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Abstract

Extraction of critical hydrologic features from high-resolution topographic data is challenging using existing grid coarsening

approaches, such as surface flow path, river network, and slope, which limits the application of hydrological models. In this re-

search, the influence of various grid coarsening techniques on the prediction outcomes was measured by a numerical experiment

based on the integrated hydrological model ParFlow-Common Land Model (ParFlow.CLM). Three grid coarsening methods

(Nearest Neighbor Coarsening, Majority Coarsening, Hydrography-Driven Coarsening) were applied to simulate evapotranspi-

ration(E), soil temperature(ST), streamflow, soil moisture(SM) and latent(LE) heat fluxes in central China’s Sixi Valley, a

classic example of a karstic basin. As a result, the three grid coarsening methods perform uniform in simulating latent heat

fluxes and soil temperature. However, their ability to predict soil moisture surface flow and evapotranspiration are more di-

verging. The hydrography-driven coarsening extracts significantly more accurate valleys, rivers network, and slopes closer to

the actual terrain than existing coarsening strategies. Slopes derived from hydrography-driven coarsening methods can be used

to predict more accurately the top soil moisture, evapotranspiration, and streamflow dynamics processes. This study stresses

that a hydrography-driven coarsening strategy is advocated for all those cases in which topographic slope extracted using a

coarse-grid digital elevation model is an important influence on the ParFlow.CLM simulation of essential hydrographic features.
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Abstract: Extraction of critical hydrologic features from high-resolution topo-
graphic data is challenging using existing grid coarsening approaches, such as
surface flow path, river network, and slope, which limits the application of hy-
drological models. In this research, the influence of various grid coarsening
techniques on the prediction outcomes was measured by a numerical experi-
ment based on the integrated hydrological model ParFlow-Common Land Model
(ParFlow.CLM). Three grid coarsening methods (Nearest Neighbor Coarsening,
Majority Coarsening, Hydrography-Driven Coarsening) were applied to simu-
late evapotranspiration(E), soil temperature(ST), streamflow, soil moisture(SM)
and latent(LE) heat fluxes in central China’s Sixi Valley, a classic example of a
karstic basin. As a result, the three grid coarsening methods perform uniform
in simulating latent heat fluxes and soil temperature. However, their ability
to predict soil moisture surface flow and evapotranspiration are more diverging.
The hydrography-driven coarsening extracts significantly more accurate valleys,
rivers network, and slopes closer to the actual terrain than existing coarsening
strategies. Slopes derived from hydrography-driven coarsening methods can be
used to predict more accurately the top soil moisture, evapotranspiration, and
streamflow dynamics processes. This study stresses that a hydrography-driven
coarsening strategy is advocated for all those cases in which topographic slope
extracted using a coarse-grid digital elevation model is an important influence
on the ParFlow.CLM simulation of essential hydrographic features.

Keywords: ParFlow.CLM; Grid coarsening methods inter-comparison; karst;
the significance test of EEMD

1 Introduction

Gridded digital elevation models(DEM) are used to characterize terrain and
extract hydrologic properties. Physically based hydrological model simulations
usually require a topographic computational grid input to ensure that drainage
networks are connected in the model simulation to obtain slope values (Condon
& Maxwell, 2019). The most commonly used hydrological terrain attributes are
specific catchment area, surface flow path, river flow network, and slope (Gal-
lant & Hutchinson, 2011). In predicting depict surface water flow dispersion,
extracting watershed hydrologic features, and offering precise topographic de-
scriptions of hillslopes, a wide variety of algorithms have been utilized to handle
dem data in grid-based digital elevation models (Barnes et al.,2014; Orlandini
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and Moretti, 2009a, 2009b; Kenny et al., 2008). Chosen the suitable coarsening
grid method is essential for large-scale and long-term hydrologic simulations due
to their high computing demands.

The level of coarsening of the grid and the resolution size significantly impact
the timing and accuracy of model runs. Hydrologic parameters, including slope,
stream velocity, and drainage patterns are all susceptible to change when the
spatial resolution of a DEM is reduced (Tang, 2000). Runoff, infiltration, evapo-
transpiration, and surface-subsurface exchange fluxes must be accurately simu-
lated, however, this cannot be done without a sufficiently fine mesh grid due to
the uncertainty in the coarsened grid’s description of the hydrological features.
(Vazquez et al., 2002; von Gunten et al., 2014). Using a well-thought-out grid
coarsening strategy can improve the accuracy of model simulations. In hydrolog-
ical model simulations, the nearest neighbor sampling technique frequently reses
digital elevation models and the majority resampling method is rarely applied
(De Bartolo et al., 2016). In contrast, when data from a high-resolution grid
are coarsened to a standard rectangular grid, the nearest neighbor resampling
coarsening method may produce half-image position shifts, and some hydro-
logical line features on the original map will be transformed into erratic block
features, additionally, the hydrologic features shown in the high-resolution digi-
tal elevation model are not accurately captured. (Hester & Doyle, 2008a, 2008b;
Orlandini & Moretti, 2009a, 2009b; Moretti & Orlandini, 2018).

To create a drainage-limited TIN while still preserving the primary terrain char-
acteristics, Zhou and Chen (2011) presented a compound approach based on
the combination of point addition and feature point methods to extract critical
points of the terrain surface from the DEM. When coarsening a high-resolution
digital elevation model, the Compound Method (CM) is less accurate than Near-
est Neighbor (NN) Coarsening for grid cell sizes less than 100, and the accuracy
of CM coarsening is essentially equivalent to NN coarsening for grid cell sizes
more than 100. (Orlandini & Moretti, 2018). Among the existing studies, Or-
landini and Moretti (2018) proposed a novel approach to coarsening based on
hydrography. To get channel networks out of a gridded DEM, the studied coars-
ening procedure comprises depression filling, slope direction, and channel initi-
ation (Orlandini et al., 2012). This study improves on the hydrography-driven
coarsening method by using the priority flood depression filling algorithm (Lind-
say, 2016) and using the D4 algorithm to connect drainage networks (Orlandini
et al., 2003) replace the D8-LTD slope direction algorithm (Condon & Maxwell,
2019). The DEM is converted to slopes required by the hydrologic model, and
the slopes are processed to improve hydrologic modeling performance by a com-
bination of these two algorithms. The coarsening of a gridded digital elevation
model in a karst trough is performed using the enhanced hydrography-driven
coarsening approach.

Specific hydrogeological condition of karst controls the complex water cycle
there. Although it is generally acknowledged that subsurface flow dominates
runoff in karst areas, the specific subsurface runoff paths, flow residence times,
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and groundwater flow sources remain unknown (Kirchner, 2006). It is crucial to
correctly identify topographic features, river networks, and other hydrological
elements from the grid digital elevation model to quantify and comprehend the
links between karst terrain and the hydrological cycle processes. (McGuire &
McDonnell, 2010).

The connection between slope and river channel network depends on the soil
characteristics, surface vegetation type, and bedrock topography of the study
area (Jencso et al., 2009; McGuire & McDonnell, 2010). Climate parameters
(rainfall, air temperature, atmospheric pressure) determine the distribution of
surface water, whereas infiltration conditions at the surface and the amount of
precipitation determine the distribution of groundwater. A crucial aspect of any
hydrological modeling of a basin is accounting for how surface water and ground-
water interact. Hydrological simulation tools must consider this interaction to
provide reliable simulations (Kollet & Maxwell, 2006). Therefore, this study
uses a parallel, three-dimensional, integrated hydrologic model called ParFlow
to simulate both surface and subsurface flow (saturated and unsaturated zone)
simultaneously in 3D. (Ashby & Falgout, 1996; Maxwell 2013; Kollet & Maxwell,
2006; Jones & Woodward 2001; Maxwell & Miller, 2005; Maxwell et al., 2014).
On the other hand, other hydrological models usually adopt surface routing
schemes for separate channels (pre-defined stream reaches) that are not consid-
ered to the impact of subsurface flow and the grid resolution (O’Neill et al.,
2020; Soltani et al., 2022). ParFlow couples the common land model (CLM)
into the model (Dai et al., 2003), streams form naturally as surface water is
routed by topography, extending the model to consider the energy balance be-
tween land surface soils and the atmosphere and the quantitative relationship
between shallow soil moisture and surface heat fluxes and temperature (Hein et
al, 2019).

In this present study, three different grid coarsening methods were adopted to
convert high-resolution topographic data to coarse grid digital elevation mod-
els in a typical sub-basin of a karst trough area, and numerical simulations
were conducted using the integrated hydrological model ParFlow.CLM. The
study has the following objectives: (1) convert high-resolution topographic data
to coarse grid digital elevation models by using Hydrography-Driven Coarsen-
ing(HD), Majority Coarsening(MJ) and Nearest Neighbor Coarsening(NN) and
evaluate the reality of the obtained digital elevation models and the extracted
drainage networks from HD, MJ, NN coarsening methods. (2) quantify and
evaluate the effect of using different coarsening methods simulated evapotran-
spiration(ET), soil temperature(ST), streamflow, soil moisture(SM) and latent
(LE) heat fluxes in ParFlow.CLM. (3) assessing the performance of three coars-
ening methods applied in ParFlow.CLM on the simulated water balance of karst
systems by the EEMD significance tests and six performance metrics.

2 Site description

The Sixi Valley is upstream of the Maoping River, the first tributary of the
Yangtze River in the Three Gorges Reservoir, 9km Southwest of the Three
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Gorges Dam, in Zigui, Yichang, Central China. Its catchment area is 48.12km2,
drainage density 0.65 km/km2, and the average slope ratio is 0.09. The study
area combines karst depressions and karst troughs and is characterized by steep
terrain of middle-low mountains and deep ravines. Carbonate rocks are widely
distributed in the Sixi Valley, accounting for about 70% of the study area. The
surface of the geological hillside are composed of shallow soils with an average
depth of 0.3m (Figure 1).

Figure 1. the modeling area in this study

3 Method

3.1 Nearest Neighbor Coarsening
The nearest neighbor coarsening (NN) is a resampling technique for raster data
which the elevation of each cell center on the output raster is calculated by
using the elevation of the nearest cell center on the input raster (Moretti &
Orlandini 2018). When multiple cell centers in the input raster are found to be
equidistant from the output raster cell centers, the average elevation on equally
distant input cells is assigned to the output cell centers. NN does not change
the values of the input cells.

3.2 Majority Method Coarsening
The majority(MJ) coarsening method is suitable for discrete data which has
a smoother appearance than the nearest neighbor coarsening method. With
MJ, the common values in grids are used to calculate the elevation of each cell
center in an output raster. The majority(MJ) resampling method calculates
the elevation by finding the corresponding 4 x 4 cell value in the input raster
closest to the center of the cell value and assigning the output cell value using
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the majority of the 4 x 4 neighboring points.

3.3 Hydrography-Driven Coarsening
The hydrology-driven(HD) coarsening method is proposed by Moretti and Or-
landini (2018) to transfer the basic hydrographic features of river networks and
valleys observed in high-resolution topographic (DEM) data directly to a coarse-
grid digital elevation model. This method preserves the structure of the drainage
network and reduces the impact of depression filling. The first step is processing
the high-resolution digital elevation data by removing pits and filling depressions
using the priority-flood depression-filling algorithm (Zhou et al., 2016; Barnes
et al., 2014).

The priority flooding algorithm is a computationally efficient method of ensuring
the minimum elevation adjustment required for surface drainage by filling pits
sequentially from the outer edge inwards. The priority queue is sorted by lower
elevation cells with higher priority, the lowest elevation cell in the queue is
always the first cell to be processed for depression filling.

The D8-LTD slope direction algorithm proposed by Orlandini et al. (2003) used
in the original method is replaced by the D4 connected stream network method
to calculate slope direction, i.e., the grid cell with the lowest elevation is selected
from the priority queue and the elevation of its unprocessed D4 neighboring
cells is adjusted to ensure that they can flow to the selected grid cell(the basin
has multiple outlet units, a flow channel is constructed using the R results in
the basin has only one outlet unit). The purpose of using this method is to be
consistent with the ParFlow hydrological model application (Condon & Maxwell,
2019).

In the second step, a hydrography-driven coarse-resolution digital elevation
model is generated by using the high-resolution digital elevation model and
the hydrological features observed in the associated grid network. The eleva-
tion of the center of each output grid cell is set equal to the elevation of the
nearest point along the highest order flow path observed in the output cell. This
value (ZHD) is equal to between the minimum elevation (Zmin) and maximum
elevation (Zmax) of the high-resolution grid cell located within the coarse grid
cell.

3.4 Hydrological model: Parflow.CLM
ParFlow represents variably saturated three-dimensional subsurface flow by solv-
ing the Richards (1931) equation (equation 1) and combines it with surface flow
by solving the two-dimensional kinematic wave equation and free-surface bound-
ary conditions to enable the simulation of hillslope runoff and channel routing in
a truly integrated way (Kollet & Maxwell, 2006; Condon & Maxwell, 2015; Yang
et al., 2020). ParFlow uses the van Genuchten relationships for soil moisture
and relative permeability (equations 2 and 3), and these relationships replace
the Clapp and Hornberger relationships used by CLM (Clapp & Hornberger
1978).
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The two models communicate over the 10 soil layers in CLM 3.0 (Dai et al.,
2003) with the uppermost cell layer in ParFlow corresponding to the first soil
layer below the ground surface in CLM. ParFlow calculated hydraulic pressure
solution (equation 1) over the entire domain, soil saturation is calculated from
the hydraulic pressure solution with the water content at the upper 10 layers
passed back to CLM, where soil surface temperatures (Ts), soil and canopy
evapotranspiration, plant transpiration, heat fluxes and energy balances are
calculated (Maxwell et al., 2015; Condon & Maxwell, 2014a, 2014b; Yang et
al., 2020; Maxwell & Miller, 2005). ParFlow.CLM is an open source, integrated
surface and subsurface model (https://github.com/parflow/parflow) designed to
run on massively parallel processor computer systems.

(1)

where h(p) is the water saturation for hydraulic pressure p, � is the water density,
� is the porosity of the medium, k(x) is the absolute permeability of the medium,
� is the viscosity, kr(p) is the relative permeability, q represents source terms, and
z is the elevation. The saturation-pressure and relative permeability-saturation
functions are represented by the van Genuchten (1980) relationships

(2)

(3)

where � and n are soil parameters, Ssat is the saturated water content, and Sres
is the residual saturation.

3.5 Modeling Domain
High-resolution (1 m or less) topographic data were coarsened to the coarse-
resolution grid digital elevation model (100m) by three coarsening methods,
and the resolution of 100m accurately captures the hydrological and geological
features of the study area, while meeting computational constrains in detailed,
large-scale, and long-term hydrologic simulations. The model is divided into a
rectangular grid of 88×123 in the horizontal direction (nx=88, ny=123). Since
the study area is a karst trough valley area with thin soil formation on both
slopes and the bottom depression contains sedimentary soil with increased soil
layer thickness, With the terrain following grid (Maxwell, 2013), which divides
the subsurface into 6 layers in the vertical direction. The thickness of each layer
is 0.2, 0.3, 0.5, 0.5, 2.5 and 105 m. The vertical resolution of the model domain
was set to 1 m. The study simulated two hydrological years (2018, 2021) using
hourly simulation time steps.

3.6 Model Input Data sources
The hydrometeorological data are largely unavailable for the study area,
the meteorological forcing data of the long-wave radiation (DLWR; W/m2),
precipitation (APCP; mm/s), air temperature (Temp; K), specific humidity
(SPFH; kg/kg), atmospheric pressure (Press; pa), East-West wind speed
(UGRD; m/s), and South-to-North wind speed (VGRD; m/s), Visible
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or short-wave radiation (DSWR; W/m2) are from the ERA-5 reanalysis
dataset(https://cds.climate.copernicus.eu/). ERA5 is the fifth generation
ECMWF reanalysis for the global climate and weather with a spatial resolution
of 0.25°×0.25 ° (atmospheric). The downloaded datasets of 3-hour forced data
were linearly interpolated to hourly resolution. All input data were reprojected
to the same coordinate system.

Soil type and soil infiltration porosity in the top four layers (Figures 2c and
2d) from a 1 km resolution global soil map (Zhang et al., 2018) and the world
soil database (http://www.fao.org/data/en/), the soil classification of the study
area was mainly sand, loamy sand, sandy loam, loam, Silty clay loam, clay loam,
clay with clay occupying 85% of the study area. Seven soil units were used to
represent the top soil layer of ParFlow and CLM exchange (Table 1), and the
vegetation type of the whole model domain was assumed C3 plants with leaf
area index between 1.20 and 3.40.

The land use data (Figure 2b) for this study (2018-2021) were ob-
tained from Esri_Land_Cover_10m using the 10m high-resolution
land cover classification from Sentinel-2, resampling the map to a
model grid resolution of 100m and then mapped the land-cover
categories to the Common Land Model International Geosphere-
Biosphere Programme (CLM IGBP) land cover categories (Table 2).
For the general topography, DEM with a resolution of 12.5m mea-
sured by the ALOS (Advanced Land Observing Satellite) satellite
were obtained from https://search.asf.alaska.edu/#/.

The algorithm and the terrain processing tool priority flow (R pack-
age) proposed by Condon et al (2019) to calculate the topographic
slope in x and y directions (Sx and Sy) as input to the ParFlow
slope flow simulation (Barnes et al., 2014; Barnes et al., 2018). The
streams form naturally as surface water is routed by topography and
the flow direction grid was adapted in the GRASS plugin of QGIS
(Geographic Information System) (Yang et al., 2020). A parking lot
test was conducted to check the accuracy of the drainage network,
and the top boundary condition was set to rain on the domain in-
termittently for the parking lot test to further correcting the slope
(Bhaskar, 2010).
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Figure 2. (a) logarithmic permeability (logk) of the deep aquifer (f) in the
modeling domain; (b) Land cover; (c) Sand content of the surface soil; (d) Clay
content of the surface soil.

Numbers 1-17 in the land cover subpanel correspond to surface types defined by
the International Geosphere Biosphere Program (IGBP), and for details please
refer to Table 2.

Table 1. Hydrogeological Properties Assigned to Model Domain

@ >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * @
Hydrogeological unit & Depth

below land surface(m) & Layer thicknesses comprising unit (m) & Indicator

Units & Porosity & Permeability

(m/hr)
Soil & 0-4 & 0.2,0.3,0.5,0.5,2.5 & sand

loamy sand
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sandy loam & 0.38

0.39

0.39 & 0.2691

0.0436

0.0158
& & & loam

Silty clay loam & 0.46

0.38 &

0.0046

& & & clay loam & 0.44 & 0.0034
& & & clay & 0.46 & 0.0062
aquifer & 4-109 & 105 & f.s sedimentary

sil sedimentary

crystalline & 0.12

0.19

0.01 &

0.02

0.03

0.04

& & & carbonate & 0.06 & 0.10

Table 2. Mapping of the Sixi Land Cover Class to Common Land Model
International Geosphere Biosphere Programme (CLM IGBP) Land Cover Class

Sixi Land Cover Class CLM IGBP Land Cover Class
Water 17 water bodies
Grass 10 Grasslands
Forest 2 evergreen broadleaf forests
Agriculture 14 cropland
Urban Building 13 urban and built-up lands
Bare soil 18 bare soil

3.7 Model boundary conditions and spin-up
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Groundwater is the slowest moving part which start easily with a
simplified system and get a stable water table before adding in land
surface processes (Ajami et al., 2014; Seck et al., 2015). In this study,
the free surface slope flow boundary condition is set for the land
surface (z-upper), and the no-surface flow boundary condition, i.e.,
the zero-flux boundary condition, is used for the other boundaries
(Maxwell & Miller, 2005; Rahman et al., 2016). The initial water
level is set to 4 m below the surface, and the initial water level runs
for a long time continuously without CLM with a constant at the
land surface until the difference between outflow and recharge rates
was less than 1 % of total water storage change. To ensure proper
model equilibrium, the transient simulation with the fully coupled
ParFlow.CLM was run for 2-3 years of repeated atmospheric forcing
to provide an initial condition for the simulation in this study.

3.8 hydrogeology
The deep aquifer of the study area consists mainly of carbonate (strong wa-
ter content), sil sedimentary (weak water content), crystalline (moderate water
content), and impervious bed. Four hydrogeological units (Table 1) represent
the subsurface layers of the study area. The porosity, hydraulic conductivity,
and permeability (Figure 2a) refer to the GLobal HYdrogeology MaPS 2.0 (GL-
HYMPS 2.0) (Huscroft et al., 2018; Shangguan et al., 2017; Gleeson et al.,
2014; Gleeson et al., 2011; Zhang et al., 2018; Foster & Maxwell 2019). For
the Manning coefficients, one can consider the scaling of parameters when us-
ing the coarsening grid models, the stream cells defined and assigned a typical
stream Manning’s n (0.035 s m−1/3) after scaling and all other cells determined
by vegetation (Schalge et al., 2019; Soltani et al., 2022).

3.9 The significance of EEMD
The EMD (empirical mode decomposition) is a method developed by Huang et
al. (1998) is a new adaptive time-frequency localization analysis method that
escapes the limitations of the Fourier transform. It decomposes a signal into
a finite set of Intrinsic Mode Functions (IMFs) and residual series, with each
IMF representing a scale of data variability, where the sum of the IMFs and
the residual component represent the complete data (Wu & Huang, 2005, 2009;
Almendra et al., 2022; Adarsh & Janga Reddy, 2019; Huang & Wu 2008). The
process of extracting the Intrinsic Mode Functions (IMFs) from a time series
(which is called as “sifting” process) consists the following steps:

1. The given function u (t), find all the maxima and minimal value points of
this function.

2. Connect maxima points and minima points using suitable interpolation
function (say, cubic spline) to construct an upper envelope of maxima
value and a lower envelope of minima value.

3. The two upper and lower envelopes are averaged to obtain the mean m (t)
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and calculate the new difference time series function h (t) = u (t)-m (t).

4. Replace the original function with the function h(t) and repeat steps 1 to
3, obtaining hk (t) until hk (t) becomes a zero-mean series, defining imf
(t) = hk (t).

Wu and Huang (2005) found that EMD is an effective filter to separate white
noise, and derived the expressions for the relationship between the energy den-
sity and the average period of the IMF components from white noise (which are
confirmed by the Monte Carlo method). The significance test of the ensemble
empirical modal decomposition constructs a long artificial white-noise record
as a reference, and decomposes the targeted noisy dataset and the reference
white-noise data into IMFs. The energy distribution at a confidence level are
calculated and the energy density of the IMFs and the spread function are com-
pared if the energy lies between the upper and lower limits, one can say that
the signal is ”contaminated” with white noise, the IMFs that have their energy
located above the upper bound and below the lower bound should be consid-
ered to the data are statiscally significant at that selected confidence level(Wu
& Huang, 2004; Almendra et al., 2022; Sang et al., 2014).

3.10 Performance evaluation metrics
As a measure of average magnitude accuracy with an optimal value of 0, percent
bias is given by

(4)

where Si and Oi are simulated and observed values.

Spearman’s rank correlation coefficient, or Spearman’s �:

(5)

Spearman’s � independently ranks the simulated and observed values, with bi
in Eq. (9) being the difference in ranks for a given value i, and n is the number
of values in the series. � is less restrictive; it does not assume linearity and
instead tests for monotonic correlation. The optimal value for � is 1, and the
cutoff for good performance is likely analogous to that of R2, which varies in
the literature but is generally around 0.6. (O’Neill et al., 2020)

The mean absolute error (MAE):

(6)

The root mean square error (RMSE):

(7)

The Nash-Sutcliffe Efficiency (NSE):

(8)

The correlation coefficient (r):
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(9)

4 Result and Discussion

4.1 The evaluation of coarsening DEM
The NN, MJ, and HD coarsening techniques were evaluated by comparing the
flow channels recovered from the coarsened digital elevation model to the high
resolution grid digital elevation model and by comparing the depression-filled
heights in the coarsened grid digital model with the original elevations.

Figure 3. The extracted surface flow paths from 10m high-resolution and HD,
MJ, NN coarsening grid digital elevation models.

(a) 10 m grid digital elevation model and extracted surface flow path used as
a reference. (b) 100m grid digital elevation model obtained from hydrography-
driven(HD) coarsening plus depression-filling and extracted surface flow
path. (c) 100m grid digital elevation model obtained from MJ coarsening
plus depression-filling and extracted surface flow path. (d) 100m grid digital
elevation model obtained from NN coarsening plus depression-filling and
extracted surface flow path.

Comparing the surface flow paths extracted from the high resolution 10m grid
digital elevation model of the study area, the highest-order path (red line) of the
HD extracted curve river channel according to topography and retains the ba-
sic topographic information about the mainstream channel (blue line) observed
in the coarse grid cell (Figure 3b). NN accurately describes the topographic
information about valley and channel thalwegs observed in high-resolution to-
pographic data (Figure 3c). When high-resolution topographic data using MJ
coarsening, loss the information on topography about the partial of tributaries
(red line) and the mainstream channel (blue line) (Figure 3d). The topographic
information is easily lost when high-resolution topographic data describing a
trough area are coarsened by using standard NN coarsening and MJ coarsening.
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Figure 4. Comparison of the drainage system mainstream elevations observed,
in high-resolution topographic data and in digital elevation models obtained
from nearest neighbor(NN), majority method (MJ), and hydrography-driven
(HD) coarsening.

(a) New elevation of the mainstream channel after depression-filling from a
hydrography-driven (HD) coarsening of the 100m grid digital versus the original
elevation (b) New elevation of the mainstream channel after depression-filling
from a majority (MJ) coarsening of the 100m grid digital versus the original ele-
vation. (c) New elevation of the mainstream channel after depression-filling from
a nearest neighbor (NN) of the 100m grid digital versus the original elevation.

The MJ coarsening strategy produces local artifacts and abnormal depression-
filling in upstream areas (Figure 4b), filling depression with a straight line to
the upstream elevation instead of filling depression close to elevation, while HD
and NN after depression-filling are significantly closer to the elevation of the
upstream area observed in the high resolution topographic data (Figures 4a and
4c). The results reported in Figure 4 reveal the ability of the HD coarsening
strategy retain the terrain orientation in the high-resolution topographic data
and the information regarding estuary elevation and reduce impact of depression-
filling.

In overall, the greater ability of the HD coarsening strategy to preserve the
information content of high-resolution topographic data as compared to the MJ
and NN coarsening strategies, the HD coarsening strategy maintains the deep
contours observed in the high-resolution terrain data and minimizes the effects of
depression filling. The elevation used in the HD coarsening is hydrographically
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more significant than the elevation used in the MJ and NN coarsening strategies
as it provides a better description of the profiles of surface flow paths with direct
implications on the description of land surface topography due to the reduction
of the impact of depression-filling.

4.2 Discharge
In many karst systems worldwide, numerous karst features facilitate the ex-
change of water between the surface, the vadose zone and porous aquifers (Bailly-
Comte et al. 2008). These interactions play an important role in the surface
water and groundwater cycle processes. Karst trough areas have complex to-
pographic features, and therefore the slope of the model inputs with direct
implications on the flow estimation from the model simulations. The choosing
of the coarsening method with a remarkably better ability to preserve the infor-
mation content of high-resolution topographic data is essential for an integrated
hydrological model to calculate hydrological fluxes.

In this study, the different coarsening strategy simulated water balance compo-
nent (Streamflow and Evapotranspiration) is generally judged to be excellent
for this purpose with the following measures: MAE < 0.6, � > 0.6, NSE > 0.7,
or PBIAS < 20 %.

Figure 5 demonstrate the ability of ParFlow.CLM simulated hourly overland
flow for 2018 year using different coarsening methods at the outlet. The HD,
MJ, and NN coarsening strategies for Spearman’s � are 0.85, 0.77 and 0.82,
while the same for NSE are 0.71, 0.59 and 0.66, PBIAS are -5.14%, -10.15%
and -2.35%, MAE are 0.42, 0.60 and 0.49 respectively (Figure 5). The perfor-
mance of streamflow simulation varies widely across the coarsening strategies.
For instance, HD coarsening strategy also appropriately simulate observed flows
perform with MAE < 0.5, � > 0.5 and PBIAS < 10%, NSE > 0.7, with the corre-
lation coefficient (r) > 0.8, meeting performance criterias (Figure 5b). While the
results of the simulated streamflow by the NN coarsening method perform with
MAE < 0.5, � > 0.5 and PBIAS < 10%, NSE > 0.6, PBIAS = -2.35% showing
that the simulation tends to overestimate the observed flows (Figure 5a). Con-
versely, the results of the simulated streamflow by the MJ coarsening strategy
shows poor timing performance (� of 0.32) and higher overall bias (Figure 5c).
The results of the simulated streamflow by the NN coarsening method perform
with MAE < 0.6, � > 0.3 and PBIAS < 20%, NSE > 0.5, r > 0.7, PBIAS
= -10.15%, and NSE = 0.59 not fit the performance criteria and struggles to
capture low flows, indicating that the MJ coarsening strategy is certainly the
coarsening strategy with the worst streamflow simulation performance. Overall,
in the case of streamflow simulation, HD, MJ and NN coarsening methods all
overestimate the observed streamflow, HD coarsening method perform slightly
better than NN coarsening method. NN and HD coarsening offers a remarkably
better ability than the MJ coarsening to simulate streamflow at the outlet.
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Figure 5. Comparison of hourly observed flow and simulated flow by three
coarsening methods of HD, MJ and NN at the outlet of the study area.

4.3 Evapotranspiration
Figure 6 compares the simulated daily ET using different coarsening methods
for 2021 year with the observed evapotranspiration. The simulated ET results
of HD coarsening strategy perform with Spearman’s � are 0.61, the correlation
coefficient (r) are 0.71, the MAE are 0.46 and PBIAS are 12.70%, fitting the
performance criteria for each indicator and showing good agreement with the
observed values in the summer, autumn and winter seasons (6-12) (Figure 6a).
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The simulated ET results of MJ coarsening strategy perform with Spearman’s �
are 0.37, the correlation coefficient (r) are 0.43, the MAE are 0.65 and PBIAS
are 34.15%, the simulated ET results of NN showed perform with Spearman’s �
are 0.39, the correlation coefficient (r) are 0.41, the MAE are 0.58 and PBIAS
are 33.62% (Figure 6b). The evapotranspiration simulation curves for MJ and
NN coarsening methods did not show peaks consistent with observed values
in the case of heavy rainfall, and simulated values of both coarsening methods
underestimated observed value in summer and autumn season and overestimated
observed values in winter season. While The NN coarsening method revealed a
prominent ability to simulate evapotranspiration in spring autumn (Figure 6c).
The error in the wet period is clearly lower than the error in the dry period. The
different performance metrics indicate that the HD coarsening method perform
better than NN and MJ coarsening method and NN coarsening method perform
slightly better than MJ coarsening method.

The results indicate that there is a nonlinear and nonsystematic influence of
slope at the same meteorological forcing conditions on the evapotranspiration
simulation. When using coarse resolution hydrological models, any depression
within the grid cells can lead the magnitude of the slope resulting in locally to
large underestimation of evapotranspiration. The gentle slope cases are gener-
ally wetter locally (i.e., highest ET, higher runoff, and hydraulic pressure head)
(Leonarduzzi et al., 2021). HD coarsening method overestimates evaporation
during the wet season (when rainfall is high), while MJ and NN coarsening
method underestimates evapotranspiration during the wet season and does not
reach the peak of ET during periods of high rainfall. 4.1 indicates that the loss
of terrain information when using the MJ and NN coarsening method leads to
the slope of the grid cells being high, resulting in an underestimation of the
simulated peak of ET for the MJ and NN coarsening method. The value of the
simulated ET by MJ and NN coarsening method has a much weaker consistency
with the observed ET than HD coarsening method.
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Figure 6. Comparison of daily observed evapotranspiration and simulated by
three coarsening methods of HD, MJ and NN.

4.4 Soil moisture
Figure 7 illustrates the temporal variation curves of the simulated hourly soil
moisture and observed values using different coarsening methods. The results
show that the soil moisture at 20 cm depth simulated by HD, MJ and NN coars-
ening methods all underestimate the observed at 20 cm (HD: PBIAS = 0.031%,
MJ: PBIAS = 0.024%, NN: PBIAS = 0.018%) (Figure 7a and Table 3). The
simulated soil moisture at 20cm is in good consistency with the observed actual
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soil moisture performed with the HD coarsening method, has a high correlation
coefficient (0.608; maximum), high spearman coefficient (� = 0.593), small bias
(PBIAS = 0.031%), and small MAE (0.037; minimum) (Table 3). The simu-
lated soil moisture at the 20cm depth curve of HD coarsening method generally
agrees with the observed curve in the autumn season (8-10 in 2021) (Figure
7a and Table 3). However, the simulation performance of the HD coarsening
method is weaker in the case of simulating soil moisture at 50 cm depth, with the
correlation coefficient of r (0.559) and small Spearman’s � (0.549), but was able
to resemble well soil moisture in summer season (Figure 7a and Table 3). The
HD coarsening method model simulations tend to underestimate soil moisture
at 50 cm depth, particularly during winter conditions. In general, the hourly
soil moisture is predicted by the ParFlow.CLM using HD coarsening method at
20cm and 50cm depths agree with the observed SM data relatively better in the
summer and autumn seasons than in the spring and winter seasons.

MJ coarsening method was not able to resemble well soil moisture at the 20 cm
depth in the spring season (1-3 in 2022). The performance evaluation metrics
indicate a poor model performance for soil moisture simulation at 20cm depth for
the overall model of the MJ coarsening method, with small correlation coefficient
r (0.575; minimum), small Spearman’s � (0.542; minimum), and MAE (0.041;
medium) (Figure 7b and Table 3). The model performance improved at 50 cm
depth. It was able to resemble well soil moisture in summer-autumn (4-6 in
2021), but the overall model still underestimated the soil moisture at 50 cm
depth (PBIAS = 0.012%), with a high Spearman coefficient � (0.727) and a
high correlation coefficient r (0.693) (Table 3). MJ coarsening method could
resemble better soil moisture at the 50 cm depth during the summer season and
dry period (8-9) for the 2021 year (Figure 7b).

The simulated values of NN at 20 cm depth tend to be lower, especially during
the autumn rainy season (i.e. July). Both overestimation (e.g. October 2021)
and underestimation (e.g. April-July 2021) of soil water moisture occurred
(Figure 7c and Table 3). The NN coarsening method simulated soil moisture
at 20cm depth with MAE at 0.042, Spearman’s � at 0.595, and the correlation
coefficient (r) at 0.606. At 50 cm depth the percent bias of simulated soil
moisture was reduced to -0.002%, with MAE are 0.022, Spearman’s coefficient �
being 0.565, and the correlation coefficient (r) are 0.563 (Table 3). The overall
model performance of the NN coarsening method was moderate in MJ and HD
coarsening methods, this is also supported by performance indices listed in Table
3.

The results clearly show that the HD coarsening method performs better than
NN and MJ coarsening method for the SM simulation at the 20cm depth, and
MJ coarsening method performs better than NN and HD coarsening method for
the SM simulation at the 50cm depth. The overall model performance of the
NN coarsening method was moderate in MJ and HD coarsening method for the
SM simulation.
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Figure 7. Comparison of hourly observed soil moisture at 20 cm depth and 50
cm depth and simulated by three coarsening methods in HD, MJ and NN.

The simulations provide information on the potential errors associated with dif-
ferences in coarsening methods when coarsening high-resolution digital elevation
models into coarse-grid digital elevation models, which can affect surface soil
moisture when regional hydrological models and coarse-resolution grid models
are used to calculate hydrological fluxes. At coarse grid scales, due to grid het-
erogeneities, the region of land classification becomes more significant at coarse
grid scales and leading to overestimation or underestimation of soil moisture
and loss of topographic information at coarser scales, leading to gentle topog-
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raphy, with lower evapotranspiration and lower streamflow, and overestimation
of surface soil moisture.

For a better understanding of how soil moisture is influenced by topographic
configuration and soil geometry(Baroni et al., 2019), the variation in the spa-
tially distributed simulated infiltration by three different coarsening method on
2 January to 6 January 2021 is depicted in Figure 8. The model of different
coarsening method simulations showed similar mean infiltration, but the struc-
ture differed remarkably in the spatial distribution. At the equivalent meteoro-
logical forcing conditions, it can be shown that the distribution of infiltration is
not correlated to the precipitation distribution but rather to soil properties and
land use (cf. Figures 8 and 2), the smaller-scale hydrological fluxes spatial struc-
tures simulated by ParFlow.CLM are strongly related with the river network
and topography. Different coarsening methods lead to significant differences in
the spatial distribution of infiltration, with the simulation of infiltration spatial
distribution for HD coarsening method being the most realistic (Figures 8a and
2a).

Figure 8. The spatially distributed simulated hourly mean soil infiltration
(mm H2O/s) by three coarsening methods of HD, MJ and NN at the identical
meteorological forcing.

Figure 9 shows the EEMD significance test of the simulated soil moisture at
the 20cm and 50cm depth of the three coarsening methods. The blue and red
curves represent the 95% and 99% significance range; values outside this range
are statistically significant at 95% and 99%, respectively.

In the case of simulating soil moisture at the 20cm depth, the energy of IMF
1-10 of three coarsening methods all passed the 95% significance range (Figures
9a-9c). In the case of simulating soil moisture at the 50cm depth, the energy of
IMF 1-10 of HD and MJ coarsening method passed the 95% significance range
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(Figures 9d and 9e). For NN coarsening method, the components of IMFs of
evapotranspiration simulation passed 95% significance test, except for IMF3,
IMF4 and IMF5 (Figure 9f). From the regression coefficient matrix of soil
moisture simulation at the 20cm depth for the three coarsening methods (Table
4), it is noticed that the components of IMFs of three coarsening methods passed
the 95% significance test. The components of SM simulation at 20cm depth
of HD and MJ coarsening method positively influence their respective modes.
For NN coarsening method, except for IMF4, the components of IMFs have a
positive influence on the modes. In the case of the SM, simulation at 50cm
depth (Table 5), the components of IMFs of HD coarsening method positively
influence the modes, except for IMF7. The components of IMFs of the MJ
coarsening method all positively influence the modes. For the NN coarsening
method, the coefficients of IMF1 and IMF2 negatively influence the modes.

The results indicate that the simulated SM results of the three coarsening meth-
ods are all statistically significant.

Figure 9. The EEMD significance test result of simulated soil moisture at 20
cm depth and 50 cm depth for three coarsening methods in HD, MJ and NN.
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Table 3. Performance evaluation metics(PEM) of different models for soil
moisture simulations

Methods PEM SM(20cm) SM(50cm)
HD MAE 0.037 0.019

PBIAS 0.031 0.021
r 0.608 0.559
Spearman’s � 0.593 0.549
RMSE 0.050 0.027

MJ MAE 0.041 0.022
PBIAS 0.024 0.012
r 0.575 0.693
Spearman’s � 0.542 0.727
RMSE 0.055 0.031

NN MAE 0.042 0.022
PBIAS 0.018 -0.002
r 0.606 0.563
Spearman’s � 0.595 0.565
RMSE 0.055 0.033

Table 4. Regression coefficient matrix for the IMFs of simulated soil moisture
at 20 cm depth of HD, MJ, and NN coarsening methods.

Methods Mode number Regression coefficients for mode number P>t
HD IMF1 0.397 0.000

IMF2 0.353 0.000
IMF3 0.201 0.000
IMF4 0.186 0.000
IMF5 0.601 0.000
IMF6 0.305 0.000

MJ IMF1 0.498 0.000
IMF2 0.513 0.000
IMF3 0.392 0.000
IMF4 0.395 0.000
IMF5 0.189 0.000
IMF6 0.311 0.000
IMF7 1.183 0.000

NN IMF1 0.266 0.000
IMF2 0.279 0.000
IMF3 0.188 0.000
IMF4 -0.181 0.000
IMF5 0.746 0.000
IMF6 0.394 0.000

22



Table 5. Regression coefficient matrix for the IMFs of simulated soil moisture
at 50 cm depth of HD, MJ, and NN coarsening methods.

Methods Mode number Regression coefficients for mode number P>t
HD IMF1 0.165 0.000

IMF2 0.188 0.000
IMF3 0.366 0.000
IMF4 0.373 0.000
IMF5 0.388 0.000
IMF6 0.646 0.000
IMF7 -3.045 0.000

MJ IMF1 0.498 0.000
IMF2 0.513 0.000
IMF3 0.392 0.000
IMF4 0.395 0.000
IMF5 0.189 0.000
IMF6 0.311 0.000
IMF7 1.183 0.000

NN IMF1 -0.027 0.375
IMF2 -0.019 0.231
IMF3 0.156 0.000
IMF4 0.289 0.000
IMF5 0.483 0.000
IMF6 0.213 0.000
IMF7 0.309 0.000

4.5 Latent heat fluxes and top soil temperatures
The difference in hourly top soil temperatures simulated by HD, MJ and NN
coarsening methods for 2021 year relative to observed value in the ERA5 is
depicted in Figure 10. The HD coarsening strategies for Spearman’s �=0.95,
PBIAS=0.66%, R2=0.82, NSE=0.895, the MJ coarsening strategies for Spear-
man’s �=0.94, PBIAS=0.52%, R2=0.85, NSE=0.892, the MJ coarsening strate-
gies for Spearman’s �=0.94, PBIAS=0.63%, R2=0.82, NSE=0.891 (Figures 10a-
10c). The boxplot and each performance metrics of the simulated and observed
top soil temperature value indicate that HD coarsening method perform slightly
better than MJ coarsening method, MJ coarsening method perform slightly bet-
ter than NN coarsening method, and there are minor differences between the
simulations for HD, MJ and NN coarsening method. The results reveal that the
top soil temperature simulated by ParFlow.CLM is not sensitive to slope.

Boxplot of the simulated and observed latent heat fluxes for the 2021 year
demonstrate that the simulated latent heat fluxes by HD, MJ, and NN coarsen-
ing method has weaker consistency with observed value performed with more
anomalies, and the median (green line) differs significantly from observations
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for the same meteorological forcing (Figures 11a-11c). The results indicate a
poor model performance for latent heat fluxes simulation for all models. This
situation may be due to the ERA5 hourly meteorological forcing being bilinear
interpolated in the study area; Thus, the deviations of precipitation, evapora-
tion, wind speed, humidity, and radiation can be derived from the data pro-
cessing or scaling of ERA5, resulting in model-calculated latent heat fluxes that
differ significantly from the observed values. Major biases exist in preprocessing
of ERA5 meteorological forcing and topography, latent heat fluxes, soil mois-
ture, evapotranspiration, and streamflow are sensitive to errors in drainage area,
topographic region, and precipitation or temperature bias.
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Figure 10. Comparison of hourly observed soil temperature at 20 cm depth
and simulated by three coarsening methods of HD, MJ and NN.

Figure 11. The box plot of soil temperature(ST) at 20 cm depth and latent(LE)
heat flux simulated and observed for three coarsening methods in HD, MJ and
NN.

5 Conclusion

In karst trough areas with complex topographic terrain, the slope is impor-
tant in affecting the resulting hydrologic fluxes (discharge, ET, soil moisture,
soil temperature etc.) simulated by an integrated hydrologic model. Consid-
ering that slope would affect the accuracy of hydrologic processes simulation,
this work provides an option for the coarsening method in the application of
hydrologic modeling. In this study, the numerical experiment based on the inte-
grated hydrological model ParFlow-Common Land Model (ParFlow.CLM) was
conducted to quantify the impact of different grid coarsening methods on the
prediction results. The main findings are:

1. At the same meteorological forcing, trends in ET, infiltration, the 20cm
and 50cm soil thickness moisture are most sensitive to slope, and the top soil
temperature are less sensitive to the slope.

2. The combined MAE, NSE, r, R2, PBIAS, Spearman coefficient, and EEMD
significance test demonstrated that HD coarsening method performs slightly
better in the case of streamflow simulation case NN coarsening method. HD
and NN coarsening offer a remarkably better ability than the MJ coarsening
to simulate streamflow at the outlet. The value of the simulated ET by MJ
and NN coarsening method has a much weaker consistency with the observed
ET than HD coarsening method; the performance of NN coarsening method was
better than the MJ coarsening method. In the case of SM simulation, the overall
model performance of the NN coarsening method was moderate in MJ and HD
coarsening methods. The accuracy of HD coarsening method simulation higher
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than MJ coarsening method in the case of 20cm SM simulation. Oppositely,
the accuracy of MJ coarsening method higher than HD coarsening method in
the case of 50cm SM simulation. Different coarsening methods lead to signifi-
cant differences in the spatial distribution of infiltration, with the simulation of
spatial infiltration distribution for the HD coarsening method being the most
realistic. For topsoil temperature, the R2 value of HD, MJ, and NN coarsening
methods exceeded 0.9, and HD coarsening method’s simulation accuracy was
slightly better than MJ and NN coarsening methods. Poor model performance
for latent heat fluxes simulation for all model.

3. Concerning extracted surface flow paths, the drainage system mainstream
of HD extracts the curved river channel according to the topography and re-
tains the essential information about the highest-order path observed within the
coarse grid cell. The topographic information is easily lost when high-resolution
topographic data describing a trough area is coarsened by using standard NN
coarsening and MJ coarsening.

As a result, the HD coarsening is hydrographically more significant than NN
and MJ coarsening, as it provides a better description of the surface flow path
that is more closely to the high-resolution topography and reduces the effects
of depression-filling. The accurate description of the channel network and to-
pographic information are critical for calculating hydrological fluxes (soil water
moisture, streamflow and evapotranspiration) with an integrated model and
exploring the hydrological interactions between the hillslope and channel net-
work. The HD coarsening method is advocated for hydrological events where
ParFlow.CLM uses coarse grid resolution to simulate hydrological processes re-
quiring detailed descriptions of the topography and river channel grid.
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