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Abstract

A major challenge in the inversion of subsurface parameters is the ill-posedness issue caused by the inherent subsurface com-

plexities and the generally spatially sparse data. Appropriate simplifications of inversion models are thus necessary to make

the inversion process tractable and meanwhile preserve the predictive ability of the inversion results. In the present study, we

investigate the effect of model complexity on the inversion of fracture aperture distribution as well as the prediction of long-

term thermal performance in a field-scale single-fracture EGS model. Principal component analysis (PCA) was used to map the

original cell-based aperture field to a low-dimensional latent space. The complexity of the inversion model was quantitatively

represented by the percentage of total variance in the original aperture fields preserved by the latent space. Tracer, pressure and

flow rate data were used to invert for fracture aperture through an ensemble-based inversion method, and the inferred aperture

field was then used to predict thermal performance. We found that an over-simplified aperture model could not reproduce

the inversion data and the predicted thermal response was biased. A complex aperture model could reproduce the data but

the thermal prediction showed significant uncertainty. A model with moderate complexity, although not resolving many fine

features in the “true” aperture field, successfully matched the data and predicted the long-term thermal behavior. The results

provide important insights into the selection of model complexity for effective subsurface reservoir inversion and prediction.
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Key Points: 14 

• Combined dimensionality reduction and data assimilation to infer fracture aperture 15 
distribution from tracer recovery data. 16 

• Quantitatively investigated the effect of model complexities on the aperture inversion and 17 
thermal prediction of a field-scale EGS. 18 

• A moderate model complexity is sufficient to reproduce tracer recovery data and provide 19 
accurate thermal predictions.  20 
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Abstract 21 

A major challenge in the inversion of subsurface parameters is the ill-posedness issue caused by 22 
the inherent subsurface complexities and the generally spatially sparse data. Appropriate 23 
simplifications of inversion models are thus necessary to make the inversion process tractable 24 
and meanwhile preserve the predictive ability of the inversion results. In the present study, we 25 
investigate the effect of model complexity on the inversion of fracture aperture distribution as 26 
well as the prediction of long-term thermal performance in a field-scale single-fracture EGS 27 
model. Principal component analysis (PCA) was used to map the original cell-based aperture 28 
field to a low-dimensional latent space. The complexity of the inversion model was 29 
quantitatively represented by the percentage of total variance in the original aperture fields 30 
preserved by the latent space. Tracer, pressure and flow rate data were used to invert for fracture 31 
aperture through an ensemble-based inversion method, and the inferred aperture field was then 32 
used to predict thermal performance. We found that an over-simplified aperture model could not 33 
reproduce the inversion data and the predicted thermal response was biased. A complex aperture 34 
model could reproduce the data but the thermal prediction showed significant uncertainty. A 35 
model with moderate complexity, although not resolving many fine features in the “true” 36 
aperture field, successfully matched the data and predicted the long-term thermal behavior. The 37 
results provide important insights into the selection of model complexity for effective subsurface 38 
reservoir inversion and prediction. 39 

1 Introduction 40 

Flow and transport processes in geothermal reservoirs highly depend on spatially 41 
heterogeneous reservoir properties, such as permeability distribution in a hydrothermal system 42 
(Cox et al., 2001; Dobson et al., 2003; Shi et al., 2018) and fracture aperture distribution in an 43 
enhanced geothermal system (EGS) (Chen & Zhao, 2020; Guo, Fu, Hao, Peters, & Carrigan, 44 
2016; Okoroafor et al., 2022; Wu, Fu, Morris, et al., 2021). Characterizing permeability/aperture 45 
fields is important for the modeling, prediction, optimization and long-term risk management of 46 
geothermal reservoirs. However, due to the high cost and technical difficulties in directly 47 
measuring subsurface fields, available permeability/aperture data are generally spatially sparse. 48 
A comprehensive characterization is often performed through the inversion of indirect hydraulic 49 
or geophysical data, such as hydraulic and tracer testing data (Berkowitz, 2002; Chen et al., 50 
2013; Somogyvári et al., 2017; Vogt et al., 2012; Wu, Fu, Hawkins, et al., 2021), electrical 51 
resistivity (Johnson et al., 2021; Wu et al., 2019), seismic (Emerick, 2018; Liu & Grana, 2020), 52 
and so on. A key component of hydraulic/geophysical inversion is a reliable model that can 53 
properly simulate the underlying physical processes and output model responses for given model 54 
parameters. As analytical models are only applicable to idealized scenarios with over simplified 55 
fields, numerical models are required for the inversion of representative fields in real-world 56 
applications. The infinite-dimensional space of a heterogeneously distributed field is projected to 57 
a finite-dimensional parameter space by discretizing the model on a finite element mesh. 58 

A major challenge in permeability and aperture inversion is the ill-posedness issue caused 59 
by the high dimensionality of model parameter space and the scarcity of hydraulic/geophysical 60 
data. A reliable numerical approximation of model responses requires a relatively fine 61 
discretization, which inevitably leads to a high-dimensional parameter space. Practically 62 
available hydraulic/geophysical data are usually insufficient to constrain such a high-dimensional 63 
parameter space. To tackle this challenge, dimensionality reduction methods have been used to 64 
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map the discretization-dependent, cell-based high-dimensional parameter space to a low-65 
dimensional latent space (Jiang et al., 2021; Laloy et al., 2013; Marzouk & Najm, 2009; Tang et 66 
al., 2021; Xiao et al., 2022; Zhu & Zabaras, 2018). Principal component analysis (PCA) is a 67 
conventional dimensionality reduction method, which learns spatial similarities in training 68 
samples (prior permeability or aperture models) and compress the most salient features into a 69 
latent space defined by orthogonal principal components (Hawkins et al., 2020; Sarma et al., 70 
2008; Wu, Fu, Hawkins, et al., 2021; Zhang et al., 2020). As a linear transform method, PCA is 71 
applicable to Gaussian and log-normal fields that can be fully characterized by two-point 72 
statistics. For fields that follow non-Gaussian distributions, nonlinear transform methods are 73 
required for effective dimensionality reduction, such as deep learning-based methods (e.g., 74 
generative adversarial network and variational autoencoder) that have been widely explored in 75 
the recent literature (Canchumuni et al., 2020; Jiang & Jafarpour, 2021; Laloy et al., 2018; Mo et 76 
al., 2020). 77 

The reduction of model dimensionality essentially leads to the reduction of model 78 
complexity. In a cell-based parameter space, each cell value is tuned independently during 79 
inversion, and the model has the maximum variance. Through dimensionality reduction, the prior 80 
knowledge in training samples, such as spatial auto-correlation and statistical features, are 81 
learned and used to reduce the model degree of freedom (model complexity). The learned prior 82 
knowledge serves to constrain the heterogeneous distribution of permeability/aperture fields and 83 
regularize subsequent inversion. Inversion on a low-dimensional latent space not only mitigates 84 
the ill-posedness issue and make the inversion computationally tractable, but also better honors 85 
the spatial auto-correlation nature of permeability/aperture fields than inversion on a cell-based 86 
parameter space does. The tuning of a latent parameter changes the overall spatial distribution of 87 
a field rather than its value at a single cell, which is a highly desired feature for inversion in a 88 
data-scarce environment. 89 

Latent space dimensionality, as a quantitative measure of model complexity, is a 90 
hyperparameter that needs to be carefully determined prior to dimensionality reduction. On the 91 
one hand, model complexity should be deliberately compromised to accommodate the limited 92 
information in hydraulic/geophysical data. On the other hand, the model needs to capture 93 
adequate variations in the unknown field to appropriately simulate the underlying physical 94 
processes. An extremely complex model is prone to overfitting and may undermine the 95 
predictive ability of the inferred permeability/aperture fields, while an over-simplified model 96 
may fall into the opposite error of underfitting and be unable to reproduce hydraulic/geophysical 97 
data. Unfortunately, due to the many inherent complexities of subsurface reservoirs, it is 98 
difficult, if not impossible, to predetermine an ideal model complexity for permeability/aperture 99 
inversion from hydraulic/geophysical data. In most previous studies, the dimensionality of latent 100 
space is subjectively determined (Yang et al., 2021). Some studies used relatively large latent 101 
spaces to preserve at least 90% of the total variance in original cell-based parameter spaces when 102 
using PCA for dimensionality reduction (Hawkins et al., 2020; Laloy et al., 2013; Tang et al., 103 
2021; Zhao & Luo, 2020). Some other studies, on the other hand, preserved 50% ~ 60% of the 104 
total variance through relatively small latent spaces (Romary, 2009; Fernández-Martínez et al., 105 
2012; Emerick, 2017). The dimensionality of the resultant latent spaces in these studies varies 106 
from 30 to 1,000. 107 

Although dimensionality reduction methods have been widely used in 108 
permeability/aperture inversion, how to select an appropriate model complexity/latent space to 109 
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circumvent the dilemma of overfitting and underfitting remains unclear. The effects of model 110 
complexity on permeability/aperture inversion and subsequent reservoir performance prediction 111 
require further investigation. Several studies examined the effect of latent space dimensionality 112 
on forward simulation accuracy by first generating permeability/facies fields from latent spaces 113 
with different dimensionalities, and then performing forward simulations on these generated 114 
fields (Romary, 2009; Fernández-Martínez et al., 2012). The results indicated that a small latent 115 
space (preserving 50% - 60% of the total variance in the original cell-based parameter spaces) 116 
was sufficient to accurately simulate the underlying physical processes. Li & Cirpka (2006) 117 
investigated the effect of latent space dimensionality on the inversion of a 2D hydraulic 118 
conductivity field. With the increase of latent space dimensionality, the consumed computational 119 
resources increased, while the inversion error (defined as the root mean square error between 120 
true and inferred fields) gradually decreased and converged to a stable value. These studies focus 121 
on the effect of model complexity on forward and inversion modeling, but lack analysis of the 122 
predictive ability of the inversion results. Results from these studies provide insights into the 123 
lower limit of model complexity to prevent underfitting. However, the upper limit of model 124 
complexity to avoid overfitting, which manifests as good data match but poor predictive ability, 125 
remains unexplored. 126 

The main goal of the present study is to investigate the effect of model complexity on the 127 
inversion of fracture aperture distribution as well as the prediction of long-term thermal recovery 128 
in an EGS. PCA is used to map the original cell-based aperture distribution to a latent space. The 129 
corresponding model complexity is quantitatively represented by the percentage of total variance 130 
in the original aperture fields preserved by the latent space. An ensemble-based inversion 131 
method, ensemble smoother with multiple data assimilation (ES-MDA), is used for aperture 132 
inversion from practically available tracer, pressure and flow rate data. Through this 133 
investigation, we aim to analyze not only the minimum model complexity required to 134 
appropriately reproduce tracer/pressure/flow rate data, but also the impact of overfitting on 135 
thermal performance prediction due to excessive model complexity. The paper is organized as 136 
follows. In Section 2, we introduce PCA for the dimensionality reduction of spatially auto-137 
correlated aperture fields. Aperture fields generated from latent spaces with different 138 
dimensionalities are compared to demonstrate the effect of latent space dimensionality on model 139 
complexity. Section 3 describes a field-scale synthetic EGS model with a predominant horizontal 140 
fracture, followed by the introduction of forward simulation methods (flow, tracer and thermal) 141 
as well as a data assimilation framework using ES-MDA. In Section 4, synthetic tracer, pressure 142 
and flow rate data are provided to ES-MDA to invert for the latent space obtained from PCA. 143 
The inverted latent space is then mapped back to a cell-based aperture field to predict the thermal 144 
performance of the EGS model. A series of latent spaces with different dimensionalities are 145 
analyzed to investigate the effect of model complexity. Section 5 provides discussions regarding 146 
the implication of the results. 147 

2 Principal component analysis for dimensionality reduction 148 

Principle component analysis (PCA), also known as Karhunen-Loève (KL) expansion, is 149 
a well-established dimensionality reduction method. It has been broadly used in many subsurface 150 
inversion problems to map Gaussian or log-normal fields (e.g., permeability and aperture) to 151 
low-dimensional latent spaces that follow the standard normal distribution (Hawkins et al., 2020; 152 
Wu, Fu, Hawkins, et al., 2021). To perform PCA on the field of interest, we first generate an 153 
ensemble of training fields based on our prior knowledge of the field obtained from 154 
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geological/geophysical investigations such as core logs, wellbore images and outcrop analysis. 155 
The reduction of dimensionality is then achieved by first computing orthogonal principal 156 
components from the training fields, and then retaining the most significant principal 157 
components as the basis functions to generate new fields through linear combination. The 158 
principal components can be calculated through either computing the eigenvectors and 159 
eigenvalues of the covariance matrix of the training fields, or directly performing singular value 160 
decomposition (SVD) on the training fields. The significance of a principal component is 161 
represented by the percentage of the total variance in the training fields preserved by the 162 
principal component. For a spatially auto-correlated field, most of the variance in the training 163 
fields can be effectively preserved by a small number of principal components. New fields 164 
generated from the linear combination of the retained principal components have the same 165 
dimensionality as the training fields, and are fully controlled by the weights of the retained 166 
principal components. These weights form the latent space to be inferred in subsequent 167 
inversion. The detailed procedure of PCA has been widely reported in the literature (Liu & 168 
Durlofsky, 2020; Wu, Fu, Hawkins, et al., 2021) and therefore not repeated here. 169 

In the current study, the field of interest is the aperture distribution of a 2D fracture. To 170 
demonstrate the relationship between latent space dimensionality (i.e., the number of retained 171 
principal components) and model complexity, we perform PCA on training aperture fields and 172 
then compare the aperture fields reconstructed/generated with different numbers of principal 173 
components. We generate 5,000 aperture fields on an 800 m × 800 m domain discretized into a 174 
160 × 160 regular grid. We use sequential gaussian simulations and assume a spherical 175 
variogram with a mean of 0.6 mm, a standard deviation of 0.45 mm and a correlation length of 176 
75 m. The generated aperture fields follow a log-normal distribution, and are provided to PCA as 177 
training fields. After PCA, 5,000 principal components are obtained and ranked in a descending 178 
order according to their significance, i.e., percentage of preserved variance. We then use the first 179 
l principal components to reconstruct training aperture fields as well as generate new aperture 180 
fields. 181 

We first analyze the effect of l on training aperture field reconstruction. A random 182 
aperture field is selected from the training ensemble and reconstructed with l = 2, 10, 50, 200 and 183 
800 as shown in Fig. 1. The preserved percentage of total variance is 1%, 5%, 21%, 56% and 184 
84% for l = 2, 10, 50, 200 and 800 respectively. With a small l, the reconstructed aperture field is 185 
almost uniform and misses most of the variance in the training aperture field. With the increase 186 
of l, the complexity of the reconstructed aperture field increases, manifesting as the capture of 187 
fine features in the training aperture field. 188 

We then analyze the effect of l on new aperture field generation. A random l-dimensional 189 
latent parameter vector is first sampled from the standard normal distribution, and then used as 190 
the weights of the retained l principal components to generate a new aperture field. For each l, 191 
we generated 30 aperture fields and analyze their mean, standard deviation and correlation length 192 
(Fig. 2). The new aperture fields also follow log-normal distributions, but the mean, standard 193 
deviation and correlation length are different from that of the training fields. Compared with the 194 
training aperture fields, aperture fields generated from latent spaces exhibit smaller mean and 195 
standard deviation, and larger correlation length. For an extremely small latent space (l = 2), the 196 
mean of the generated aperture fields is slightly smaller than that of the training aperture fields. 197 
The standard deviation is significantly smaller than that of the training aperture fields, and the 198 
correlation length shows the opposite trend. A smaller standard deviation and a larger correlation 199 
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length lead to a smoother aperture distribution, and therefore a less complex aperture model. 200 
With the increase of l, the mean, standard deviation and correlation length gradually approaches 201 
to their corresponding values in the training aperture fields. 202 

 203 
Fig. 1 Reconstruction of a training aperture field. (a) A randomly selected aperture field from the 204 
training ensemble. (b) ~ (f) Reconstructed aperture fields using different numbers of principal 205 
components. 206 

 207 
Fig. 2 Box plots of mean, standard deviation and correlation length of aperture fields generated 208 
with different numbers of principal components. The box plots show the minimum, maximum, 209 
average, as well as the 25% (Q1) and 75% (Q3) percentiles. The mean, standard deviation and 210 
correlation length are normalized by their corresponding values used to generate the training 211 
aperture fields, i.e., 0.6 mm, 0.45 mm and 75 m respectively. For correlation length, we show the 212 
reciprocal of the normalized correlation length. 213 

3 An EGS model and forward simulation/inversion methods 214 

In this section, we develop a field-scale single-fracture EGS model to demonstrate the 215 
effect of model complexity on aperture inversion and thermal prediction (Fig. 3). Data used for 216 
aperture inversion include practically available tracer, pressure and flow rate data. In what 217 
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follows, we first describe the model details and then the numerical simulation of flow, tracer 218 
transport and thermal extraction in the EGS model. Finally, we briefly introduce a data 219 
assimilation framework developed in our previous work (Wu, Fu, Hawkins, et al., 2021), which 220 
has proven an effective method for aperture inversion and thermal prediction. 221 

3.1 A field-scale single-fracture EGS model 222 

The developed EGS model is 3000 × 3000 × 3000 m3 in dimension with a horizontal 223 
circular fracture 800 m in diameter, located at the center of the model. An injection well and two 224 
production wells are connected by the fracture (Fig. 3(a)). A vertical temperature gradient of 225 
40 °C/km is assumed in the model with an initial temperature of 200 °C at the fracture depth. 226 

 227 

Fig. 3 (a) A field-scale EGS model with a horizontal circular fracture located at 1,500 m depth. 228 
(b) A Gaussian aperture field and the corresponding flow field under 20 L/s injection rate and 229 
constant pressure at the two production wells. (c) A non-Gaussian, two facies aperture field and 230 
the corresponding flow field under 20 L/s injection rate and constant pressure at the two 231 
production wells. 232 

We investigate two “true” aperture fields, one is a spatially auto-correlated log-normal 233 
field (Fig. 3(b)) and the other is a two facies field (Fig. 3(c)). The log-normal aperture field is 234 
randomly generated from sequential gaussian simulation assuming a spherical variogram with a 235 
mean of 0.6 mm, a standard deviation of 0.45 mm and a correlation length of 75 m. The two 236 
facies aperture field is generated using the ‘snesim’ geostatistical algorithm (Strebelle, 2002) 237 
from a geostatistical tool box SGeMS (Remy et al., 2009). The background aperture is 0.2 mm 238 
and the aperture of flow channels is 1 mm. Note that the three wells are connected by flow 239 
channels. Although the two aperture fields follow different statistical distributions, we use the 240 
same aperture model in subsequent inversion for them, i.e., log-normal aperture model. We use 241 
the two facies aperture example to demonstrate the scenario where the statistical distribution of 242 
the ground truth field fundamentally differs from that of the assumed aperture distribution in the 243 
inversion process. This is commonly encountered in real-world problems as the ground truth 244 
field is complex and we do not have sufficient data to correctly characterize its statistical 245 
distribution. 246 
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3.2 Flow, tracer and thermal simulation 247 

Flow and tracer simulation is performed to generate synthetic data for the “true” aperture 248 
fields, including tracer breakthrough curves (BTCs) and flow rates at the two production wells, 249 
as well as the pressure difference between the injection and production wells. The data are then 250 
provided to a data assimilation framework (Section 3.3) for aperture inversion, during which 251 
tracer simulation is used as forward model to simulate tracer, pressure and flow rate responses 252 
under various aperture scenarios. After inversion, thermal simulation is performed for both the 253 
“true” and inferred aperture fields to examine the predictive ability of the inferred aperture fields. 254 

The discretization of the model is as follows. The fracture plane is represented by a thin 255 
layer 4 mm in thickness, and the in-plane mesh resolution is 5 ´ 5 m2 within the circular fracture 256 
and gradually increases to 150 ´ 150 m2 in the far field. For the surrounding rock formations, the 257 
mesh resolution is 5 ´ 5 ´ 2.5 m3 near the fracture plane and becomes progressively coarser in 258 
the far field. The resulting computational domain consists of approximately 2,800,000 elements. 259 
A massively parallel multi-physics simulation platform developed at the Lawrence Livermore 260 
National Laboratory (Settgast et al., 2017), GEOS, is used for flow, tracer and thermal 261 
simulation. GEOS provides a thermal-hydro-mechanical-chemical framework to simulate 262 
various physical processes in subsurface reservoirs, such as fluid flow, mass and heat transport, 263 
and hydraulic fracturing (Fu et al., 2013; Fu et al., 2016; Vogler et al., 2018; Wu, Fu, Morris, et 264 
al., 2021). The implementation of flow, tracer and thermal modules relevant to the present study 265 
has been described in the literature (Guo, Fu, Hao, & Carrigan, 2016; Guo, Fu, Hao, Peters, & 266 
Carrigan, 2016), and therefore not repeated here. 267 

We first simulate the flow field and then solve the advection-dispersion-sorption equation 268 
based on the obtained flow field to simulate tracer transport processes. Note that we do not 269 
consider mechanical simulation, indicating that the fracture aperture distribution does not evolve 270 
during flow and tracer transport processes. Table 1 lists the parameters for flow and tracer 271 
modeling. As the fracture plane is represented by a thin layer, we calculate the equivalent 272 
porosity and permeability of the fracture through ϕ = w/H and k = w3/12H respectively (Guo, Fu, 273 
Hao, & Carrigan, 2016), where w is the aperture and H is the thickness of the fracture layer. Due 274 
to the relatively low rock formation permeability and the minor effect of matrix diffusion on 275 
tracer transport (Wu, Fu, Hawkins, et al., 2021), we assume that tracer transport is confined 276 
within the circular fracture and only consider the fracture for tracer modeling. Fracture 277 
boundaries are assumed impermeable. A hydrostatic initial pressure is assumed in the model with 278 
a pressure of 30 MPa at the fracture depth. The flow field in the fracture is simulated with an 279 
injection rate of 20 L/s and a constant downhole pressure of 30 MPa at the two production wells 280 
(Fig. 3(b) and (c)). According to the simulation results, the pressure difference between the 281 
injection and production wells and flow rates at production well 1 and 2 are 824 kPa, 5.9 L/s, and 282 
14.1 L/s respectively for the log-normal aperture field (Fig. 3(b)), and 178 kPa, 12.2 L/s, and 7.8 283 
L/s respectively for the two facies aperture field (Fig. 3(c)). 284 

We inject tracers into the fracture for one hour and simulate tracer transport for 20 hours 285 
to obtain tracer BTCs at the two production wells (Fig. 4). We consider both conservative and 286 
sorptive tracers. Note that for the simulation of a sorptive tracer, we assume an equilibrium 287 
sorption process with a typical partition coefficient of 1 mm. Compared with the conservative 288 
tracer BTCs, the sorptive tracer BTCs exhibit delayed peaks and reduced peak concentrations 289 
due to sorption effects. The tracer BTCs from the two facies aperture field show earlier arrival 290 



Manuscript submitted to Water Resources Research 

 9 

and larger peak concentration magnitude than that from the log-normal aperture field do, 291 
especially for the BTCs at production well 1. 292 

For thermal simulation, we circulate water among the injection and production wells for 293 
50 years, with an injection rate of 20 L/s, an injection temperature of 50 °C, and a constant 294 
downhole pressure of 30 MPa at the two production wells. The upper, lower and lateral model 295 
boundaries are assumed impermeable to both fluid and heat. Parameters for thermal simulation 296 
are also listed in Table 1. For the log-normal aperture field, the production temperature at 297 
production well 1 decreases slower than that at production well 2 does (Fig. 4(a)), while for the 298 
two facies aperture field, the production temperature at production well 1 decreases faster. 299 

Table 1 Parameters for flow, tracer and thermal simulations of the EGS model. 300 
Parameter Value 

Porosity of rock matrix 0.01 

Permeability of rock matrix (m2) 1 × 10-16 

Density of rock matrix (kg/m3) 2500 

Specific heat capacity of rock matrix (J/kg/K) 790 

Thermal conductivity of rock matrix (W/m/K) 2.5 

Density of water (kg/m3) 887.2 

Dynamic viscosity of water (Pa·s) 1.42 × 10-4 

Compressibility of water (Pa-1) 5 × 10-10 

Specific heat capacity of water (J/kg/K) 4460 

Longitudinal dispersivity (m) 0.2 

Transverse dispersivity (m) 0.02  

Partition coefficient (mm) 1 

 301 
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 302 

Fig. 4 Tracer (upper) and thermal (lower) breakthrough curves at the two production wells. (a) 303 
Results for the log-normal aperture field. (b) Results for the two facies aperture field. The 304 
simulated tracer concentration is normalized by injection concentration C0. 305 

3.3 A data assimilation framework for aperture inversion and thermal prediction 306 

The data assimilation framework developed in Wu, Fu, Hawkins, et al. (2021) is used in 307 
the current study for aperture inversion and thermal prediction. The framework includes three 308 
major components, i.e., parameterization, inversion and prediction. Here we briefly introduce the 309 
key procedures of applying the framework to the aperture inversion and thermal prediction in 310 
this study. We refer to Wu, Fu, Hawkins, et al. (2021) for more details of the framework. 311 

3.3.1 Parameterization 312 

The latent spaces generated in Section 2 are used as parameter spaces for aperture 313 
inversion. Five latent spaces with dimensionalities of 2, 10, 50, 200 and 800 (Fig. 1) are 314 
considered. Note that the aperture field generated from the latent spaces has a square shape (800 315 
m × 800 m), while the aperture field in the EGS model has a circular shape (800 m in diameter). 316 
Therefore, only the field within the inscribed circle of the generated 800 m × 800 m aperture 317 
field is used for flow, tracer and thermal simulation. 318 
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3.3.2 Aperture inversion using ES-MDA 319 

The synthetic tracer, pressure and flow rate data from the “true” aperture fields (Section 320 
3.2) are used for latent space inversion through ES-MDA. An advantage of ES-MDA over 321 
deterministic inversion methods is that a posterior ensemble of viable realizations (instead of a 322 
single optimal realization) can be obtained to quantify the uncertainties associated with the 323 
aperture field. To perform ES-MDA, we first generate 720 l-dimensional latent parameter sets as 324 
the prior ensemble by randomly sampling from the standard normal distribution. For each latent 325 
parameter set in the ensemble, we use the retained principal components from PCA to map the 326 
latent parameter set to an aperture field, and run flow and tracer simulation based upon the 327 
aperture field. ES-MDA is then used to update the latent parameter sets according to the 328 
simulated and “true” tracer, pressure and flow rate data. The two-step procedure (flow/tracer 329 
simulation and latent parameter update) is repeated for 12 iterations to get the posterior 330 
ensembles of latent parameter sets and aperture distributions. The major steps and update 331 
equation of ES-MDA have been widely described in the literature (Emerick and Reynolds, 2013; 332 
Wu, Fu, Hawkins, et al., 2021) and are not repeated here. The key parameters for ES-MDA, such 333 
as data standard deviation and inflation coefficient, are the same as that in Wu, Fu, Hawkins, et 334 
al. (2021). Note that 3% random Gaussian noise is added in the synthetic data before inversion 335 
with ES-MDA. 336 

3.3.3 Thermal prediction based on posterior aperture fields 337 

After ES-MDA, the obtained posterior aperture fields are incorporated into the EGS 338 
model to perform thermal simulation and predict temperature responses at the two production 339 
wells. Predictions from different posterior aperture fields are used to analyze the associated 340 
uncertainties. 341 

4 Aperture inversion and thermal prediction with different model complexities 342 

4.1 Comparison between “true” and simulated tracer, pressure and flow rate data  343 

In each ES-MDA iteration, we record the simulation results (tracer, pressure and flow 344 
rate) to compare with the “true” data (Figs. 5 and 6). The latent space dimensionality (l) shows 345 
similar effects on the fit of tracer/pressure/flow rate data for the log-normal and two facies 346 
aperture fields, as summarized below. 347 

• For l = 2, the simulated tracer BTCs, pressure and flow rates show little variation 348 
among the 720 prior realizations (before ES-MDA) (Figs. 5(a) and 6(a)). This is because 349 
the aperture fields generated from such a low-dimensional latent space have little 350 
variance and are relatively smooth (i.e., low model complexity), as shown in the first 351 
column of Figs. 7 and 8. After ES-MDA, the 720 parameter sets collapse to the same 352 
posterior parameter set (Fig. S1 in the Supporting Information), similar to the small 353 
ensemble size-induced ensemble collapse phenomenon reported in many previous studies 354 
(Nejadi et al., 2017; Xiao & Tian, 2020). However, the simulation results from this 355 
posterior parameter set cannot correctly fit the “true” data (Figs. 5(a) and 6(a)), which is 356 
an indicator of underfitting. The second peak of the tracer BTC at production well 1 is 357 
not resolved as the underlying aperture model is unable to capture the complexities in the 358 
“true” aperture fields.  359 
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• When l increases to ten, the complexity of the aperture model increases and the 360 
variation among the prior simulation results also increases (Figs. 5(b) and 6(b)). 361 
Nevertheless, the 720 parameter sets still collapse to the same posterior parameter set 362 
after ES-MDA (Fig. S1). The fit of the “true” data, especially the pressure and flow rate 363 
data, is better than that for l = 2. The second peak of the tracer BTC at production well 1 364 
is successfully resolved by the posterior realizations, although there still exist some 365 
discrepancies between the “true” and simulated tracer BTCs. 366 
• When l further increases to 50, the collapse of parameter sets is greatly alleviated 367 
and the posterior latent parameters show considerable uncertainties (Fig. S1). 368 
Correspondingly, the uncertainty of the simulation results from the posterior ensemble 369 
also increases, especially for the tracer BTCs (Figs. 5(c) and 6(c)). The 90% credible 370 
intervals of the simulated tracer BTCs properly match the “true” tracer BTCs, and both 371 
the arrival time and magnitude of the second peak of the tracer BTC at production well 1 372 
are correctly reproduced. An aperture model with moderate complexity is able to capture 373 
the necessary variations in the “true” aperture field to reproduce the tracer, pressure and 374 
flow rate data, even if the aperture model and the true” aperture field follow 375 
fundamentally different statistical distributions. 376 
• When l increases to 200 and 800, the latent parameter uncertainties in the 377 
obtained posterior ensemble further increase (Fig. S1), and the simulation results from the 378 
posterior ensemble show even larger uncertainties compared with that for l = 50 (Figs. 379 
5(d), 5(e), 6(d) and 6(e)). With a relatively large latent space dimensionality, the tracer 380 
BTCs, pressure and flow rate data can be matched but the associated uncertainties are 381 
significant. Further analysis of the predictive ability of the obtained posterior realizations 382 
is necessary to examine possible overfitting of the inversion results. 383 
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Fig. 5 Comparison of tracer BTCs, pressure and flow rates between the “true” data and the 385 
simulation results for the log-normal aperture scenario. (a) Inversion with a latent space 386 
dimensionality of l = 2. (b) l = 10. (c) l = 50. (d) l = 200. (e) l = 800. For tracer BTCs (the first to 387 
fourth columns), the upper row shows the results from prior realizations, and the lower row 388 
shows the results from posterior realizations. Note that we show the tracer BTCs from all the 720 389 
realizations (grey curves), as well as the corresponding 90% credible intervals (green shadings). 390 
For pressure difference and flow rate (the fifth column), we show the evolution of simulation 391 
results (grey circles) with respect to ES-MDA iterations. The “true” values are annotated by red 392 
circles situated along the final iteration. 393 
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Fig. 6 Comparison of tracer BTCs, pressure and flow rates between the “true” data and the 395 
simulation results for the two facies aperture scenario. (a) Inversion with a latent space 396 
dimensionality of l = 2. (b) l = 10. (c) l = 50. (d) l = 200. (e) l = 800. 397 

4.2 Aperture distribution and flow field in the fracture  398 

We now analyze the aperture distribution and flow field in the fracture (Figs. 7 and 8). 399 
We generate aperture distributions from the prior and posterior ensembles, and then perform 400 
flow simulations to obtain the corresponding flow fields. For both the log-normal and two facies 401 
aperture scenarios, we observe some narrow flow channels connecting the injection and 402 
production wells in the “true” flow fields (Fig. 3). When the latent space dimensionality is low (l 403 
= 2), the aperture field generated from PCA is relatively smooth, and the posterior aperture 404 
distributions cannot resolve these narrow flow channels (first column of Figs. 7 and 8). A larger 405 
latent space dimensionality leads to a more heterogeneous aperture distribution and therefore a 406 
more channelized flow field. When the latent space dimensionality is high, both the prior and 407 
posterior realizations exhibit some narrow channels between the injection and production wells 408 
(Figs. 7 and 8). Of course, as the prior realization is not conditioned on the tracer, pressure and 409 
flow rate data, the corresponding flow field is significantly different from the “true” flow field. 410 
For example, the flow field from a prior realization with l = 800 (second row, fifth column in 411 
Fig. 7) shows two major channels connecting the injection well and production well 2, but 412 
misses the channel between the injection well and production well 1. After ES-MDA, the 413 
obtained posterior realization shows a flow field that resembles the “true” flow field better than 414 
the prior realization does, especially for the high latent space dimensionality cases (fourth row in 415 
Figs. 7 and 8). 416 

However, not every flow channel in the “true” flow field is resolved by the posterior 417 
realizations. For the log-normal aperture scenario, the “true” flow field shows four major and 418 
several minor flow channels between the injection and production wells (Fig. 3(b)), while the 419 
posterior realizations only resolve three major flow channels (sixth row in Fig. 7). For the two 420 
facies aperture scenario, there are seven flow channels in the “true” flow field (Fig. 3(c)), but 421 
only two major flow channels in the flow fields from the posterior realizations (sixth row in Fig. 422 
8). Compared with the “true” flow fields, the flow fields from posterior realizations have fewer 423 
flow channels but larger channel width. The relatively large channel width is necessary for the 424 
posterior realizations to maintain comparable effective fracture areas as that in the “true” flow 425 
fields, so that the tracer, pressure and flow rate data can be matched (especially the sorptive 426 
tracer BTC which highly depends on the interaction area between fracture fluid and surrounding 427 
rocks). The overall effect of the many narrow flow channels in the “true” flow field is 428 
represented by the two or three relatively wide flow channels in the flow fields from posterior 429 
realizations. 430 

The latent space dimensionality shows significant effect on the posterior aperture 431 
distributions. For a small latent space dimensionality (l = 2 or 10), the posterior aperture 432 
distributions (flow fields) are almost identical, which is a direct consequence of latent parameter 433 
collapse. Besides the randomly selected posterior realization in Figs. 7 and 8 (third and fourth 434 
rows in Fig. 7 for the log-normal aperture scenario, and in Fig. 8 for the two facies aperture 435 
scenario), we provide two additional, randomly selected posterior realizations for comparison in 436 
the Supporting Information (Fig. S2). All the three aperture distributions (flow fields) are almost 437 
the same as the average aperture distribution (flow field) displayed in the fifth and sixth rows in 438 
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Figs. 7 and 8. The standard deviation of the posterior realizations is negligible (Fig. S3 in the 439 
Supporting Information). With the increase of latent space dimensionality, the variations among 440 
the posterior aperture distributions (flow fields) increase (Fig. S3). The uncertainty in the latent 441 
parameters propagates to the aperture distribution and flow field. For a large latent space 442 
dimensionality (l = 200 or 800), we observe considerable variations in aperture distribution 443 
among the posterior realizations, but the major flow channels from these posterior realizations 444 
are similar, as a result of conditioning on tracer, pressure and flow rate data. 445 

In the next section, we will analyze how the uncertainty in the latent parameters further 446 
propagates to thermal predictions and examine possible overfitting of the posterior realizations 447 
obtained with a relatively large latent space dimensionality. 448 

 449 
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Fig. 7 Aperture distribution and flow field in the fracture for the log-normal aperture scenario. 450 
The first and second rows are results from a randomly selected realization in the prior ensemble 451 
(before ES-MDA), and the third and fourth rows are results from the corresponding posterior 452 
realization (after 12 ES-MDA iterations). The fifth and sixth rows are average results of all the 453 
realizations in the posterior ensemble. 454 

 455 

Fig. 8 Aperture distribution and flow field in the fracture for the two facies aperture scenario. 456 
The first and second rows are results from a randomly selected realization in the prior ensemble 457 
(before ES-MDA), and the third and fourth rows are results from the corresponding realization in 458 
the posterior ensemble (after 12 ES-MDA iterations). The fifth and sixth rows are average results 459 
of all the realizations in the posterior ensemble. 460 
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4.3 Thermal performance prediction  461 

In this sub-section, we perform thermal simulations with both prior and posterior 462 
realizations to analyze their abilities in predicting the long-term thermal performance of the EGS 463 
model. For each latent space dimensionality, we randomly select ten prior realizations and their 464 
corresponding posterior realizations to perform thermal simulation, and then compare the 465 
simulated temperature responses with the “true” temperature responses (Figs. 9 and 10). 466 

We first analyze the prior predictions (first and third rows in Figs. 9 and 10). With the 467 
increase of latent space dimensionality, the variations among the prior predictions of temperature 468 
responses increase (first row in Figs. 9 and 10). For relatively large latent space dimensionalities, 469 
the prior predictions vary in broad ranges and many predictions significantly underestimate the 470 
temperature reductions. Interestingly, the variation among the prior predictions of the flow rate-471 
averaged temperature response (third row in Figs. 9 and 10), although considerable for large 472 
latent space dimensionality cases, is substantially smaller than that of the temperature responses 473 
at individual production wells. To understand the reduced variation of the flow rate-averaged 474 
temperature response, we select a prior realization for further analysis (Fig. 11). For the prior 475 
realization, the predicted flow rate at production well 1 is 2.7 L/s, much smaller than the “true” 476 
flow rate (5.9 L/s). As a result, the predicted flow rate at production well 2 is much larger than 477 
the corresponding “true” flow rate. The temperature decrease is highly related to the flow rate. 478 
The underestimated flow rate at production well 1 results in a slow temperature decrease at 479 
production well 1, and the overestimated flow at production well 2 leads to a fast temperature 480 
decrease at production well 2. Since the flow rates at the two production wells are not 481 
independent, the underestimation of flow rate at one production well means the overestimation of 482 
flow rate at the other production well. Therefore, when the temperature decrease at one 483 
production well is significantly underestimated (e.g.: production well 1 in Fig. 11(a)), the 484 
temperature decrease at the other production well is likely to be overestimated (production well 2 485 
in Fig. 11(a)). As a result, the variation of the temperature prediction at one production well 486 
counteracts the variation of the temperature prediction at the other production well, causing a 487 
reduced variation in the flow-rated averaged temperature prediction. 488 

Compared with prior realizations, the posterior realizations provide more accurate 489 
predictions for both the individual and flow-rate averaged temperature responses (second and 490 
fourth rows in Figs. 9 and 10). When latent space dimensionality is low (l = 2 or 10), temperature 491 
predictions from the ten posterior realizations are almost identical due to the collapse of latent 492 
parameters, and cannot match the “true” temperature responses. With the increase of latent space 493 
dimensionality, the posterior predictions match the “true” temperature responses better but also 494 
show larger uncertainties. When the latent space dimensionality increases to 800, the posterior 495 
predictions at individual production wells exhibit significant uncertainties, indicating the 496 
overfitting of the obtained posterior realizations. However, the posterior prediction of the flow-497 
rated averaged temperature response still successfully reproduces the “true” response with 498 
relatively small uncertainty (fourth row, fifth column in Figs. 9 and 10). Once again this is 499 
mainly caused by the counteraction between the underestimation of temperature response at one 500 
production well and the overestimation of temperature response at the other production well, as 501 
shown by the example in Fig. 11(b). 502 

According to Figs. 9 and 10, to correctly predict the thermal responses at the two 503 
production wells, the latent space dimensionality should be in the range of 10 ~ 200 for the log-504 
normal aperture scenario, and 50 ~ 200 for the two facies aperture scenario. While for the flow-505 
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rated averaged temperature response, the latent space dimensionality should not be smaller than 506 
ten for the log-normal aperture scenario, and a larger latent space dimensionality not smaller than 507 
50 appears to be necessary for the two-facies aperture scenario. 508 

 509 

Fig. 9 Prediction of thermal responses from prior and posterior realizations for the log-normal 510 
aperture scenario. (a) Temperature responses at the two production wells. The solid lines are 511 
“true” temperature responses, and the dash lines are predictions. The upper row shows the 512 
predictions from prior realizations, and the lower row shows the predictions from posterior 513 
realizations. (b) Flow rate averaged temperature response. The black line is the “true” 514 
temperature response. The gray and green lines are predictions from prior (upper row) and 515 
posterior (low row) realizations respectively. 516 
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 517 

Fig. 10 Prediction of thermal responses from prior and posterior realizations for the two facies 518 
aperture scenario. (a) Temperature responses at the two production wells. (b) Flow rate averaged 519 
temperature response. 520 

 521 

Fig. 11 Comparison of aperture distribution, flow field and temperature responses between a prior 522 
realization and the corresponding posterior realization. The prior and posterior realizations are 523 
from the ES-MDA case with a latent dimensionality of 800 for the log-normal aperture scenario. 524 
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Predicted (q1pred. and q2pred.) and true (q1true and q2true) flow rates at the two production wells are 525 
annotated. 526 

5 Discussion 527 

5.1 Selecting appropriate model complexity 528 

Model reduction has been considered essential to tackle the challenges associated with 529 
complex subsurface conditions and data scarcity in many subsurface inversion and 530 
characterization problems (Jiang & Ou, 2017; Marzouk & Najm, 2009; Zhu & Zabaras, 2018). 531 
The present study attempts to investigate the effect of model complexity on the inversion and 532 
prediction of subsurface reservoirs, and more importantly, to provide some insights into the 533 
selection of model complexity to avoid underfitting and overfitting. Through a field-scale EGS 534 
model, we demonstrate both underfitting behavior under low model complexity (poor data 535 
match) and overfitting behavior under high model complexity (good data match but poor 536 
prediction). For the log-normal aperture scenario considered in the present study, an inversion 537 
model that preserves 21% of the total variance in the “true” aperture field (corresponding to a 538 
latent space dimensionality of l = 50) is sufficient to correctly reproduce tracer/pressure/flow rate 539 
data and accurately predict long-term thermal performance. Increasing the model complexity to 540 
preserve 56% of the total variance (l = 200) can also produce satisfactory data fit and thermal 541 
prediction results but the associated uncertainties increase. Further increasing the model 542 
complexity to preserve 84% of the total variance (l = 800) leads to significant uncertainties and 543 
the thermal performance cannot be accurately predicted. Therefore, a model corresponds to a 544 
latent space dimensionality between 50 and 200, i.e., with 21% to 56% of the total variance 545 
preserved, is appropriate for tracer/pressure/flow rate data inversion and thermal prediction in the 546 
present study. This is also true for the two facies aperture scenario where the “true” aperture field 547 
and the aperture model used for inversion follow different statistical distributions. 548 

The selection of model complexity actually depends on the purpose of inversion. For the 549 
presented EGS model, we note that although the posterior aperture fields obtained from the latent 550 
space with l = 50 (Figs. 7, 8 and S2) can reproduce the “true” data and make accurate 551 
predictions, they look different from the “true” aperture fields in Fig. 3. Many fine features in the 552 
“true” aperture field could not be resolved due to the lack of necessary complexities in the 553 
aperture model generated from such a low-dimensional latent space. Hence, if the primary goal is 554 
to infer fracture aperture, a relatively high model complexity is required, but if the primary goal 555 
is to predict thermal performance, then a moderate model complexity is sufficient. For many 556 
subsurface characterization problems, people are mainly concerned with the predictive ability 557 
rather than the realism of the inversion results, and therefore a moderate model complexity could 558 
be employed. 559 

The selection of model complexity also needs to consider the amount of information 560 
contained in the data for inversion. In general, the more information the data contain, the more 561 
complex the model should be to avoid underfitting. In the present study, the inversion data 562 
include tracer BTCs/flow rates at two production wells and pressure difference between injection 563 
and production wells. The information in these data is spatially limited and far from sufficient to 564 
characterize the aperture distribution in the 2D fracture plane. As a result, a relatively simple 565 
model is able to retrieve the information and reproduce the data. Fortunately, since both tracer 566 
transport and heat extraction processes are tightly related to the flow field among the injection 567 
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and production wells, the information retrieved from tracer BTCs, although limited, still provide 568 
accurate thermal predictions. If more data, for example, tracer BTCs at other locations are 569 
available, the model complexity needs to be increased to accommodate the increased amount of 570 
information in the inversion data. 571 

The result that a model preserving only 21% of the total variance in the “true” aperture 572 
field is able to reproduce tracer/pressure/flow rate data and predict thermal responses is 573 
surprising as many studies preserved at least 50% ~ 60% total variance when using PCA for 574 
model reduction (Fernández-Martínez et al., 2012; Hawkins et al., 2020; Laloy et al., 2013). An 575 
important implication from the current study is that we should use a relatively simple model for 576 
inversion/data assimilation in subsurface reservoirs, especially when the available measurements 577 
are scarce and prediction is the primary goal. A low complexity model can not only mitigate the 578 
overfitting pitfall but also alleviate the computational burden in many subsurface inversion 579 
problems. Of course, the model should not be too simple otherwise it may fail to reproduce 580 
inversion data. 581 

5.2 Geologic facies model 582 

Geologic facies models have been used to describe highly channelized subsurface 583 
reservoirs such as the two facies aperture model in Fig. 3(c). The characterization of such facies 584 
models has been widely investigated in recent years (Chang et al., 2010; Jafarpour 585 
& McLaughlin, 2009; Jiang & Jafarpour, 2021). To preserve the geologic realism of facies 586 
models during inversion/data assimilation, a model reduction method that can directly generate 587 
facies models from low-dimensional latent space is required. PCA is inappropriate as facies 588 
models do not follow a Gaussian or log-normal distribution. Many methods have been proposed 589 
for the reduction of facies models, such as optimization-based PCA (Vo & Durlofsky, 2014), 590 
discrete cosine transform (Jafarpour & McLaughlin, 2007), and deep learning algorithms such as 591 
variational autoencoder (VAE) (Canchumuni et al., 2019; Laloy et al., 2017; Mo et al., 2020) and 592 
generative adversarial network (GAN) (Canchumuni et al., 2020; Laloy et al., 2018). 593 

The current study provides an alternative strategy for the characterization of geologic 594 
facies models. Instead of developing advanced model reduction methods for the two facies 595 
aperture model in Fig. 3(c), we directly use a log-normal aperture model generated from PCA 596 
latent space for data assimilation. Although the “true” and inversion aperture models follow 597 
fundamentally different statistical distributions, the obtained posterior aperture models are able 598 
to reproduce tracer/pressure/flow rate data and predict long-term thermal performance after data 599 
assimilation. A log-normal aperture model with appropriate correlation length is capable of 600 
inducing relevant channelized flow structures analogous to those of a facies-based model. The 601 
posterior aperture distributions fail to preserve the geologic realism in the two facies aperture 602 
model (Fig. 8). However, as Murray (2007) concluded, if prediction instead of explanation is the 603 
primary goal, the realism of model parameters should not be considered an essential model-604 
evaluation criterion. 605 

5.3 Prior realization 606 

An interesting observation is that a prior aperture realization and the corresponding 607 
posterior aperture realization have many common features, especially when the aperture model is 608 
relatively complex (fourth and fifth columns in Figs. 7 and 8, Fig. 11). In another words, ES-609 
MDA tends to perturb a prior realization as slightly as possible to match the data being 610 
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assimilated. The obtained posterior realization largely depends on the prior realization provided 611 
to ES-MDA. If the prior realization is not well constrained or even physically unrealistic, then 612 
the corresponding posterior realization may also show unrealistic features. Therefore, it is of 613 
great importance to constrain prior realizations with available prior knowledge. Fortunately, for 614 
subsurface reservoirs, prior knowledge of the field of interest (aperture or permeability) can be 615 
obtained from geological/geophysical measurements, such as core logs, wellbore images and 616 
outcrop analysis. In the current study, the prior knowledge used to constrain prior aperture 617 
realizations includes the spatially autocorrelated nature as well as the mean, standard deviation 618 
and correlation length of the aperture field. 619 

Interpretation results from other geophysical investigations, such as seismic and ground 620 
penetrating radar (GPR), can also be used to constrain prior realizations. For example, Wu, Fu, 621 
Hawkins, et al. (2021) used the results of GPR survey to constrain prior aperture realizations in a 622 
horizontal fracture at a meso-scale field test site (the Altona Field Laboratory located in northern 623 
New York State, USA). The GPR survey of the field test site indicated a narrow flow channel 624 
between injection and production wells, which meant that the underlying aperture field was 625 
anisotropic with larger correlation length in the direction from injection to production wells 626 
(west to east) than that in the south to north direction. During subsequent tracer data assimilation, 627 
such an anisotropic feature was used as prior knowledge to constrain prior aperture realizations. 628 

6 Conclusion 629 

We investigated the effect of model complexity on the inversion of fracture aperture 630 
distribution as well as the prediction of long-term thermal recovery in a field-scale EGS model. 631 
Inversion models with different complexities were used to invert for fracture aperture 632 
distribution through the assimilation of tracer/pressure/flow rate data using an ensemble-based 633 
method (ES-MDA). Thermal simulations were then performed to examine the predictive ability 634 
of the inferred aperture distributions. With a low model complexity, ensemble collapse occurred. 635 
The inferred aperture distributions failed to reproduce tracer/pressure/flow rate data, and the 636 
predicted long-term thermal response was biased. With a high complexity model, the data could 637 
be properly matched, but the inferred aperture distribution and predicted thermal response 638 
exhibit significant uncertainties. A moderate model complexity is sufficient to retrieve the 639 
information contained in tracer/pressure/flow rate data and provide accurate thermal predictions. 640 

An appropriate model complexity is essential to the inversion and prediction of 641 
subsurface reservoirs, and deserves careful deliberation based on the primary purpose of the 642 
inversion as well as the type and amount of the inversion data. In a real-world application, it is 643 
difficult to predetermine model complexity and one might need to manually adjust model 644 
complexity in a trial-and-error manner. According to the results in the current study, we 645 
recommend starting with a relatively simple model rather than an extremely complex model, and 646 
the quality of the fit to tracer BTCs appears to be a reasonable indicator of an appropriate model 647 
complexity. 648 

 649 

Data Availability Statement 650 

The synthetic flow, pressure, tracer and thermal data used in this study is obtained from 651 
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Figure S1. Box plots of ten latent parameters from prior (upper row) and posterior 
(lower row) ensembles. The ten latent parameters correspond to the ten most significant 
principal components after PCA. (a) Log-normal aperture field scenario. (b) Two facies 
aperture field scenario. For the latent space with a dimensionality (l) of two, only two 
latent parameters are shown.  
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Figure S2. Aperture distribution and flow field from two randomly selected posterior 
realizations. (a) Log-normal aperture field scenario. (b) Two facies aperture field scenario. 
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Figure S3. Standard deviation (Std.) of aperture distribution and flow field in the posterior 
ensemble. (a) Log-normal aperture field scenario. (b) Two facies aperture field scenario. 


