MASR has higher SR reconstruction accuracy than other advanced 424 
SR models. And MASR recovers sharper edges and more accurate textures while removing 425 
noise. We optimize the process of calculating the masks and introduce multiple attention 426 
mechanisms to enhance the ability for feature extraction, hence MASR consumes less time and 427 
memory in the training stage than CDCSR. 428 

If MASR is directly extended to SR of 3D digital rocks, the parameters and training time 429 
of the model will become unacceptable. In the future study, we will further optimize the 430 
efficiency of deep learning-based models to achieve feasible 3D SR reconstructions. 431 
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Figure S3. The average Peak Signal-to-Noise Ratio (PSNR) of the super-resolution models on 42 
the validation set during training. Our proposed model (MASR) converges faster and better. 43 
 44 

 45 

Figure S4. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on coal test set. The 46 
subplot of Figure 8 in the main article. 47 
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 48 

Figure S5. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on sandstone test 49 
set. The subplot of Figure 8 in the main article. 50 

 51 

 52 

Figure S6. Boxplot of the average PSNR of EDSR, RCAN, CDCSR and MASR on carbonate test 53 
set. The subplot of Figure 8 in the main article. 54 
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