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Abstract

Intense short-term wind events can flush multiple-inlet systems and even renew the water entirely. Nonetheless, little is known

about the effect of wind variations at seasonal and interannual scales on the flushing of such systems. Here, we computed two

Lagrangian transport time scales (LTTS), the residence and exposure times, for a multiple-inlet system (the Dutch Wadden Sea)

over 36 years using a realistic numerical model simulation. Our results reveal pronounced seasonal and interannual variability

in both system-wide LTTS. The seasonality of the LTTS is strongly anti-correlated to the wind energy from the prevailing

directions, which are from the southwesterly quadrant and coincidentally aligned with the geographical orientation of the

system. This wind energy, which is stronger in autumn-winter than in spring-summer, triggers strong flushing (and hence low

values of the LTTS) during autumn-winter. The North Atlantic Oscillation (NAO) and the Scandinavia Pattern (SCAN) are

shown to be the main drivers of interannual variability in the local wind and, ultimately, in both LTTS. However, this coupling

is much more efficient during autumn-winter when these patterns show larger values and variations. During these seasons,

a positive NAO and a negative SCAN induce stronger winds in the prevailing directions, enhancing the flushing efficiency of

the system. The opposite happens during positive SCAN and negative NAO, when weaker flushing during autumn-winter is

observed. Thus, large-scale atmospheric patterns strongly affect the interannual variability in flushing and are potential drivers

of the long-term ecology and functioning of multiple-inlet systems.
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Key Points:11

• The Lagrangian transport time scales in the Dutch Wadden Sea are typically 1.812

times smaller in autumn-winter than in to spring-summer.13

• The seasonal and interannual variability of the Lagrangian transport time scales14

is attributed to the local wind.15

• The winter interannual variations are well explained by North Atlantic large-scale16

atmospheric patterns.17
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Abstract18

Intense short-term wind events can flush multiple-inlet systems and even renew the wa-19

ter entirely. Nonetheless, little is known about the effect of wind variations at seasonal20

and interannual scales on the flushing of such systems. Here, we computed two Lagrangian21

transport time scales (LTTS), the residence and exposure times, for a multiple-inlet sys-22

tem (the Dutch Wadden Sea) over 36 years using a realistic numerical model simulation.23

Our results reveal pronounced seasonal and interannual variability in both system-wide24

LTTS. The seasonality of the LTTS is strongly anti-correlated to the wind energy from25

the prevailing directions, which are from the southwesterly quadrant and coincidentally26

aligned with the geographical orientation of the system. This wind energy, which is stronger27

in autumn-winter than in spring-summer, triggers strong flushing (and hence low val-28

ues of the LTTS) during autumn-winter. The North Atlantic Oscillation (NAO) and the29

Scandinavia Pattern (SCAN) are shown to be the main drivers of interannual variabil-30

ity in the local wind and, ultimately, in both LTTS. However, this coupling is much more31

efficient during autumn-winter when these patterns show larger values and variations.32

During these seasons, a positive NAO and a negative SCAN induce stronger winds in33

the prevailing directions, enhancing the flushing efficiency of the system. The opposite34

happens during positive SCAN and negative NAO, when weaker flushing during autumn-35

winter is observed. Thus, large-scale atmospheric patterns strongly affect the interan-36

nual variability in flushing and are potential drivers of the long-term ecology and func-37

tioning of multiple-inlet systems.38

Plain language summary39

In multiple-inlet coastal systems, strong wind events efficiently renew the water in40

these systems. In this paper, we investigate if the flushing of such systems has also a marked41

response to wind variability at longer time scales. To quantify the flushing, we compute42

the time that particles, each representing a certain volume of water, spend in the sys-43

tem before leaving it (known as the residence time) and the total time they spend within44

it considering future returns (known as the exposure time). Our 36-year simulation of45

the hydrodynamics of the DWS shows that the wind induces seasonal and interannual46

variations in both spatially-averaged quantities. The seasonality is related to the wind47

energy from the dominant directions, which is much larger during autumn-winter than48

during spring-summer. This variation leads to a reduction of both time scales by, on av-49

erage, a factor 1.8 from spring-summer to autumn-winter. Two well-known North At-50

lantic large-scale atmospheric patterns, primarily active during autumn-winter, induce51

interannual variations in the wind and consequently in both time scales. Thus, future52

changes in these patterns could strongly affect water transport and the ecology of the53

Dutch Wadden Sea. Similar situations are likely to occur in other multiple-inlet systems.54

1 Introduction55

Transport time scales (TTS), such as the residence, exposure, transit, age, and flush-56

ing times (Zimmerman, 1976; Monsen et al., 2002), are measures for the efficiency of trans-57

port and exchange of water or freshwater content within a water body system and with58

its surroundings (Cucco et al., 2009; Duran-Matute et al., 2014; Rayson et al., 2016; Xiong59

et al., 2021). They also serve to estimate the time that a substance, like dissolved nitro-60

gen, takes to be transported off-shore from high-productivity coastal regions (Hailegeorgis61

et al., 2021); to understand the variability of the mineralization rates of organic matter62

in sediments (den Heyer & Kalff, 1998); to explain regional differences of nutrient and63

eutrophication levels (González et al., 2008; Schwichtenberg et al., 2017); and as a first-64

order estimation of the exposure of a region (e.g. a protected area) to pollutants (Soomere65

et al., 2011; Patgaonkar et al., 2012; Pawlowicz et al., 2019).66
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Depending on a coastal system’s particularities, the TTS’s variability can be highly67

affected by tides, freshwater discharge, gravitational circulation, winds, and other fac-68

tors. The influence of some of these forcing mechanisms on the intra-annual and the sea-69

sonal variability of the TTS has been explored in bights (Zhang et al., 2010), bays (Dippner70

et al., 2019; Jiang et al., 2019) and lakes (Cimatoribus et al., 2019). However, these stud-71

ies were based on just 1 to 2 years of data, and thus, a robust relationship of the sea-72

sonality with the local forcing cannot be expected if there is a marked interannual vari-73

ability.74

A realistic simulation covering 32 years was used by Du and Shen (2016) to study75

the residence time in the Chesapeake Bay. The seasonal, monthly and interannual vari-76

abilities of the system-wide Eulerian residence time were found to be mainly controlled77

by the freshwater discharge. To determine the role of the wind, they compared two sim-78

ulations for a given year, one with the full forcing and the other without wind. They found79

that downstream and upstream winds reduce the residence time in the eastern side of80

the Bay, whereas only upstream winds increase the residence time on the opposite side.81

This means that in this single-inlet system winds from different directions can trigger82

complex patterns in the TTS but not necessarily induce net transport across the system.83

Single-inlet systems contrast with multiple-inlet systems because, in the latter, winds84

from specific directions are very efficient in forcing net residual transport across the sys-85

tem (Li, 2013; Herrling & Winter, 2015; Duran-Matute et al., 2016). Due to this effect,86

the influence of other forcing mechanisms can become of secondary importance during87

strong wind conditions. Thus, winds in multiple-inlet systems can strongly modify the88

TTS at local, inter-basin, and system-wide scales. This effect has been observed in dif-89

ferent multiple-inlet systems using numerical simulations. Cucco and Umgiesser (2006)90

showed that, in the Venice lagoon, strong northeasterly bora winds (of around 12 m/s)91

lead to a fully wind-driven dominated system, to a reduction of the system-averaged res-92

idence time by a factor of 3, and to a negligible return flow. In the Dutch Wadden Sea93

(DWS), strong winds exceeding 10 m/s, and aligned with the geographical orientation94

of the system, induce a wind-driven flow that reduces the system-wide flushing time of95

freshwater discharge by a factor of 10-15 (Duran-Matute et al., 2014; Donatelli et al.,96

2022a). Similar strong winds as in the previous cases, also reduced the monthly-average97

residence time by about a factor 2 in the Virginia Coast Reserve (Safak et al., 2015); and98

the daily-average Lagrangian residence time (for particles released every 1h during a par-99

ticular day) in areas located between the inlets of the Barnegat Bay-Little Egg Harbor100

estuary by a factor between 2-4 (Defne & Ganju, 2015).101

Until now, the previous studies linking TTS to wind in multiple-inlet systems fo-102

cused on idealized fixed wind conditions (e.g. Cucco & Umgiesser, 2006), synoptic-scale103

events (e.g Duran-Matute et al., 2014; Safak et al., 2015) and annual statistics (e.g Do-104

natelli et al., 2022a). In the latter case, Donatelli et al. (2022a) showed that sporadic strong105

high-frequency winds (with time scales in the order of days) could impact the annual TTS106

averages in the DWS, but also the long-term values (mean or median representative of107

their 11-year simulation). However, they did not isolate the effect of high- and low-frequency108

winds (with time scales of months or longer) on the TTS to unequivocally attribute the109

changes in the annual and long-term TTS to high-frequency wind events. The relevance110

of the low-frequency variability is further suggested by the fact that monthly and multi-111

decadal sea level variability in the North Sea region is modulated by large-scale atmo-112

spheric patterns, which are represented by the North Atlantic Oscillation (NAO), the113

East Atlantic Pattern (EAP) and the Scandinavia Pattern (SCAN) (Chafik et al., 2017;114

Frederikse & Gerkema, 2018). Therefore, we investigate if and how much these large-115

scale atmospheric patterns affect the TTS in the DWS.116

Our goal is to determine the low-frequency variability (i.e., the seasonality and in-117

terannual variations) of the Lagrangian TTS (LTTS), particularly the residence and ex-118

posure times, in a multiple-inlet system. Moreover, we aim to correlate their system-wide119
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Figure 1. Map of the region of interest. The red contour surrounds most of the DWS and

denotes the region where particles were deployed. The names of the five inlets are indicated in

black. The Schiermonnikoog and the Terschelling watersheds are marked in green. The location

and the names of the two main sluices are depicted in blue. The location of the stations em-

ployed for the validation with the sea-surface height (SSH) are shown in magenta. The color bar

denotes the depth.

behavior with the wind and large-scale atmospheric patterns. The region of analysis cov-120

ers most of the DWS (Figure 1): a UNESCO world heritage site and a complex multiple-121

inlet system. Due to the lack and the difficulty of acquiring observed Lagrangian data122

in shallow coastal regions, the results are based on a realistic 36-year simulation (1980-123

2015) of the DWS, combined with particle tracking. The simulation consists of an of-124

fline coupling of the General Estuarine Transport Model (GETM; Burchard & Bolding,125

2002) with the Probably A Really Efficient Lagrangian Simulator (Parcels) v2.1.1 (Lange126

& van Sebille, 2017; Delandmeter & Van Sebille, 2019).127

2 Data and methods128

2.1 Numerical models129

2.1.1 Eulerian model130

The currents, sea level, salinity, temperature, and density are obtained through three-131

dimensional, baroclinic numerical simulations performed using GETM. The setup is based132

on four nested models, with the DWS numerical domain as the end-member. The do-133

main is discretized using an equidistant grid of 200 m resolution using the Rijksdriehoek134

projection (the standard projection employed by the Dutch Government) in the horizon-135

tal and 25 layers in the vertical. The bathymetry was built based on the measurements136

closest in time to 2009-2010 (see Duran-Matute et al., 2014, for details), and the result-137

ing map was kept fixed throughout the 36-year simulation. This was done intentionally138

to remove the effects of bathymetry variations on the hydrodynamics of the system and139

to focus on the role of the atmospheric forcing. The meteorological forcing was taken from140
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the dataset “Uncertainties in Ensembles of Regional Reanalyses” (UERRA; Ridal et al.,141

2017), which has a spatial resolution of 11 km and a temporal resolution of 1 h. The fresh-142

water discharge through the Den Oever and Kornwerderzand sluices and 10 other smaller143

ones was reconstructed based on data from Rijkswaterstaat with a temporal resolution144

of 12 minutes (see Duran-Matute et al., 2014, for details). Our model configuration is145

almost identical to those employed by Donatelli et al. (2022a, 2022b), but the simula-146

tion here spans 36 years instead of 11 years.147

We contrast our numerical results with sea-surface height (SSH) measured at 14148

tidal stations located within and around the DWS (Figure 1). Our simulation performed149

similar as the one by Duran-Matute et al. (2014), and a full description of the valida-150

tion can be found in Text S1 from Supporting Information S1.151

2.1.2 Lagrangian model152

Passive particle trajectories were obtained offline by feeding vertically-averaged ve-153

locities every 20 minutes from the GETM simulation to Parcels. We used a fourth-order154

Runge-Kutta method for the temporal integration and a bilinear interpolation in space,155

which showed to be accurate enough in idealized and realistic applications (Lange & van156

Sebille, 2017; Delandmeter & Van Sebille, 2019). We used a time step of 158 s to bal-157

ance accuracy and computational time. It was also chosen to have the timestep as an158

integer fraction of the M2 tidal period (44714 s), which is the main tidal constituent in159

the DWS. In our setup, particles were released within the region of interest (denoted with160

the red contour in Figure 1) in the center of each of the 200 m × 200 m grid cells but161

skipping every other cell. Then they were advected with depth-averaged currents to cap-162

ture the effects of the net horizontal currents on water transport. This procedure was163

repeated every M2 period from January-1980 to October-2015, with each release con-164

sisting of 12967 particles. The total amount of particles trajectories obtained is (12967165

particles per deployment) × (25290 deployments) ≈ 328 million particle trajectories (≈166

1.1 TB of data). To avoid deploying particles when most of the tidal flats are dry, the167

first deployment was near the time of maximum water volume within the DWS so that168

the subsequent ones (every M2 period) were also close to maximum volume conditions.169

The particle positions were saved every M2 period to remove the back-and-forth due to170

this dominant semidiurnal tidal constituent in the DWS (Zimmerman, 1976). We, thus,171

capture the net residual displacement of the particles. We note that individual tidal pe-172

riods may deviate somewhat from the M2 period, but since M2 is the dominant constituent,173

the long-term mean tidal period equals the M2 period(Gerkema, 2019).174

To avoid errors in the estimation of LTTS due to particles being stuck because of175

being released too close to the coast or to areas that seldom flood, we removed such par-176

ticles from our original dataset (containing ≈ 328 million particles trajectories) using three177

steps. In the first step, we discarded beaching particles (defined as the ones located within178

100 m of a land point at any time), which represents around 8.4% of the original data.179

In the second step, we removed particles that do not leave our domain of interest (red180

contour in Figure 1) through its open boundaries within their integration time (around181

1.8%). This latter condition help to remove particles whose trajectories can be poten-182

tially affected by the poorly resolved flow near the coast, even though they are not beach-183

ing according to our definition. These particles can spend some days barely moving and184

meandering close to the coast due to the small currents present in these areas. In gen-185

eral, these first two steps remove most of the particle trajectories that suffer from nu-186

merical artifacts (e.g. error of the numerical solvers, the spatial resolution of the flow,187

and the temporal time step for the integration of trajectories; which are described by Delandmeter188

and Van Sebille (2019)). In the third and last step, all the particles released from po-189

sitions in which the amount of discarded particles (from the previous two steps) repre-190

sents more than 30% of the total deployments per point of release were also discarded.191

This step, removes an extra 3.4% of particles. These particles were mostly deployed in192
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the few regions that are above mean sea level, which are only flood during large storm193

surges. However, omitting this last step leads to almost the same results because most194

of the problematic particles were already removed using the first two steps. Finally, af-195

ter applying all the previous steps, we end up with around 283 million particle trajec-196

tories for our analysis.197

To check the sensitivity of our results when using non-uniform total integration times,198

trajectories of particles released at the beginning of every month of our 36-year simu-199

lation were integrated for 177 M2 periods (about 91 days). Then, we decreased this time200

linearly until 117 M2 periods (around 60 days) for the particles released at the end of201

every month. Particles were not tracked anymore if they crossed the boundaries of the202

numerical domain before their integration time was reached. We found that under a com-203

mon integration time of 60 days, instead of the 60-91 days interval employed in our anal-204

ysis, the results were almost the same since 98.5 % of the 283 million particles left our205

domain of interest (see red contour in Figure 1) trough its open boundaries before 60 days.206

2.2 Definitions of Lagrangian transport time scales (LTTS)207

The Lagrangian residence time is a function of space and time and highlights the208

spatio-temporal heterogeneity of transport. It is defined as the time required for a par-209

ticle to exit a domain for the first time (Zimmerman, 1976; Monsen et al., 2002). Nonethe-210

less, this first-crossing definition has a drawback. When particles are close to an open211

boundary, they might exit the system during ebb and return during flood, possibly re-212

peating this behavior during the following cycles, after which they can remain in the do-213

main for several days. In this way, such a definition of the residence time might give a214

wrong idea of the actual time particles spend in the system, particularly close to the in-215

lets. We largely avoid this problem by saving particle positions only every M2 period (i.e.,216

using the net or residual displacement). With those generated tracks, we define the La-217

grangian residence time as the number of M2 periods required for the particles to leave218

our domain of interest (red contour in Figure 1) trough its open boundaries. Since the219

residence time varies with space and time, we define T ij
r as the residence time of a par-220

ticle released during the j-th deployment (at time tj) at position (xi, yi), where i is the221

spatial index of the particle released in the center of the 200 m × 200 m grid, and tj are222

the times of deployments (every M2 cycle during our 36-year simulation). A similar ap-223

proach is employed for the Lagrangian exposure time T ij
e , which is defined as the total224

amount of time a particle spends in our system (neglecting the time spent outside of it),225

and thus T ij
e ≥ T ij

r (Monsen et al., 2002; Huguet et al., 2019).226

To describe the spatial variability between seasons, we further define the tempo-
ral average over N i

d deployments as

T i
r =

Ni
d∑

j=1

T ij
r Hij

Ni
d∑

j=1

Hij

, (1)

where N i
d is the total amount of deployments per point of release available during time

period for averaging, and Hij is the height of the water column in which the particle is
deployed. Specifically, we consider two temporal averages: one for all autumn-winter (September-
February) and one for all spring-summer (March-August) seasons of our 36-year simu-
lation. The weighted average using Hij is employed because particles are advected with
depth-averaged currents, and thus, a particle released over a large water column repre-
sents more fluid with that value of T ij

r (Ridderinkhof & Zimmerman, 1990). To study
the variability of the system-wide LTTS, we define the spatial average over all N j

p par-
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ticles released at the same time as

T j
r =

Nj
p∑

i=1

T ij
r Hij

Nj
p∑

i=1

Hij

. (2)

Similarly, we obtain T i
e and T j

e using equivalents to equation (1) and equation (2) for227

the exposure time, respectively.228

2.3 Atmospheric forcing characterization229

To understand the origin of the variability of the LTTS, we characterize the atmo-230

spheric forcing using a local and a large-scale approach.231

2.3.1 Local approach232

For the local approach, we employ the concept of sectorial wind energy, following
Gerkema and Duran-Matute (2017). The wind direction is divided into eight sectors us-
ing the indices s = 1, . . . , 8, corresponding to southerly (S), southeasterly (SE), east-
erly (E), northeasterly (NE), northerly (N), northwesterly (NW), westerly (W), and south-
westerly (SW) winds (i.e., the direction from which the wind blows). Then, the kinetic
energy of an air parcel (wind energy) with mass m crossing a unit area A during an in-
terval ∆t and from sector or direction s is given by

Es,n =
1

2
mW 2

s,n =
1

2
ρVW 2

s,n =
1

2
ρA∆tW 3

s,n, (3)

where V is the volume, which is equal to the area A times the length Ws,n∆t; Ws,n is233

the hourly wind speed (used in the GETM simulation) blowing from sector s, with n as234

a temporal index running over our full 36-year simulation; ∆t = 3600 s is the resolu-235

tion of our wind data; and ρ = 1.225 kg m−3 is the density of the air at sea level with236

temperature of 15◦.237

In all our analysis, the wind energy from the grid point closest to the middle of the238

Texel inlet is employed. Due to the small spatial variations of the wind inside the DWS,239

we anticipate that using the wind energy from different locations does not change qual-240

itatively our results, as was also the case for Duran-Matute et al. (2016) in their anal-241

ysis of the residual volume transport in the DWS.242

2.3.2 Large-scale approach243

For the large-scale approach, we use the North Atlantic Oscillation (NAO), the East244

Atlantic Pattern (EAP), and the Scandinavian Pattern (SCAN). To derive them, we per-245

form an empirical orthogonal function (EOF) analysis following Chafik et al. (2017) and246

Frederikse and Gerkema (2018). With this method, the atmospheric patterns have spa-247

tial structures represented by empirical orthogonal functions (EOFs), whereas their tem-248

poral variability are captured by principal components (PCs). To obtain the EOFs and249

PCs, we employ the monthly-mean sea level pressure (SLP) from the NCEP/NCAR Re-250

analysis 1 (Kalnay et al., 1996) spanning the period 1950-2015 in the North Atlantic/European251

sector (30◦-80◦N, 80W-50◦E). For every grid cell, the monthly-mean SLP is detrended252

and deseasonalized, i.e., the linear trend, and the annual and semi-annual components253

are removed. Then, the data are weighted by the cosine of the latitude at every grid point254

before computing the EOF analysis. This is done to give less weight to grid cells located255

towards the poles as they represent less area (which decreases with the cosine of the lat-256

itude in spherical coordinates). Finally, the EOF analysis is performed only in the North257

Atlantic domain to avoid the influence of regions outside of it in the three main modes258

of variability obtained.259
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3 Results and Discussions260

3.1 Seasonality and interannual variability of the LTTS261

The mean autumn-winter and spring-summer spatial patterns for the residence time262

T i
r (from equation (1)) are shown in Figures 2a and 2b, and in Figures 2c and 2d for the263

exposure time T i
e . The lowest values are found near the inlets since they are the primary264

regions for exchange with the adjacent North Sea. Particles deployed around them leave265

the system in less than one week, with the corresponding areas being larger during autumn-266

winter. The highest values are found farther into the basins and mostly in the Western267

DWS (west of the Terschelling watershed). These values are up to a factor of two larger268

during spring-summer than during autumn-winter. Most of the particles deployed in the269

Western DWS during spring-summer tend to return to the DWS (see difference between270

T i
e and T i

r in the inset of Figure 2d). Nonetheless, during autumn-winter (inset of Fig-271

ure 2c) this effect is observed only in the southern-most part of the domain. Consistent272

with all of the previously mentioned behavior, the wind roses show a marked difference273

between autumn-winter (Figure 2e) and spring-summer (Figure 2f), with the former ex-274

hibiting more frequent and stronger winds from the W, SW and S directions.275

To get a representative seasonal cycle of the LTTS in the full DWS, we computed276

the spatial mean of the residence and exposures times (i.e., T j
r and T j

e from equation (2)).277

Then, the annual cycle for the residence and exposure times are estimated by fitting T j
r278

and T j
e to a model with a free constant and an annual harmonic. The system-wide an-279

nual signal of T j
r varies from 10-11 days in November-January to 17-18 days in May-July,280

and for T j
e from 14-16 days to 24-25 days, respectively (Figure 3). This means that the281

extra time that particles spend in the DWS system after they leave for the first time is282

smaller in November-January (around 4 days) than during May-July (around 7 days).283

To understand the variability superimposed on the seasonal cycle, high-frequency284

effects (e.g., tides and energetic synoptic-scale events) from T j
r (which has an M2 res-285

olution) were removed by computing a 15-day mean, which is shown as T̂r in Figure 4a.286

Afterwards, we performed a wavelet analysis (Torrence & Compo, 1998) of this spatially-287

averaged 15-day-mean residence time (T̂r), using the rectification of the bias proposed288

by Liu et al. (2007), to capture the localized time-frequency information in our time se-289

ries. The wavelet power spectrum exhibits the strongest signal around the annual pe-290

riod (Figure 4b). However, anomalous behavior is still observed, with periods display-291

ing a strong annual power (e.g., around 1983, 1990, 2000, and 2014) or a weak one (e.g.,292

around 1986, 1996, 2006, and 2010). Similar results are obtained for the equivalent ex-293

posure time T̂e (Figure 5). Clearly, studies of the DWS based on time series of a few years,294

like those for 2009-2011 by Duran-Matute et al. (2014, 2016) and for 2005-2015 by Donatelli295

et al. (2022a, 2022b), cannot capture well this rich temporal variability of the system-296

wide transport characteristics.297

The wavelet power spectrum of T̂r (Figure 4b) also contains significant power out-298

side the annual signal, like the time spans with strong four-month periodicity around 1984,299

1990 and 1997. There are also higher frequency events with a still significant signal but300

they are close to the background noise. These events cause large peaks with a relatively301

low persistence of only a few weeks. Thus, to focus on the system-wide low-frequency302

(seasonal and interannual) variations of the LTTS and to find links with the wind forc-303

ing (which we discuss in section 3.2) and large-scale circulation and atmospheric patterns304

(which will be addressed in section 3.3), we filtered the time series. We removed vari-305

ability from T̂r using a wavelet filter with a cutoff period of half a year. This procedure306

resulted in the half-year low-pass filtered signal of the spatially-averaged 15-day-mean307

residence time (T̃r) and exposure time (T̃e) (see Figures 4a and 5a, respectively). Most308

of the variability at low frequencies is due to the seasonal cycle. However, there are fluc-309

tuations at interannual time scales that modulate it. Clear examples are the anomalous310

winters (DJF) with the lowest T̃r (5-7 days) of 1983, 1990, 1995, 2000, 2007, 2008, and311
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Figure 2. The time-averaged residence time T i
r for a) autumn-winter (September-February)

and b) spring-summer (March-August) based on the 36-year simulation; and the mean exposure

time T i
e for c) autumn-winter (September-February) and d) spring-summer (March-August). The

insets in c) and d) show the difference between T i
e and T i

r . Regions in white within the DWS

were removed from the analysis (see section 2.1.2). The grey line indicates the -5 m isobath. e)

Autumn-winter and f) spring-summer wind rose, in which the purple numbers indicate the per-

centage of time that the wind blows from a particular direction.
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Figure 3. Annual cycle of the residence time (red), the exposure time (magenta), and the

wind energy (green).

2014 (using the year after December as the name of the winter); or the anomalous win-312

ters with the largest T̃r (12-17 days) of 1996, 2003, 2006, 2009, and 2010. In summer (JJA),313

the variability of the peaks is less pronounced, with values that vary between 15 and 20314

days. For T̃e (Figure 5a), a similar behavior is observed during those winters, with the315

lowest values around 7-8 days and the largest between 16-28 days. During summer, T̃e316

mainly varies between 21 and 30 days.317

3.2 Impact of the wind on the system-wide LTTS318

To show the dominance of the wind on the variability of the LTTS, we propose a
reconstruction of T̃r (and an identical one for T̃e) using the energy of the most dominant
wind sectors (W, SW, and S). Winds from these directions are the most efficient for driv-
ing a strong residual flow from the Texel inlet to the Vlie inlet and the Terschelling wa-
tershed (Duran-Matute et al., 2014). We refer to this reconstruction as the wind-based
model and is given by

T r = Ae−Ẽ/B , (4)

where Ẽ is the sum of the half-year low-pass filter signal of the 15-day-mean wind en-319

ergy of the dominant sectors (see Appendix A for the definition of the 15-day-mean wind320

energy per sector, and for the computation of Ẽ). Because T̃r and T̃e are quantities that321

depend on the future, the wind-based model employs Ẽ of the next 15-day interval in com-322

parison to the LTTS time series. The constants A and B are fitting coefficients. The neg-323

ative sign in the argument of the exponential reflects the anti-correlation between T̃r and324

Ẽ (Figure 6a), which means that strong Ẽ conditions result in low T̃r and T r; while the325

opposite holds during weak Ẽ conditions. The constant A = 19.29 ± 0.16 days (with326

95% CI) for T r represents the maximum value that can be predicted with T r, which is327

reached during Ẽ = 0 conditions. This constant contains the mean effects of the resid-328

ual tides, freshwater discharge, and other wind directions not included in the reconstruc-329

tion. The constant B = 2.31±0.06 MJ is an e-folding wind energy scale for T r, which330

indicates that an increase in Ẽ equal to B would lead to a reduction of T r by 63%. For331

the exposure time, there is also a strong anti-correlation between T̃e and Ẽ (Figure 6b).332

The maximum value predicted by T e is given by A = 27.96±0.13 days, and its e-folding333

wind energy scale is B = 2.07± 0.03 MJ.334
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Figure 4. (a) Time series of the spatially-averaged 15-day-mean residence time (T̂r), and its

half-year low-pass filtered component (T̃r). (b) Wavelet power spectrum of T̂r, where the black

contour encloses regions with power greater than a lag-1 red-noise process with 95% confidence

level; and the grey shadow region is the “cone of influence”, where errors due to the finite length

of the time series are present. The horizontal red dashed line highlights the half-year period em-

ployed as a cutoff for computing T̃r.

The values of T r (Figure 6a) match the numerical data quite well, with a Pearson335

correlation coefficient R = 0.94 and a root mean square error RMSE = 1.05 days (see336

Wilks (2011) for the definition of R and RMSE), with the latter representing 7% of the337

difference between the largest and lowest T̃r (15 days). Similar results are obtained for338

the exposure time (Figure 6b), with R = 0.95 and RMSE = 1.58 days, which repre-339

sents 6% of the difference between the largest and lowest T̃e (25 days). These results re-340

flects the capacity of the wind-based model to capture the seasonality, the energy trans-341

fer of most of the anomalous autumn-winter seasons to T̃r and T̃e, and some of the small342

spring-summer Ẽ fluctuations that modify both time scales during these seasons.343

An exponential relationship between the residence time and the local forcing was344

also found in the Pearl River estuary (Sun et al., 2014), but with the freshwater discharge345

as predictor in this riverine dominated estuary. The exponential model used in their study346

and in ours captures the asymptotic behaviour of the TTS keeping physical values larger347

than zero during strong forcing conditions. For our case, the wind-based model can pro-348

vide robust predictions if, for example, the model would be exposed to larger Ẽ values349

not seen during the fitting step. These attributes are hard to achieve with linear or poly-350

nomial models, which make the exponential one a good and a simple tool to predict TTS.351

An example of the ability of the wind-based model to capture anomalous T̃r val-352

ues is the winter of 1990. During this period, the lowest T̃r is well reproduced, which is353

related to the largest Ẽ (3 MJ) of our 36-year record (Figure 6a). On the opposite side,354

we have the winter of 1996, which is a famous period in the North Sea region due to its355
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Figure 5. As in Figure 4, but for the exposure time.

Figure 6. (a) Time series of the half-year low-pass filter of the spatially-averaged 15-day-mean

residence time (T̃r), which is the same as the red line in Figure 5a; the reconstruction of T̃r us-

ing the wind-based model (T r, equation (4)); and the sum of the half-year low-pass filter of the

15-day-mean wind energy of the dominant wind sectors W+SW+S (Ẽ). (b) Time series of the

half-year low-pass filter of the spatially-averaged 15-day-mean exposure time (T̃e); the reconstruc-

tion of T̃e using the wind-based model (T e, instead of T r in equation (4)); and Ẽ.

low temperatures (Loewe, 1996). In this season, winds from the most dominant direc-356

tions were unusually weak, but strong E winds were predominant, with most of their vari-357

ability contained in periods of less than half a year. During this winter, T̃r shows larger358

values than expected from the climatological winter months and exhibited closer values359

to the climatological summer months. The wind-based model (Figures 6a and 6b for T r360
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Figure 7. Mean sea level pressure and wind at 10 m above ground for a) autumn-winter

(September-February) and b) spring-summer (March-August). These averages were obtained us-

ing the monthly NCEP/NCAR Reanalysis 1 data for the 1980-2015 period. The mean wind vec-

tor is obtained by separately computing the average wind direction and speed following Farrugia

and Micallef (2017). The small purple rectangle in panels (a)-(b) represents the DWS numerical

domain. The location of the Azores High (AH) and Icelandic Low (IL) pressure systems are also

highlighted.

and T e, respectively) suggests that the large values of the LTTS in winter of 1996 are361

explained by the weak wind energy from the usually dominant directions and not by the362

strong easterly winds observed (which are not explicitly included in the wind-based model).363

3.3 The role of the large-scale atmospheric circulation and patterns on364

the system-wide LTTS365

The annual cycle of the large-scale wind in the subtropical North Atlantic is related366

to the seasonality (a meridional shift and change in intensity) of the the Azores High and367

the semi-permanent Icelandic Low North Atlantic pressure systems (Trenberth et al., 1990)368

(Figure 7). This variability is transferred to the regional wind, which induces a local wind369

response, and ultimately to the LTTS. As a result, a prevailing climatological wind en-370

ergy (from the SW quadrant) is induced in the DWS, which was computed fitting the371

sum of the 15-day-mean wind energy of the dominant sectors (W+SW+S, see equation372

(A2) in appendix A for the formal definition) to a model with a free constant and an an-373

nual harmonic. This signal is aligned with the geographical orientation of the system,374

and characterized by larger values in autumn-winter than in spring-summer (seven times375

more when contrasting the peaks in November-January with the lowest values in June-376

July, see Figure 3). Thus, it explains why the DWS is at its most efficient climatolog-377

ical state for flushing in autumn-winter, which are the seasons when the LTTS are the378

lowest (Figures 2a, 2b, and 3).379

Other low-frequency variations of the wind and sea level pressure, which are not380

explained by the seasonality, are mainly related to large-scale atmospheric patterns, such381

as the NAO, EAP and SCAN (Frederikse & Gerkema, 2018). Therefore, our final ob-382

jective is to determine if interannual variations of the LTTS in the DWS are driven by383
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Figure 8. The three leading modes of the empirical orthogonal function (EOF) analysis based

on the deseasonalized monthly-mean sea level pressure over the North Atlantic sector. (a)-(c)

EOFs with units of Pressure (Pa), and (d) the monthly PCs (dotted lines) and their half-year

low-pass filtered component (thick lines). The EOF and PC modes are defined following the

common positive convention for NAO, EAP and SCAN (see the website of the Climate Predic-

tion Center, https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). The first

two EOFs (NAO and EAP) are displayed during their positive phases, whereas the third one

(SCAN) is depicted during its negative phase. The geostrophic winds computed from the EOFs

are depicted with arrows. The variance of the three monthly PCs (PC1 for NAO, PC2 for EAP,

and PC3 for SCAN) is scaled to 1, and the numbers in the legend of (d) highlight the fraction of

variance explained by the low-pass filtered PCs with respect to their monthly values. The small

purple rectangle in panels (a)-(c) represents the DWS numerical domain.
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these large-scale patterns. First, we obtain the three leading modes of variability from384

the EOF analysis of the deseasonalized monthly-mean SLP in the North Atlantic region385

(see section 2.3.2). Their spatial structure (EOFs) and their temporal variations (PCs)386

are shown in Figure 8, and they are very similar to those showed by Chafik et al. (2017)387

and Frederikse and Gerkema (2018). These first three modes at a monthly scale explain388

32%, 17% and 15% of the SLP variability in the North Atlantic domain. They exhibit389

large-scale atmospheric structures that are akin to the NAO, EAP and SCAN telecon-390

nection patterns. In comparison to the method used by the Climate Prediction Center391

(CPC, https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml), our392

EOFs and the CPC teleconnection patterns are quite similar, but our PCs and the CPC393

indices are not necessarily fully interchangeable (Frederikse & Gerkema, 2018). Our first394

mode (NAO) is characterized by a north-south dipole between the Icelandic low and the395

Azores high, and it enhances the intensity of the westerlies in the North Sea basin dur-396

ing its positive phase (Figure 8a), whereas the opposite holds during its negative one.397

Our second mode (EAP) highlights a strong monopole pressure core south of Iceland with398

meridionally oriented geostrophic winds in the North Sea (Figure 8b). Two weak cores399

of the opposite sign are also present in the southern part of the subtropical North At-400

lantic region and over Eastern Europe respectively. The NAO and EAP teleconnection401

patterns modulate the variations in the speed of the jet stream, whereas the NAO mostly402

describes the latitudinal shifts of the jet, and hence, the main Atlantic storm track (Woollings403

& Blackburn, 2012). Our third mode (SCAN) displays a zonal pressure dipole between404

Greenland and Scandinavia, with the strongest center of action over Scandinavia and with405

a southeastward extension from Greenland towards the Iberian Peninsula (Figure 8c).406

Its associated geostrophic winds exhibit a strong meridional shear in the North Sea with407

zonal orientation over much of Western Europe. A positive SCAN is closely related to408

the well-known Scandinavian blocking weather regime, which in combination with per-409

sistent negative NAO phases, can induce extreme cold outbreaks in Europe during win-410

ter (Cattiaux et al., 2010; Kautz et al., 2020).411

To link the interannual variations of T̃r (and T̃e) to the large-scale patterns, we re-412

move the seasonal component from T̃r, and then this deseasonalized or anomalous T̃r was413

reconstructed using a multi-linear regression model. The predictors are based on the monthly414

PCs, which were interpolated to match the 15-day resolution of both LTTS, and then415

low-pass filtered using a cutoff period of half-year to remove high-frequency variations.416

We call this reconstruction the PCs model. Similar to the wind-based model, the PCs of417

the next 15-day interval are used as predictors. The reconstruction of T̃r is obtained by418

joining the seasonal component with the PCs model. This combination is referred to as419

the large-scale model and is shown in Figure 9a; whereas the reconstruction of the de-420

seasonalized T̃r given by the PCs model is shown in Figure 9b. The large-scale model matched421

T̃r quite well, with R = 0.94 and RMSE = 1.03 days. It also explains 96% of the vari-422

ance of T̃r (VARexp in Figure 9c), from which 72% is attributed to the seasonality, 21%423

to SCAN and NAO, and the remaining 3% to EAP. In general, the model captures most424

of the autumn-winter variability, but it has difficulties in reproducing the variations of425

the spring-summer peaks (Figure 9a), as was also the case for the wind-based model (Fig-426

ure 6a). Similar results (R = 0.92 and RMSE = 1.97 days) and weak spring-summer427

predictability for the large-scale model are obtained for T̃e (Figure 10).428

The maximum predictability of the PCs model in terms of VARexp and R is found429

between November and February (Figure 9d), and it is mainly attributed to SCAN and430

NAO. This behavior is expected since the effects of the large-scale patterns are notice-431

able when the PCs show strong changes and largest values, which is more common dur-432

ing autumn-winter (Figure 8d). The lowest T̃r observed during autumn-winter (Figure433

9a) are predominantly associated with the interplay between negative SCAN, positive434

NAO, and positive EAP (Figure 8d), with the latter having the lowest contribution. The435

combination of their spatial patterns tend to induce along-coast anomalous winds (mostly436

from W and SW directions) that favor the flushing efficiency of the DWS system. This437
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Figure 9. (a) Time series of the half-year low-pass filter of the spatially-averaged 15-day-mean

residence time (T̃r), its seasonal component, and its reconstruction with the large-scale model

(seasonal + PCs model). (b) The deseasonalized T̃r and its reconstruction with the PCs model.

(c) Explained variance VARexp and correlation R for the reconstruction of T̃r using cumulative

components of the large-scale model : only the seasonal component; seasonal + SCAN (+SCAN);

seasonal + SCAN + NAO (+NAO); and the large-scale model, i.e., seasonal + SCAN + NAO

+ EAP (+EAP). The VARexp is defined as the ratio between the variance of the cumulative

components of the large-scale model and the variance of T̃r. (d) Monthly statistics (VARexp and

R) of the reconstruction of the deseasonalized T̃r with the PCs model. In this case, the VARexp

is defined as the ratio between the variance of the PCs model and the variance of the deseasonal-

ized T̃r per month.

behavior is consistent with the study of Chafik et al. (2017), in which negative SCAN438

and positive NAO patterns explain most anomalous high monthly sea level values ob-439

served at several North Sea tidal gauge stations during autumn-winter. According to our440

results, they are concurrent with strong flushing conditions and with a low likelihood for441

the particles to return to the DWS (represented by low T̃r and T̃e, respectively).442

Winters with the strongest flushing were well captured by the PCs model (Figures443

9a and 9b). For example, in the winters of 1990, 1995, 2007, and 2014, a decrease of T̃r444

of around 3-5 days with respect to the December-January climatological value of 10 days445

was observed, which was related to high Ẽ (Figure 6a). Therefore, the lowest T̃r values446

were induced by large-scale atmospheric patterns and not by storms, which induce high-447

frequency variations and are commonly associated with the presence of well-known weather448

regimes (Hochman et al., 2021). For example, during the well-known winter of 1990, two449

exceptionally strong storms (“Daria” and “Vivian”) passed over central Europe and crossed450

the North Sea in just few days (Pinto et al., 2009). As a result, they trigger the strongest451

hourly wind speeds from SW and W directions in our 36-year record (around 30 m/s or452

60 MJ), but induced 15-day-mean peaks in the wind energy similar to other less stormy453

periods. On the other hand, the most anomalous winters with the largest T̃r values (1996454

and 2006) were also well explained by the PCs model. During these winters, an increase455
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Figure 10. As in Figure 9, but for the exposure time.

of T̃r of about 7 and 4 days with respect to the December-January climatology were ob-456

served. However, the PCs model underestimates these values by around 2-3 days and457

1 day, respectively. The most extreme change between two consecutive winters (10 days458

for T̃r and about 20 days for T̃e) occurred between the winters of 1995-1996. In 1995,459

a combination of negative SCAN with positive NAO and EAP triggered a Ẽ stronger460

than its December-January climatology and induced one of the lowest T̃r (around 6 days).461

The following year, the largest T̃r during winter was observed (about 17 days). During462

this famous winter, positive SCAN and negative NAO induced strong E winds. However,463

as was stated in the previous section, the lack of Ẽ (and hence, the background forcing464

by the tides and freshwater discharge) is enough to explain why T̃r during the 1996 win-465

ter was similar to its May-July climatology. In agreement with this, during the winter466

of 2006 (and to a lesser extent for 2003, 2009, and 2010), T̃r was also larger than its cli-467

matological value, which was related to quite low Ẽ, but also to low-frequency energy468

from the other directions.469

3.4 Other sources of variability on the LTTS470

Variations of the bathymetry were neglected in our simulation, which was done in-471

tentionally to isolate the role of the atmospheric forcing in our results. Relative stabil-472

ity in the location and orientation of the major channels connected to the Texel inlet has473

been observed since approximately 1972 or 40 years after the construction of the Afs-474

luitdijk in 1932 (Elias et al., 2003, 2006), which is a closure dyke of around 30 km where475

the two main sluices feeding freshwater into the are located (Figure 1). Changes in the476

sedimentation-erosion patterns of the channels were observed in these studies, but with477

only minor modifications of the bathymetry profiles. Thus, during our period of anal-478

ysis, we expect small effects of these bathymetry variations compared to the large effects479

of wind, particularly when focusing on the variability of system-wide LTTS, as is the case480

in most of our results.481

The time series of the freshwater discharge from the sluice located at Den Oever482

is correlated with Ẽ (R = 0.56) and anti-correlated with T̃r (R = −0.68) and T̃e (R =483
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−0.61); whereas for the sluice located at Kornwerderzand non-significant correlations are484

obtained. Because of this, it is not trivial to isolate the effect of both sluices on the vari-485

ability of T̃r and T̃e under our current approach. However, it is known that the resid-486

ual volume flow rate through the DWS during strong wind conditions from the domi-487

nant directions is one order of magnitude larger than the one associated with the tides488

and the freshwater discharge (Duran-Matute et al., 2014), and that the total freshwa-489

ter discharge of both sluices can only explain less than 5% of the variability of the resid-490

ual transport in this system (Donatelli et al., 2022a). Therefore, we expect that the fresh-491

water discharge and the residual tidal currents are the main factors controlling the back-492

ground T̃r (A = 19.29 days) and T̃e (A = 27.96 days), which are obtained when the493

wind energy of the most energetic sectors (Ẽ) is null in the wind-based model. In addi-494

tion, these forcing mechanisms also seem to explain part of the variability of T̃r and T̃e495

not explained by the wind-based model and the large-scale model during calm conditions496

(mainly spring-summer months), which are the periods in which both these models show497

strong lack of predictability.498

Because our main results are based on the characterization of the system-wide LTTS,499

the vertical structure of the LTTS was ignored using depth-averaged currents. Locally,500

there might be a marked heterogeneity in this vertical structure (Wolk, 2003; Du & Shen,501

2016), which might be associated to, for example, a strong gravitational circulation. How-502

ever, it is not currently feasible to perform a 3D Lagrangian analysis for 36-year of the503

DWS due to the amount of data required to compute the necessary 3D particle trajec-504

tories. Nonetheless, our results can be useful to select, simulate, and understand the 3D-505

behaviour of the LTTS during particular and striking conditions, like the transition be-506

tween the winters with strong and weak winds from the most energetic directions in 1995-507

1996.508

4 Conclusions509

While it has been acknowledged that high-frequency events, like storms crossing510

the Dutch Wadden Sea (DWS) in few days or bora winds in the Venice lagoon, can com-511

pletely renew the water in multiple-inlet systems, we show here that low-frequency wind512

variability can also play a large role in modulating the transport time scales in a multiple-513

inlet system. The broad and immediate implication of our results is that interannual changes514

in the atmospheric patterns can have a much larger effect on the variations of the wa-515

ter transport than may have been expected, and hence, on the long-term ecology and516

functioning of multiple-inlet systems.517

For the case of the DWS, the lowest system-wide Lagrangian transport time scales518

(LTTS) are observed in several years during autumn-winter months and are well explained519

by the concurrent negative phase of the Scandinavia Pattern (SCAN) and the positive520

phase of the North Atlantic Oscillation (NAO), which induce stronger SW and W winds521

in this system. These winds trigger an anomalous eastward flow that enhances the flush-522

ing efficiency, which is typically already strong in autumn-winter. The opposite happens523

during positive SCAN and negative NAO, and weaker flushing during autumn-winter524

is observed. In contrast to single-inlet systems (like in the study of Du and Shen (2016)),525

our results show that system-wide LTTS in multiple-inlet systems, like the DWS, are rep-526

resentative of the overall system when studying the influence of winds on the seasonal527

and interannual variations of the LTTS. This response is in agreement with the fact that528

winds from specific intensities and directions are very efficient in forcing net residual trans-529

port across watersheds (i.e. tidal divides) and trough the inlets of multiple-inlet systems530

(Li, 2013; Duran-Matute et al., 2016). A similar response can be expected in other wind-531

dominated multiple-inlet systems (e.g., along the North Sea coast), leading to seasonal532

and interannual variations of the LTTS driven by the large-scale circulation and atmo-533

spheric patterns, respectively.534
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Our findings also reveal that care should be taken when observing variations of the535

long-term values of the residual volume flow rate across inlets and watersheds, when events536

with strong wind conditions from the analysis are removed. Using this approach, Donatelli537

et al. (2022a) found changes of the long-term residual volume transport using a 11-year538

simulation of the DWS. According to our results, this does no necessarily indicate that539

extreme events can alter these long-term values. Instead, we expect that long-term vari-540

ations of the residual flow rate in other wind-dominated multiple-inlet systems would be541

also driven by large-scale atmospheric patterns, as was the case for the interannual vari-542

ations of the LTTS in the DWS (from our current study), and for the multi-decadal sea543

level variability along the North Sea coastal areas (Frederikse & Gerkema, 2018).544

Finally, our study highlights the importance of understanding the water transport545

variability due to local and remote forcing to, for example, explain better why large-scale546

atmospheric patterns affect biological processes (see e.g., Straile & Adrian, 2000; Gol-547

ubkov & Golubkov, 2021), and to improve analytical models that use TTS to model eco-548

logical processes (see e.g., Lucas & Deleersnijder, 2020). From a practical point of view,549

analytical models like those proposed here to predict the LTTS using the wind and the550

large-scale atmospheric patterns could be employed to estimate the LTTS during peri-551

ods not covered by such detailed simulations, particularly, for seasonal forecasts and fu-552

ture climate-change scenarios.553
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Appendix A Wind energy averaging574

To establish connections with the LTTS and to smooth the noisy, hourly, high-resolution
wind energy data from equation (3), and to remove most of the high-frequency effects
(e.g., storms), we compute the mean wind energy during 15-day intervals. For a given
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sectorial direction s, the 15-day-mean wind energy is defined as

Es = N−1
∑
n

Es,n =
1

2
ρA∆tN−1

∑
n

W 3
s,n = C∆tN−1

∑
n

W 3
s,n, (A1)

where N = 360 is the total amount of hourly data points, C = 1
2ρA = 0.6125 kg m−1,575

and the total wind energy is obtained from ET =
∑

s Es = C∆tN−1
∑

n W
3
n , where576

W 3
n =

∑
s W

3
s,n) is the cube of the hourly wind speed. A similar expression to equa-577

tion (A1), but for yearly averages, was used by Gerkema and Duran-Matute (2017) and578

Donatelli et al. (2022a).579

The sum of the wind energy of the most energetic sectors (W+SW+S) is obtained
from equation (A1) yielding

E = EW + ESW + ES . (A2)

This time series, with 15-day resolution, was employed to compute the annual cycle showed580

in Figure 3.581

Then, we apply a half-year low-pass filter to each Es (equation (A1)) , as was done582

for the LTTS, which we call Ẽs. Due to the undulatory nature of the wavelet filter (and583

other similar ones like the Lanczos filter) and to the fact that Es could be near zero, slightly584

negative values appear. To be physically correct, we set all negative values of Ẽs to zero.585

Finally, we add Ẽs from the most energetic sectors (W+SW+S), and get Ẽ, which we586

call the sum of the half-year low-pass filter of the 15-day-mean wind energy of the dom-587

inant sectors. Almost identical results are obtained if we apply the low-pass filter directly588

to E defined in equation (A2).589
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This supporting information contains the text S1 that provide details about the15

validation of the Eulerian numerical model, which was employed to feed a Lagrangian16

model to obtain particles trajectories. The references used in Texts S1 are also provided.17

Text S118

Model validation using sea-surface height (SSH), currents, temperature, and salin-19

ity during the year 2009-2010 was done by Duran-Matute et al. (2014) and Gräwe et al.20

(2016) using similar model configurations. We have validated our simulation only for the21

years 2009-2010, as was done by Duran-Matute et al. (2014), because the bathymetry22

is mostly based on those years. Thus, it is expected that the simulation during this time-23

span is most compatible with observations. We contrast our numerical results with SSH24

measured at 14 tidal stations located within and around the DWS (Figure 1 from the25

main manuscript), and with the amplitude and phase of the M2, S2 and M4 tides. In26

general, our simulation shows similar performance to that of Duran-Matute et al. (2014)27

(see Table 1), which is remarkable because Duran-Matute et al. (2014) used results from28

a two-dimensional model with data assimilation to impose SSH at the boundaries. The29

good performance of the model is also reflected in the form factor F=(K1+O1)/(M2+S2),30

which is defined as the ratio of the amplitudes of the K1 and O1 harmonics to those of31

the M2 and S2 ones (Defant, 1961). The observations and the simulation by Duran-Matute32

et al. (2014) yield F=0.166, whereas F=0.175 for our case. We have not validated directly33

our simulated particles trajectories with observational data in the DWS due to the dif-34

ficulty of acquiring it in shallow coastal systems containing large areas of intertidal flats.35

However, our model configuration was employed recently by Donatelli et al. (2022a, 2022b),36

whose results showed good agreement with those of previous numerical setups in the DWS37

region (Duran-Matute et al., 2014; Gräwe et al., 2016). Therefore, we expect that this38

performance is also reflected in our Lagragian analysis.39
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Table 1. Summary of the Model Skill Assessments of the SSH, and M2, S2 and M4 Tides for

the Period 2009–2010a

SSH M2 S2 M4

R 0.98 (0.99) MAEamp (%) 4.3 (6.1) 10.6 (4.3) 15.0 (8.7)

RMSE (m) 0.15 (0.10) MAEpha (min) 4.6 (8.7) 9.6(9.3) 46.5 (27.5)

NRMSE (%) 3.5 (2.3)

aThe values displayed in this table represent the average of the 14 tidal stations located around the DWS

(Figure 1 from the main manuscript). In the second column the performance of the SSH is shown in

terms of the correlation R, the root mean square error RMSE, and the NRMSE, which is the RMSE

normalized with the difference between the largest and lowest observed SSH. In the last three columns the

results for the M2, S2, M4 in terms of the mean absolute error MAE are displayed (see Wilks (2011) for

the definition of R, RMSE and MAE). The MAE is in percent for the amplitude and in minutes for the

phase. In parenthesis, we give the statistics obtained with the simulation of Duran-Matute et al. (2014).
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Donatelli, C., Duran-Matute, M., Gräwe, U., & Gerkema, T. (2022b). Statistical46

detection of spatio-temporal patterns in the salinity feld within an inter-47

tidal basin. Estuaries and Coasts, 1–18. doi: https://doi.org/10.1007/48

s12237-022-01089-349

Duran-Matute, M., Gerkema, T., De Boer, G., Nauw, J., & Gräwe, U. (2014).50
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