
P
os
te
d
on

7
D
ec

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
28
56
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Meteorological Drivers of North American Monsoon Extreme

Precipitation Events

Shiheng Duan1, Paul Ullrich2, and William R. Boos3

1University of California, Davis
2University of California Davis
3University of California, Berkeley

December 7, 2022

Abstract

In this paper the meteorological drivers of North American Monsoon (NAM) extreme precipitation events (EPEs) are identified

and analyzed. First, the NAM area and its subregions are distinguished using self-organizing maps (SOM) applied to the

Climate Prediction Center (CPC) global precipitation dataset. This delineation emphasizes the distinct extreme precipitation

character and drivers in each subregion, and we subsequently argue these subregions are more suitable for regional analysis

given the inhomogeneous geographical features in the NAM area. For each EPE, defined as daily precipitation exceeding

the 95th precipitation percentile, five synoptic features and one mesoscale feature are investigated and assigned as potential

drivers. Essentially all EPEs can be associated with at least one selected driver, with only one event remaining as unclassified.

The attribution result demonstrates the dominant role of Gulf of California moisture surges, followed by mesoscale convective

systems. Finally, a frequency and probability analysis is conducted to contrast precipitation distributions conditioned on

the associated meteorological drivers. Interactions and influences among candidate features are revealed by the precipitation

probability density functions.
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Key Points:6

• Seven subregions of the North American Monsoon with distinct precipitation char-7
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• Almost all subregional extreme precipitation events are associated with at least9

one atmospheric feature10

• Co-occurrence of meteorological features may or may not drive increases in pre-11

cipitation12
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Abstract13

In this paper the meteorological drivers of North American Monsoon (NAM) extreme14

precipitation events (EPEs) are identified and analyzed. First, the NAM area and its sub-15

regions are distinguished using self-organizing maps (SOM) applied to the Climate Pre-16

diction Center (CPC) global precipitation dataset. This delineation emphasizes the dis-17

tinct extreme precipitation character and drivers in each subregion, and we subsequently18

argue these subregions are more suitable for regional analysis given the inhomogeneous19

geographical features in the NAM area. For each EPE, defined as daily precipitation ex-20

ceeding the 95th precipitation percentile, five synoptic features and one mesoscale fea-21

ture are investigated and assigned as potential drivers. Essentially all EPEs can be as-22

sociated with at least one selected driver, with only one event remaining as unclassified.23

The attribution result demonstrates the dominant role of Gulf of California moisture surges,24

followed by mesoscale convective systems. Finally, a frequency and probability analy-25

sis is conducted to contrast precipitation distributions conditioned on the associated me-26

teorological drivers. Interactions and influences among candidate features are revealed27

by the precipitation probability density functions.28

Plain Language Summary29

Extreme precipitation is of great importance for both scientific research and socioe-30

conomic activities. The North American Monsoon region and its subregions, which are31

extracted from a precipitation dataset, are the main subjects of this study. The extreme32

precipitation events in each subregion are associated with at least one candidate atmo-33

spheric driver, and the result demonstrates distinct major precipitation drivers among34

subregions. Furthermore, depending on the subregions and drivers, the precipitation rate35

may increase or decrease when two candidate factors co-occur, where several double drivers36

combinations are examined.37

1 Introduction38

Monsoons are continental-scale circulation systems that develop in response to sea-39

sonal changes in the contrast in energy sources between continents and adjacent oceanic40

regions (Vera et al., 2006; Geen et al., 2020). They are known for driving substantial re-41

gional precipitation, and are critical to the Earth’s hydroclimate system. In this study,42

we focus on the North American Monsoon (NAM) and examine the meteorological en-43

vironments and feature drivers of both precipitation and extreme precipitation when the44

NAM is active. We show that essentially all extreme precipitation events (EPEs) can45

be linked to one or more meteorological features. This feature-based decomposition is46

subsequently employed to draw novel insights into the drivers of precipitation in the NAM47

and its subregions.48

The first challenge in characterizing precipitation in the NAM is to actually delin-49

eate the NAM region. Ramage (1971) used the reversal in the large-scale lower tropo-50

spheric circulation to identify the monsoon domain. This approach has been applied widely51

to define several monsoon indices, such as the Webster-Yang monsoon index for the South52

Asian monsoon, the Australian monsoon index, the South Asian monsoon index and the53

dynamic Indian monsoon index (Webster & Yang, 1992; Hung & Yanai, 2004; Goswami54

et al., 1999; B. Wang & Fan, 1999). However, this circulation-based method is not suit-55

able for the NAM region, since the NAM does not exhibit the same sort of domain-wide56

seasonal zonal wind reversal that characterizes monsoons in other regions (de Carvalho57

& Jones, 2016). Precipitation has also been used to identify monsoonal regions: for in-58

stance, Liu et al. (2016) define global monsoon systems using the climatological precip-59

itation difference between MJJAS (May-September) and NDJFM (November-March).60

If defined in terms of precipitation seasonal variability, the NAM region refers to the re-61

gion roughly bounded to the south by Central America and stretching into the south-62
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Figure 1. The NAM regional domain. The white contour is from the North American Mon-

soon Experiment Forecast Forum. The red contour denotes the domain identified from the en-

semble SOMs in this study.

western US (Lee & Wang, 2014; Mohtadi et al., 2016; Liu et al., 2016; B. Wang et al.,63

2018). The NAM Experiment (NAME) (W. Higgins et al., 2006) offers another defini-64

tion of the NAM region, which roughly encompasses the southwestern United States and65

northwestern Mexico (Figure 1). This region is much smaller and offset to the north from66

the NAM region that emerges from precipitation seasonal variability.67

Despite being termed as the “NAM region” in the NAME, the regular trapezoid68

bounded by straight lines in latitude-longitude space is not treated as an exact bound-69

ary. Indeed, the term “NAM region” has been used to refer to a rectangular latitude-70

longitude box, or to specific states such as Arizona or New Mexico; this has especially71

been the case in climate change studies focused on long-term climatological precipita-72

tion signals (Douglas & Englehart, 2007; Finch & Johnson, 2010a; Cook & Seager, 2013;73

Varuolo-Clarke et al., 2019). Although these choices can simplify computations, such ap-74

proximations are not appropriate for regional precipitation studies. Such structured re-75

gions cover areas with distinct precipitation mechanisms and drivers. This is especially76

true in the vicinity of the NAM, where the complex terrain leads to precipitation being77

shaped by the mechanical influence of orography on winds, together with local thermo-78

dynamic conditions (Boos & Pascale, 2021). As such, we argue that a delineation of the79

NAM region emphasizing localized precipitation features should be used for studies fo-80

cused on NAM precipitation. The “NAM region” identified in this manner, along with81

its subregions which we will discuss later, is necessary to establish a foundation for the82

precipitation and extreme precipitation analysis pursued in this study.83

EPEs, which occur when the precipitation rate is in the long tail of its distribu-84

tion, are of considerable importance for scientific research, socioeconomic impacts, and85

water management considerations. EPEs are generally defined as events in which the pre-86

cipitation rate exceeds a certain threshold, typically using one of two methods: paramet-87

ric or non-parametric (Anagnostopoulou & Tolika, 2012). Parametric approaches include88

peaks-over-threshold (POT) and block maxima (Barlow et al., 2019). The POT method89

sets an initial threshold and fits the data with a generalized Pareto distribution (Acero90

et al., 2011), while the block maxima method focuses on the series of maximum values91

from a regular interval (such as maximum daily precipitation in each month), and fits92

the maximum data series with a generalized extreme value distribution (Alaya et al., 2020).93

The non-parametric approach does not make assumptions about the probability distri-94
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bution of the data, and is often used with percentiles, such as the 95th percentile pre-95

cipitation amount of rainy days (pq95) and the 99th percentile precipitation amount of96

rainy days (pq99) (Kunkel et al., 2012; Agel et al., 2018; Myhre et al., 2019). In this study,97

we adopt the non-parametric approach and define the threshold for EPEs from pq95.98

To understand the meteorological causes of EPEs, Barlow et al. (2019) reviewed99

a set of potential meteorological systems for extreme precipitation over North America,100

such as tropical cyclones, mesoscale convective systems, frontal systems, and atmospheric101

rivers. Specifically for the NAM region, Kunkel et al. (2012) demonstrated the impor-102

tant role played by frontal systems in summertime, and Sierks et al. (2020) revealed the103

connection between upper-level wave breaking and EPEs in the Lake Mead watershed.104

These studies provide candidate meteorological systems to comprehensively understand105

the drivers of NAM precipitation.106

In this study, we first identify the NAM domain and its subregions from a gridded107

precipitation dataset, delineating regions using local precipitation characteristics. The108

drivers of precipitation and EPEs in these regions are subsequently investigated using109

feature tracking and attribution. Section 2 describes the precipitation and reanalysis datasets110

in this study. Precipitation-based NAM domain and subdomain demarcation is described111

in Section 3. Section 4 introduces the candidate drivers of the NAM EPEs, as well as112

the corresponding detection methods and datasets, then examines the distribution of pre-113

cipitation related to each driver.114

2 Data115

In this study, precipitation data from the Climate Prediction Center (CPC) Global116

Unified Gauge-Based Analysis of Daily Precipitation (referenced to as the CPC dataset)117

is used. CPC data is based on gauge observations and provides daily precipitation anal-118

ysis globally at 0.5 degree grid spacing from January 1st 1979 to present (Xie et al., 2010).119

Consistent with prior research on the NAM, we extract precipitation from a candidate120

domain consisting of the contiguous US (CONUS) and Mexico. Since the CPC dataset121

relies on gauge observations, the specific time period that defines a day varies across the122

globe. For CONUS and Mexico, they share the same time window: from 1200 to 1200123

UTC. Meteorological conditions are derived from the ERA5 reanalysis dataset. This prod-124

uct provides hourly reanalysis atmospheric fields with a 30-km horizontal resolution (Hersbach125

et al., 2020). The record spans from 1950 to present, although we subset the period 1979126

to 2018 to coincide with the precipitation data coverage. Additionally, when the hourly127

data is averaged to derive daily records, the time window is set to 12Z-12Z to keep ac-128

cord with the CPC precipitation time interval.129

3 Identification of NAM Subregions130

3.1 Self Organizing Maps131

Self organizing maps (SOMs) is an unsupervised machine learning method that takes132

high-dimensional data as input and creates spatially organized internal representations133

of input vectors (Kohonen & Honkela, 2007). Details on the training process can be found134

in Kohonen and Honkela (2007). After the SOMs has converged, each sample is assigned135

to a node, which can be viewed as the cluster label.136

SOMs has been applied in previous studies for pattern recognition. For example,137

Agel et al. (2018) used SOMs with tropopause pressure anomalies to find the large-scale138

patterns associated with extreme precipitation. In this work we follow Swenson and Grot-139

jahn (2019), who used SOMs to classify different precipitation regimes over the CONUS.140

Before applying SOMs, we first take the cube root of precipitation as in Stidd (1953) to141

transform it from a highly skewed distribution to an approximately normal distribution.142
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Then the long-term daily mean (LTDM) is calculated, excluding leap days. The LTDM143

is normalized to the range from 0 to 1 before training the SOMs according to144

LTDMnormalized =
LTDM − min(LTDM)

max(LTDM) − min(LTDM)
. (1)

This preprocessing informs us of the occurrence of extreme precipitation normalized within145

each grid cell, rather than the absolute precipitation amount.146

The number of output nodes (i.e., the number of clusters) is prescribed before train-147

ing SOMs. Since there is no prior knowledge of the correct number of clusters, to avoid148

arbitrariness and ensure robustness, an ensemble method is employed with the number149

of nodes ranging from 10 to 20. The final NAM region is then based on the intersection150

of all the ensemble.151

3.2 NAM Domain and Subregions152

As demonstrated previously, the long-term daily mean precipitation (January to153

December), preprocessed by equation 1, is used as the input to the SOMs. The NAM154

domain derived from the ensemble SOMs shares similar location but smaller extent com-155

pared with the NAME as shown in Figure 1. The individual SOMs ensemble results are156

depicted in Figure S1. Although the cluster boundaries vary with the number of clus-157

ters, the general locations and patterns are consistent among all the SOMs results. It158

should be noted that the SOMs approach does not ensure geographical continuity, so any159

singular grid point is manually added to the final region. The boundaries we identify for160

the NAM region are similar to those which emerge in the US Southwest from the work161

of Swenson and Grotjahn (2019) (their Fig. 7), and cover all of Arizona and part of Cal-162

ifornia, Nevada, Utah, Colorado and New Mexico. The differences in the western and163

northern boundaries (compared to their results) are attributed to sensitivity of the method164

to the addition of grid points outside of the CONUS.165

Although the overall NAM domain emerges naturally from this SOMs analysis, fur-166

ther delineation of precipitation subregions is still necessary given the domain’s hetero-167

geneous geographical and topographical characteristics. The same SOMs-based approach168

is again applied to the identified NAM region, but instead of the all-year long-term daily169

mean, only the summertime precipitation (June, July, August and September) is used170

as input. Figure 2 depicts the 7 subregions identified from SOMs, along with their LTDM171

precipitation signals. Subregions 1 through 7 (Sub1-Sub7), respectively, refer to: (1) the172

southern half of the Baja California Peninsula; (2) Southeastern California, Northern Sonora173

and Eastern Arizona; (3) southwestern Utah and most of southern Nevada; (4) the Col-174

orado Plateau and the ‘Four Corners’ region; (5) most of the Arizona desert, New Mex-175

ico and Northern Chihuahua; (6) most of Sonora; and (7) Southern Sonora and North-176

ern Sinaloa. Comparing the LTDM precipitation signal in each region, it is clear that177

coastal areas such as Sub7, and Sub6 are wetter regions, with higher overall precipita-178

tion rates, while the inland deserts are relatively drier (e.g., Sub2 and Sub3). It is also179

clear that the timing of the shift to the wetter monsoonal precipitation regime varies by180

subregion. Throughout the literature, the precise definition of monsoon onset date varies:181

it is derived as the first day after June 1st when precipitation rate exceeds 0.5 mm/day182

and lasts for 3 days in R. Higgins et al. (1997), while the threshold is 1 mm/day and 5183

consecutive days in Turrent and Cavazos (2009). This difference is primarily due to the184

area of interest: Turrent and Cavazos (2009) examined the whole NAM area, whereas185

R. Higgins et al. (1997) focused on New Mexico and Arizona, where the climatological186

precipitation signal is weaker. We adopt 1 mm/day and 5 days here, yielding median mon-187

soon onset dates for Sub1-Sub7 of Aug 30th, July 30th, July 20th, July 19th, July 6th,188

July 4th and June 30th, respectively. The onset dates are generally earlier for more south-189

ern subregions, with Sub1 being a clear exception. The late onset date here is attributed190

to the impact of tropical cyclones (TCs), as argued in the following sections.191
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Figure 2. NAM subregions and their long-term daily mean precipitation over summer season.

The thin lines represent the long-term daily mean precipitation. For easier visualization, a 5-day

mean smoothing is performed to obtain the thick line. The dots denote the grid points from the

0.5◦ CPC precipitation dataset.

4 Synoptic and Mesoscale Features as Drivers for EPEs192

4.1 EPE Definition193

Herein, EPEs are defined as days when daily subregion-mean precipitation rate ex-194

ceeds the 95th percentile of rainy days (i.e., days with precipitation accumulation larger195

than 1 mm). When consecutive days exceed this threshold, sequential days are consol-196

idated into a single event. As shown in Figure 3, the EPE threshold varies across sub-197

regions. What stands out from Figure 3 is the long tail of the distribution. This is es-198

pecially true for Sub1; its EPE threshold is higher than that of Sub7, while Sub7 is wet-199

ter overall, with higher mean precipitation rates during rainy days (6.41 mm/day for Sub7200

and 5.99 mm/day for Sub1). Additionally, the long-term daily mean precipitation rate201

is higher in Sub6 than Sub1, as shown in Figure 2, yet the EPE threshold is much higher202

in Sub1. These differences highlight the discrepancy between precipitation climatology203

in the mean and the tail, and supports the need for subregion delineation.204

Figure 4 shows the number of EPEs in each subregion from 1979 to 2018. Since205

the coastal regions have more rainy days, following our criteria, they also tend to have206

more EPEs. A Mann-Kendall (MK) test is applied to each subregion to see if there is207

a historical trend in the number of EPE events, EPE precipitation amount, and EPE208

precipitation rate each year from 1979 to 2018. This test has been shown to be effective209

in detecting monotonic trends in precipitation analysis (F. Wang et al., 2020). Note that210

EPE precipitation rate is defined here as the EPE precipitation amount divided by the211

number of extreme precipitation days, which is not the same as the number of EPE events212

when there are consecutive extreme precipitation days. In most subregions, there are no213

significant trends at the 5% confidence level, however, EPE event numbers and precip-214

itation amount do exhibit a significant increase in Sub1 and Sub6. Sub1 also shows a215

rising trend in EPE precipitation rate, while Sub2 shows a declining trend. These changes216

are likely influenced by a combination of low-frequency climate variability and climate217

change.218

–6–



manuscript submitted to JGR: Atmospheres

Figure 3. Cumulative subregion precipitation rate distributions. The percentiles are shown

on the Y axis. The black horizontal lines represent the EPE threshold (i.e., the 95th percentile of

precipitation rate).

Figure 4. Number of extreme events in each subregion for each year, and total number of

extreme events over all subregions.
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4.2 Selected Features219

For the purposes of identifying the process drivers of EPEs in the NAM region, we220

select and examine five synoptic features and one mesoscale feature: tropical cyclones221

(TC), Gulf of California moisture surges, upper troposphere troughs (UTT), frontal sys-222

tems, mid-tropospheric lows, and mesoscale convective systems (MCS). These features223

are selected based on previous studies connecting them with EPEs (e.g., Kunkel et al.224

(2012), Catto et al. (2012), Barlow et al. (2019), and Sierks et al. (2020)). The follow-225

ing subsections introduce each feature and corresponding procedures to link these events226

with EPEs.227

4.2.1 Tropical Cyclones228

Tropical cyclones (TCs) are prominent extreme phenomena in the global hydro-229

climate system. They transport significant water vapor from the tropics and sub-tropics,230

and account for a large fraction of EPEs around the world (Zhao, 2022). In the NAM231

region, previous studies have demonstrated that TCs are major contributors to precip-232

itation over Baja California and Northern Mexico (Englehart & Douglas, 2001; Dı́az et233

al., 2008). In this study, TC tracks from the International Best Track Archive for Cli-234

mate Stewardship (IBTrACS) are used (Knapp et al., 2010, 2018). IBTrACS provides235

3-hourly records of TC locations and intensities around the world from 1842 to present236

(Knapp et al., 2010). We exclude tropical depressions (TDs) from this analysis, select-237

ing only tropical storms (TSs), tropical cyclones (TCs), and hurricanes (HRs). A TC is238

linked to an EPE if its track is within a 5-degree radius of the given NAM subregion.239

This distance criterion is based on the general horizontal scale of TCs (Jiang & Zipser,240

2010; Kunkel et al., 2012; C. Dominguez & Magaña, 2018).241

4.2.2 Gulf of California Moisture Surges242

As discussed in Bordoni and Stevens (2006), precipitation variability in the NAM243

region is strongly connected with northward surges of vapor transport along the Gulf of244

California (GOC). GOC moisture surges boost continental humidity, provide the nec-245

essary water vapor for precipitation, and decrease the moist convective stability of the246

environment. In F. Dominguez et al. (2016), a simulation using the Weather Research247

and Forecasting Model with water vapor tracer diagnostics (WRF-WVT) examined the248

origins of water vapor that contributes to precipitation during the NAM season. The sources249

were divided into four regions: two marine sources including Gulf of Mexico (GOM) and250

GOC, and two terrestrial sources including Sierra Madre and the NAM region, defined251

as regions in the east of Sierra Madre. From their 10-year simulation, they concluded252

that advected moisture from the GOC was the greatest contributor to non-locally-sourced253

precipitation in the NAM region.254

GOC moisture surges are identified using the vertical integral of northward and east-255

ward vapor flux (denoted as IVT-N and IVT-E) from ERA5 6-hourly reanalysis data.256

Figure 5 shows the GOC transect with grid points aligned along the gulf in a 25-km spa-257

tial resolution. The northward and eastward fluxes are reconstructed as fluxes parallel258

to (IVT-A) and perpendicular to (IVT-B) the GOC transect, and the grid points along259

the perpendicular axis are averaged to derive a one-dimensional flux profile along the Gulf.260

Surge candidates are defined as fluxes that surpass the 95th percentile of vapor flux at261

each grid point. The spatio-temporally consecutive candidate grid points are then char-262

acterized as a surge event, which must last at least 12 hours. The detection method is263

illustrated in Figure 6 with four surge events shown.264

Figure 7 shows the precipitation anomalies with respect to the surge occurrence.265

The x-axis denotes days after the onset of surges with negative values representing days266

before the surge and positive for days after the surge. Zero denotes the surge onset date.267
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Figure 5. The GOC transect grid points.

Figure 6. Examples from 1992 GOC surge detection result in Hovmoller diagram. Only the

candidate surge grid points are shown. A surge is identified as a continuous band in the fig-

ure, and is denoted with a red box. Four surge events are identified in this figure. The specific

candidate grid points are not included.
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Most subregions show precipitation peaks 2 or 3 days after the onset date while Sub7268

shows double peaks, with the first peak on the onset date; this behavior is due to its lo-269

cation at the southern end of the GOC. In addition, the precipitation anomaly is neg-270

ative on the onset date in Sub3, Sub4 and Sub5, suggesting dry conditions prior to surge271

arrival. An EPE is deemed to be driven by a GOC surge if the criteria for a surge oc-272

curs within a specific time window before the EPE. The window size is set to 0 days for273

Sub7, 1 day for Sub2, 2 days for Sub1, Sub3, Sub4, and Sub5, and 3 days for Sub6.274

Figure 7. Precipitation anomaly composites of GOC Surges. Shading indicates the 95%

confidence intervals, generated by bootstrapping.

4.2.3 Upper Troposphere Troughs275

Upper troposphere troughs (UTTs) are upper-level circulation patterns with a lo-276

cal low geopotential height and high potential vorticity around 200 hPa (Kelley & Mock,277

1982). Among the subtypes of UTTs, Rossby wave breaking events (RWBs) and inverted278

troughs (ITs) are perhaps the two features most commonly employed in precipitation279

analysis. RWBs are often characterized by a reversal in the latitudinal PV gradient near280

the tropopause (Zavadoff & Kirtman, 2019). When the length-width ratio of PV over-281

turning is large, it is also referred to as a PV streamer (Papin et al., 2020). The effects282

of RWBs and ITs on precipitation in the Lake Mead Watershed were explored in Sierks283

et al. (2020). RWBs have also been linked to precipitation in Ryoo et al. (2013), who284

showed a strong correlation between PV200 and precipitation. Moore et al. (2019) also285

links EPEs with RWBs, and according to their findings, the majority of EPEs in the cen-286

tral and eastern United States are associated with concurrent PV streamers from RWBs.287

In contrast to RWBs, an IT is a trough with pressure increasing toward the poles, which288

is opposite in structure to the most common mid-latitude troughs. For the NAM region,289

tropical upper-troposphere troughs (TUTTs) are the most common IT type. TUTTs,290

unlike RWBs, are more common in subtropical easterlies, albeit they are also connected291

to mid-latitude wave breaking events (Igel et al., 2021). To assess their impact on pre-292

cipitation, Finch and Johnson (2010b) utilized quasigeostrophic (QG) theory to study293

a TUTT event over the NAM region in July 2004. Newman and Johnson (2012) used294

WRF to simulate the same event. Their results showed wind shear and convective avail-295

able potential energy (CAPE) both increased during the TUTT event, particularly to296

the west of the TUTT. TUTT-induced convective enhancement was also identified in Bieda III297

et al. (2009), where it was shown that lightning event density increases when a TUTT298

is present. Interactions between TUTTs, RWBs and TCs were also investigated in Z. Wang299

et al. (2020). A comprehensive TUTT dataset was built based on the 200 hPa stream300

–10–
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Table 1. Number of UTT-EPE events by propagation direction in each subregion.

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7

UTT events 10 15 12 33 51 46 53
Westward 6 9 2 8 21 36 35
Eastward 4 6 10 25 30 10 18

function in Igel et al. (2021), and their composite analysis showed an enhancement in301

precipitation to the southeast of the TUTT core.302

The wide variety of upper level disturbances (RWBs, PV streamers, TUTTs, ITs)303

all exhibit a local high in potential vorticity at the tropopause, commonly approximated304

by the 200 hPa level. In this study, UTT candidates are first identified as closed con-305

tours of 2×10−6 m2s−1Kkg−1, or 2 PVU from the ERA5 6-hourly 200 hPa potential306

vorticity by TempestExtremes (Ullrich et al., 2021). A filter is applied on prospective307

UTT candidates to remove coincident TCs, to ensure that we only extract upper-level308

disturbances.309

To better examine the effect of UTTs on regional precipitation, we composite pre-310

cipitation anomalies (i.e., precipitation minus its long-term daily mean) within a 20-degree311

radius of each tracked UTT in Figure 8. The radius of 20 degrees is large enough to cap-312

ture possible longer-range UTT impacts on precipitation. Only anomalies that satisfy313

a 95% confidence interval derived with a two-sided Student’s t test are plotted. Precip-314

itation is consistently depressed to the north and northeast of the UTT center, and en-315

hanced to the south and southeast. Within 10 degrees, the enhancement reaches its peak316

and diminishes with distance. As we previously noted, UTTs include both mid-latitude317

disturbances (RWBs) and tropical features (i.e., tropical UTTs or TUTTs). To exam-318

ine these two types of UTTs, we separate the UTTs by their direction of propagation,319

and compose feature-centered precipitation in Figure 8, along with geographically-fixed320

PV200 and U200 for eastward and westward propagating UTTs. Figure 9 shows these321

composites in Sub6, as an example. Unsurprisingly, the propagation direction of the upper-322

level disturbances is generally determined by the large-scale background flow. PV200 shows323

positive anomalies in extratropical regions for eastward-moving UTTs, and the high PV200324

disturbances are located in the extratropical westerlies. This behavior aligns with the325

RWB features in Zavadoff and Kirtman (2019). In contrast, the positive PV200 anoma-326

lies are relatively smaller for westward-moving UTTs, and they are located in the trop-327

ical easterlies. This follows Igel et al. (2021), where it is argued that TUTTs are advected328

by the background easterlies. Moreover, the boundary of westerly and easterly flow moves329

further north during westward-UTT events. This transition favors TUTT advection from330

the tropics to the NAM region, and indicates that eastward-UTT related EPEs are more331

frequent for northern NAM subregions, as shown in Table 1. Thus, although we use UTT332

as a category for all upper-level disturbances, they can be classified into tropical and sub-333

tropical features based on their location and direction of propagation.334

Westward- and eastward-moving UTTs lead to very different precipitation anoma-335

lies, as shown in the precipitation anomaly composites (as in Figure 8). Eastward UTTs336

exhibit enhanced precipitation to the southeast of the feature and suppressed precipi-337

tation in all other quadrants. On the other hand, the westward UTTs exhibit scattered338

and weak enhancement of precipitation to the south and stronger suppression of precip-339

itation to the northeast. Despite these differences in behavior, the precipitation enhance-340

ment is still within 10 degrees of the UTT center for westward UTTs and so 10 degrees341

is set as the criterion for UTTs. That is, if there is a concurrent UTT in the 10-degree342
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radius from the subregion, the EPE will be assigned to this UTT. This disparity in pre-343

cipitation composites as shown in Figure 8 is further discussed in the following sections.344

Figure 8. UTT-centered composites of precipitation anomalies with confidence level at 95%.

Colors show the precipitation anomaly in mm/day. Solid and dash lines are for confidence inter-

val contours.

4.2.4 Frontal Systems345

Frontal systems, especially in the mid-latitudes, promote precipitation by induc-346

ing uplift. Catto et al. (2012) describes the importance of frontal systems for precipi-347

tation around the world, arguing that they are responsible for 46 percent of overland pre-348

cipitation in the Northern Hemisphere. According to Kunkel et al. (2012), 44 percent349

of EPEs in the southwestern US summertime are attributable to frontal activities.350

Despite the existence of automated identification methods for frontal systems, avail-351

able schemes either require substantial computational power (Hewson, 1998), or are in-352

sufficiently validated over the NAM region (Parfitt et al., 2017; Biard & Kunkel, 2019).353

Instead of identifying fronts from reanalysis data, we use a manually labeled dataset from354

National Weather Service (NWS) coded surface bulletins. From 2003, this NWS dataset355

provides the locations and types of frontal systems at 3-hour intervals, which are deter-356

mined by a National Weather Service meteorologist (Biard, 2019). To link EPEs with357

frontal systems, we use the method from Catto et al. (2012): If a concurrent front is 5358

degrees or less away from the EPE area, the EPE is associated with that front.359

4.2.5 Mid-tropospheric Lows360

Often, moisture transport is driven by mid-tropospheric (i.e., 500 hPa) disturbances361

that do not strongly manifest at the surface level or in the upper atmosphere. Wibig (1999)362

used 500 hPa geopotential height to identify circulation patterns related to winter pre-363

cipitation over the Euro-Atlantic sector. The atmospheric circulation patterns related364

to EPEs over Greece emerged by analyzing the clustering results of 500 hPa geopoten-365

tial height fields in Houssos et al. (2008). In this study, we detect anomalous lows at the366

500 hPa level and assess their importance as a driver of EPEs. The composite mean of367

500 hPa geopotential anomaly during EPEs is shown in Figure 10. The low centers are368

generally located to the west of the inland subregions, and the anomalies are weaker for369

coastal subregions, though all features are significant at the 95% confidence level. Based370

on this analysis, where a concurrent Φ500 anomaly low stronger than -1000 m2/s2 is less371

than 5 degrees away from the subregion, the EPE is associated with a mid-tropospheric372

low.373
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Figure 9. PV200 standardized anomalies and zero U200 contour for eastward and westward

UTTs in Sub6. The red polygon denotes the location of Sub6. The solid black contour represents

the line of zero 200 hPa zonal wind, separating easterly and westerly winds. Shading depicts

PV200 standardized anomalies within a 95% confidence interval. The left column is the compos-

ite of all days concurrent with the UTT event. The middle and right columns are for one day

prior and two days prior to the onset date, respectively.

4.2.6 Mesoscale Convective Systems374

Mesoscale convective systems (MCS) are significant drivers of global precipitation375

(Zhao, 2022). Specific to the NAM region, Finch and Johnson (2010a) and Mejia et al.376

(2016) used observational records to show that MCS activity increases over the summer377

in the NAM region. While MCSs are difficult to resolve in modern reanalysis data, a va-378

riety of observational products possess sufficiently high resolution to enable MCS detec-379

tion. Feng et al. (2021) tracked MCSs globally based on infrared brightness temperature380

and precipitation from satellite datasets from 2001 onward. In this study we analyzed381

a subset of this tracking data covering the NAM region. A MCS event is deemed to be382

associated with an EPE only if there are labeled MCS grid points inside the precipitat-383

ing area.384

4.3 EPE Feature Drivers and Trends385

Since the frontal system record starts from 2003 and the MCS dataset is available386

from 2001, only TCs, UTTs, GOC surges and mid-tropospheric lows are considered for387

EPEs before 2003. Fronts and MCS are included for events from 2003 onward. Figure388

11 shows the precipitation amount fraction with different drivers for EPEs before and389

after 2003. The fraction of EPE numbers associated with the candidate drivers are de-390

picted in Figure 12. The events that are not linked with any candidate drivers are de-391

noted as ‘unclassified’ (abbreviated as ‘Unclass’). Although there are several unclassi-392

fied events before 2003, the inclusion of frontal systems and MCSs leads to only one un-393

classified event since 2003. This suggests that the features identified in this study are394

fairly comprehensive as EPE drivers.395

For most subregions, GOC surges and fronts are the two leading drivers, and ac-396

count for both more relevant events and larger precipitation amounts. TCs have a greater397
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Figure 10. EPE 500 hPa geopotential anomaly composites. Black contours denote the 95%

confidence interval (the solid line denotes positive anomalies and the dashed line denotes negative

anomalies).
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Figure 11. EPE precipitation amount (%) associated with different feature drivers before

(top) and after (bottom) 2003. The black color denotes eastward-UTTs. Since a given EPE could

be associated with more than one feature, the percentages do not add up to 100%. Fronts and

MCSs are not associated with EPEs prior to 2003.
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Figure 12. Similar with Figure 11, but for EPE occurrence percentage (%).
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Figure 13. EPE precipitation and event fraction associated with different drivers for the

whole NAM region after 2003. The black color denotes the eastward-UTTs.

impact on Sub1 and Sub6, and MCSs dominate Sub7. Mid-tropospheric lows are more398

frequent drivers of EPEs over inland subregions (Sub3, Sub4 and Sub5) than coastal ar-399

eas, which is consistent with Figure 10 where the geopotential low is more pronounced400

in these subregions. In addition to Figure 11 and 12 showing EPE attribution for each401

subregion, Figure 13 aggregates the driver attribution over the whole NAM region. Over402

the whole domain, the precipitation amount and EPE fraction are similarly ranked, with403

surges being the most dominant driver and MCSs coming in second. Despite the fact that404

only about 20% EPE events are linked to TCs, TCs are associated with almost 40% of405

EPE precipitation, which highlights the substantial precipitation amount that each TC-406

EPE produces.407

It should be noted that the feature classification in Figures 11, 12 and 13 is not ex-408

clusive (i.e., a UTT event can also be linked with other drivers like GOC surges or MCS).409

Combined events (i.e., two features simultaneously) are further investigated with EPEs410

after 2003, since all but one of the EPEs can be assigned to at least one candidate driver.411

The results are illustrated in Figure 14. In general, most of the EPEs are caused by two412

to three drivers. However, there are fewer categories in Sub1, Sub2 and Sub3, while the413

interactions are more complex in Sub6 and Sub7.414

Perhaps what stands out the most are those events induced solely by a single driver.415

Particularly for Sub7, MCSs are the dominant driver of EPEs, with the EPE precipi-416

tation solely driven by MCSs exceeding 10% (Figure 14), and about 65% coming from417

MCSs combined with another feature (Figure 11). This result indicates the importance418

of MCSs in this area as a driver for EPEs, and explains why this region suffers from a419

large percentage of ‘Unclassified’ events before 2003. Fronts are another feature unavail-420

able in our analysis before 2003, and one that is particularly important over inland sub-421

regions (Sub2, Sub3 and Sub4), where the front-only EPE precipitation exceeds 5%. In422

contrast with MCSs and fronts, TCs are an important feature for EPEs yet never oc-423

cur by themselves; almost all TC-related EPEs occur in conjunction with GOC surges.424

Mid-tropospheric lows are also closely associated with frontal activity – in fact, all EPEs425

associated with mid-tropospheric lows after 2003 are also associated with fronts, suggest-426

ing some redundancy in tracking these features. For Sub3 to Sub6, where fronts and mid-427

tropospheric lows are frequent, the frontal system types are examined against the ex-428

istence of mid-tropospheric lows. As listed in Table 2, although not all fronts with mid-429

tropospheric lows are cold fronts, the proportion of cold fronts increases when mid-tropospheric430

lows are present.431
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Figure 14. Combinations of different drivers for EPE precipitation after 2003. The bar length

represents the fraction of EPE precipitation amount. The abbreviation ‘UTT’ refers to upper-

troposphere troughs, ‘F’ to fronts and ‘S’ to GOC surges.

Table 2. Type of frontal system present with and without an associated mid-troposphere low.

Sub3 Sub4 Sub5 Sub6

Without Mid-tropospheric Lows

Cold Fronts 3 6 10 4
Stationary Fronts 2 20 35 15

With Mid-tropospheric Lows

Cold Fronts 3 8 5 1
Stationary Fronts 0 5 7 1
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As shown previously, key EPE metrics (both number of EPEs and EPE precipi-432

tation amount) have increased in Sub1 and Sub6, while EPE precipitation rate has trended433

down in Sub2. Since we have now classified EPEs by feature type, the trends for each434

EPE category in these three subregions are further examined with the same MK test.435

Since 6 categories are being tested at the same time, a Bonferroni correction is applied436

to adjust the confidence level from 0.05 to 0.05/6 ≈ 0.008.437

For the number of EPEs in each year, only the trend in TC-related EPEs is sig-438

nificant in Sub6 – there are no significant trends for other categories or regions. Although439

an upward trend in the number of EPEs is found in Sub1, none of the EPE categories440

have increased significantly, likely due to the strict p-value from Bonferroni adjustment441

(Perneger, 1998). The likely culprit is thus the number of TC-EPEs in Sub1, which has442

an increasing trend with a p-value of 0.010, much lower than other categories. The trend443

in precipitation amount is only significant for TC-EPEs in Sub1 and Sub6, and there are444

no significant trends for the remaining categories. Only Sub6 exhibits an increasing trend445

for TC-EPE precipitation rate, and again the p-value (0.012) for TC-EPE precipitation446

rate in Sub1 is the lowest among all the categories, but not significant with the Bonfer-447

roni adjustment. This result suggests that the significant trends of EPE numbers and448

total precipitation in Sub1 and Sub6 are explained by an increase in TC-related EPEs449

and their associated precipitation rates. The increasing trend in TC-EPE precipitation450

rates is indicative of more intense TC rainfall. The upward trend in TC-EPE numbers451

may be affected by low-frequency variability (Pazos & Mendoza, 2013), or global warm-452

ing, (i.e., the observed increase in TC frequency over Baja California (Murakami et al.,453

2020) and in the eastern North Pacific (Klotzbach et al., 2022)). But it is worth noting454

that although the increasing trend is significant in Sub6, the rate of change is small with455

the Theil-Sen slopes being 0 and OLS slopes less than 0.01. A further careful analysis456

is necessary to better relate these TC trends with potential upstream drivers.457

4.4 Meteorological Conditions Driving EPEs458

The meteorological field composites for EPEs in each subregion are constructed to459

reveal the conditions generally present during EPEs. Figure 15 shows the composite for460

Sub4 as an example. It is unsurprising that EPEs are coincident with moist conditions:461

all subregions show local high water content in total column water vapor (TCWV) and462

850hPa specific humidity (Q850) fields, mostly associated with strong moisture trans-463

port over the GOC channel (IVT-A and IVT-B). Similarly, EPEs occur alongside en-464

hanced vertical uplift. Figures for other subregions are available in supplements (Fig-465

ure S2 to S7). As we discussed in section 4.2.2, when GOC surge onset occurs, Sub4 shows466

a negative precipitation anomaly, suggestive of a tendency for dry conditions to occur467

prior to surges reaching Sub4. This is also observed in the concurrent composites, where468

IVT-A shows negative anomalies for Sub4. The 500hPa geopotential (Φ500) low center469

is always present and all the subregions show upward lifting with negative 500 hPa ver-470

tical velocity (Ω500) anomalies. Besides synoptic-scale uplifting, the positive convective471

available potential energy (CAPE) anomalies indicate a convectively active environment.472

Both the moisture and vertical ascent create a favorable environment for extreme pre-473

cipitation. In spite of the common patterns of moisture and uplift, the upper-level dis-474

turbance exhibits different behaviors across subregions: Sub1, Sub6 and Sub7 (coastal475

areas) show local anomalous low in PV200, while the strong gradient of PV200 with pos-476

itive values to the west and negative values to the east is significant in Sub2, Sub3, Sub4477

and Sub5 (inland areas). This difference indicates that UTTs (high PV200 contours) are478

more influential over Sub3, Sub4 and Sub5, which is consistent with the higher UTT-479

EPE precipitation fraction over inland areas in Figure 11. There are also magnitude dif-480

ferences across the subregions. Taking TCWV and Z500 as examples, composite mag-481

nitudes are relatively larger for inland areas like Sub3 and Sub4 compared with Sub6 and482

Sub7 (Figure S8 and Figure S9). This is probably due to the fact that MCSs are more483
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Figure 15. Standardized anomaly composites of EPE events in Sub4. Composites are shown

at 95% confidence intervals derived from a two-sided t-test.
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important in Sub6 and Sub7, as shown in Figure 11, and occur on scales that are too484

small to be resolved in these composites.485

If we composited all EPEs, the signals from individual EPE drivers would not be486

apparent and fields would be averaged in each region. Thus, the composites of different487

EPE categories are further examined and compared. In general, all the drivers exhibit488

the expected meteorological features that follow from their detection criteria (i.e., the489

local low SLP and Φ500 for TCs and anomalous positive PV200 for UTTs). Although490

we have constructed composites for every individual EPE drivers across subregions (Fig-491

ures S10 to S47), instead of focusing on the meteorology of every singular features, here492

we examine and contrast several important and similar features.493

4.4.1 UTTs and mid-tropospheric lows494

Figure 16. Standardized anomaly composites of UTT and mid-tropospheric lows for Sub3,

Sub4, Sub5 and Sub6.

UTTs and mid-tropospheric lows share some common features in PV200 and Φ500,495

as seen in figure 16, including anomalously high PV200 and low Φ500. Despite these sim-496

ilarities, the anomalies in Z500 and PV200 have a larger horizontal scale for mid-troospheric497

lows than for UTTs. This is likely related to their horizontal scales: it is suggested that498

mid-tropospheric lows could be related to planetary Rossby waves and so possess longer499

wavelengths (Fuentes-Franco et al., 2022), while UTT features are shorter waves that500

break from the long waves (RWBs), or tropical disturbances, with an average wavelength501

around 3000km (TUTTs Kelley & Mock, 1982; Chen & Chou, 1994).502
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4.4.2 Fronts and mid-tropospheric lows503

Fronts and mid-tropospheric lows are more frequent in inland subregions (Sub4 and504

Sub5). As we discussed in section 4.3 and Table 2, mid-tropospheric lows generally have505

lower surface temperatures as a consequence of the hypsometric equation, which in turn506

produces a stronger temperature gradient along the periphery of the low; so it is unsur-507

prising that mid-tropospheric lows and fronts are largely co-occurring and should not508

be considered entirely independent features. As mentioned earlier in our discussion, mid-509

tropospheric lows are always associated with fronts for EPEs after 2003, as shown in Fig-510

ure 14. This suggests that features identified as mid-tropospheric lows in our analysis511

give rise to more intense frontal features. Although both fronts and mid-tropospheric512

lows can drive uplift, their composites show differences in magnitude and spatial extent.513

Figure 17 depicts the composites of frontal EPEs with and without mid-tropospheric lows514

in Sub4. The magnitudes of the anomalies are observed to be larger for fronts with mid-515

tropospheric lows. In addition, the spatial extent of moisture and upward motion dis-516

turbances are greater when mid-tropospheric lows are co-occurring with fronts. This is517

certainly related to our geopotential magnitude criterion for mid-tropospheric lows; with518

-1000 m2/s2 as the threshold, the trough is deep enough to be generally associated with519

anomalously low near-surface temperatures. This cold air enhances the temperature gra-520

dient and intensifies frontal systems. In addition, as we discussed in section 4.4.1, mid-521

tropospheric lows are also related to planetary waves, which often have longer wavelength,522

whereas fronts are more localized. Therefore, larger spatial anomalies are expected as-523

sociated with mid-tropospheric lows.524

Figure 17. Frontal EPE composites in Sub4. The upper row shows fronts without mid-

tropospheric lows and the bottow row fronts with mid-tropospheric lows. The black contours

demarcate the 95% confidence interval.

4.4.3 GOC moisture surges525

Although winds are largely directed along the GOC in the summertime (Bordoni526

& Stevens, 2006) and IVT-A is used to derive GOC surges, an enhancement in IVT-B527

is also observed during GOC surge EPEs as shown in Figure 18, with Sub4 as an exam-528

ple. On the EPE onset dates, the IVT-B anomaly is significant throughout the GOC and529
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Sub4, while the IVT-A is depressed over GOC and part of Sub4. When examining days530

prior to EPEs, the positive IVT-A anomalies are observed over GOC 1 day prior and ex-531

tend larger in space 2 days prior, which follows our window size for Sub4 in Figure 7.532

In contrast to IVT-A, IVT-B anomalies are consistent in the 3-day window and cover533

a wider range of spatial locations, including both GOC and Sub4. These results suggest534

the important role of onshore moisture transport for EPEs, especially over inland areas535

(e.g., similar composite patterns are observed in Figure S33 for Sub5). Additionally, on-536

shore moisture transport is generally associated with IVT-A, given the location and ori-537

entation of the GOC channel, making IVT-A sufficient to represent moisture transport538

even though it is orthogonal to IVT-B. A further examination shows the correlations be-539

tween IVT-A and IVT-B are significant, although the coefficients are small. Thus, GOC540

surges identified solely with IVT-A also suggest an enhancement in IVT-B.541

Figure 18. GOC moisture surge EPE composites of standardized anomalies in Sub4. The

left column depicts concurrent composites, middle for one day prior and right for two days prior,

which is also the GOC surge onset date. Black contours show the 95% confidence interval.

4.4.4 The unclassified EPE of 2003542

In addition to the composites for each EPE category, meteorological conditions for543

the single unclassified event in Sub6 after 2003 are examined and depicted in Figure S48.544

Local high water content is shown in Q850 fields. PV200 and CAPE indeed show pos-545

itive anomalies near the precipitation area, and the EPEs are likely related to these dis-546

turbances given that there are no clear disturbances found in IVT, SLP and Z500 fields.547

However, the upper-level disturbance is below 2PVU, which leads to a missed UTT as-548

sociation based on our tracking criteria. As it is associated with a relatively weak upper-549

level anomaly, it is unsurprising that the precipitation rate of this unclassified event (10.87mm/day)550

is close to the 95th percentile thresholds (10.65 mm/day).551

4.5 Precipitation Rate Distributions Associated with Atmospheric Fea-552

tures553

Although we have shown that essentially all NAM EPEs can be associated with554

a feature driver, the presence of a particular atmospheric driver is, in general, not suf-555
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ficient to guarantee occurrence of an EPE. To examine precipitation response in the pres-556

ence of a particular atmospheric feature, we composite the precipitation rate with re-557

spect to different drivers and compare the probability of EPEs. Following the definition558

of rainy days, only those precipitation rates larger than 1 mm/day are analyzed. Although559

the precipitation rate generally follows a gamma distribution (Watterson & Dix, 2003;560

Martinez-Villalobos & Neelin, 2019), for precipitation rates larger than 1 mm/day, a gen-561

eralized Pareto distribution (GPD) is employed since it is widely used for assessing the562

tail of various distributions (Dargahi-Noubary, 1989). The GPD has three parameters:563

shape, location, and scale. However, when fitting the data, the location parameter is fixed564

to 1 mm/day, while shape and scale are optimized using their maximum likelihood es-565

timate.566

Figure 19. Subdomain-averaged precipitation rate distribution with respect to atmospheric

drivers for Sub7. The dashed vertical line denotes the 95th percentile of precipitation rate. The

left panel represents single drivers and the right shows double drivers.

Figure 19 shows the fitted precipitation rate PDF function with single and dou-567

ble atmospheric drivers in Sub7, as an example. Figures for other subregions are avail-568

able in the supplements (Figure S49 to S54). Overall, a spread emerges in the tail that569

is strongly dependent on the subregion being examined (i.e., MCSs are more likely to570

bring heavy precipitation in Sub1 while their precipitation probability is relatively lower571

in Sub2). While this figure is effective at illustrating this spread, the fits themselves tend572

to underestimate the probability of extreme precipitation when comparing the CDFs to573

the observed frequency of EPEs under each feature. Consequently, the area under each574

PDF above the EPE threshold should not be used to assess EPE probability under each575

extreme. Thus, we use frequency instead of CDF and utilize bootstrap to derive confi-576

dence intervals.577

The results of this procedure are shown in Figure 20 for single drivers and the fig-578

ure for double drivers is available in the supplement (Figure S55). The single driver with579

the highest extreme precipitation probability is TCs for Sub2, Sub5, Sub6 and Sub7, mid-580

tropospheric lows for Sub1 and Sub3, and MCSs for Sub4. Because the probability of581

EPE occurrence does not incorporate the frequency of each driver, the single driver with582

the highest extreme precipitation probability is not the greatest contributor to extreme583

precipitation shown in Figure 11. For example, in Sub5, TCs are the driver with the high-584

est probability of extreme precipitation rates, whereas both the number and precipita-585

tion amount of TC-related EPEs are the lowest in Figure 11. This result actually reflects586

Sub5 being far from the coast and consequently subject to only the most extreme TCs.587
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Figure 20. Frequencies of precipitation rates exceeding the extreme threshold associated

with the occurrence of single candidate drivers. The error bar shows the 95% confidence interval

derived from bootstrap sampling. Probabilities are shown as percentages.

Sub5 is also a desert region with a lower threshold for extreme precipitation compared588

to coastal areas like Sub1, Sub2, Sub6 and Sub7 (Figure 3).589

Compared with the single drivers, the probability for an EPE to occur when two590

drivers are present is not necessarily higher with the addition of another driver (e.g., the591

probability of TC-Midtro in Sub6 (0.20) is less than TC (0.27)), implying that the multi-592

driver interactions are not always additive. When the second driver is included, the ex-593

treme precipitation probability may increase, decrease or remain unchanged, depending594

on the subregion and associated drivers. In the remainder of this section, we investigate595

some more interesting combinations of features. Since the sample size is limited, the con-596

fidence intervals for the EPE probabilities are wide, indicating a large uncertainty as-597

sociated with the frequency. Thus, instead of frequencies as single scalars, we instead per-598

form a qualitative assessment using the GPD PDF functions, especially for the high pre-599

cipitation rate regime.600

4.5.1 TC-Surge interactions601

Given their close association, it is perhaps unsurprising that TC and TC-Surge PDF602

curves are similar in Sub1 and Sub7 as shown in Figure 21. In addition, the number of603

TC-Surge-related precipitation days is about equal to the number of TC-related days,604

indicative of TCs being closely associated with GOC surges. As Sub1 and Sub7 are to-605

wards the south end of GOC, the precipitation response to TCs and TC-Surges are nearly606

identical in these regions.607

4.5.2 TC-UTT interactions608

The PDF curves for TC, UTT and TC-UTT precipitation are further compared609

in Sub7 since TC and UTTs are both frequent here. In Figure 21, the TC-UTT-10◦ (i.e.,610

TC-UTT double driver using the default 10 degree UTT search radius) precipitation curve611

is close to the TC curve, while the UTT-10◦ curve is far below these two curves, indi-612

cating much lower probability of high precipitation intensity. The insignificant impact613
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of UTTs on TCs is here attributed to their disparate distance criteria (5 degrees for TCs614

and 10 degrees for UTTs). TCs are more frequent to the west of Sub7 while easterly UTTs615

prevail as shown in Table 1. Since, in a compound event, UTT centers are usually far616

from the TC centers, the TC precipitation is largely unaffected by UTTs. However, when617

we decrease the distance criterion to 5 degrees for UTTs, the TC-UTT curve indeed shows618

lower probabilities for high precipitation rates in Figure 21, indicating that UTTs tend619

to weaken TC precipitation. A further examination of the composites shows UTTs hin-620

der the eastward moisture transportation by TCs, which decreases the local water con-621

tent in Sub7. This is in accord with previous research showing that UTTs can decrease622

TC activity (Zhang et al., 2016, 2017; Z. Wang et al., 2020).623

4.5.3 Fronts and mid-tropospheric lows624

Mid-tropospheric lows and fronts are selected as major drivers of EPEs for Sub4625

and Sub5 since they are frequent in these inland areas. As has been demonstrated in sec-626

tion 4.3, mid-tropospheric lows occur simultaneously with strong frontal systems. Con-627

sequently, we focus here on the precipitation caused by fronts and mid-tropospheric lows,628

as opposed to precipitation induced solely by fronts. Comparing the PDFs, fronts are629

more likely to produce heavy precipitation when mid-tropospheric lows are concurrent630

for both Sub4 and Sub5 as depicted in Figure 21. Similar meteorology patterns are ob-631

served as in Figure 17, suggesting that mid-tropospheric lows are associated with larger632

anomalies in both water content and vertical velocity fields.633

Figure 21. Double-feature PDF curves: (a) TC and GOC surge in Sub1 (blue) and Sub7

(red); (b) TC and UTT with different distance thresholds in Sub7; (c) front and mid-tropospheric

lows in Sub4 and (d) Sub5. Dashed vertical lines represent the EPE threshold.

4.5.4 UTTs and MCSs634

As shown in Figure 8, eastward-UTTs and westward-UTTs show distinct precip-635

itation anomalies. With this in mind, we consider a decomposition of UTTs by their prop-636

agation directions. Figure 22 depicts the UTT-precipitation PDF curves with and with-637

out MCSs. For westward UTTs, presence of a MCS will increase the precipitation rate,638

as the orange curves (UTTwMCS) are always above the blue curves (UTTwoMCS) in639

the high precipitation rate regimes. To the contrary, precipitation induced by eastward-640

UTTs tends to be depressed when MCSs are co-occurring, as the UTTwMCS curves are641

under the UTTwoMCS curves for Sub6 and Sub7. This indicates that westward-UTTs642
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enhance precipitation in MCSs by increasing convective activity, as suggested in the case643

studies in Finch and Johnson (2010b); Newman and Johnson (2012), although the en-644

hancement is small. Additionally, these case studies have also demonstrated that con-645

vective systems are more common in the Sierra Madre. This relatively static location646

of MCS systems is not always at the same distance to the UTT centers during their west-647

ward propagation. This mismatch could potentially result in the fragments of precip-648

itation anomaly composites for westward-UTTs observed in Figure 8.649

Figure 22. UTT and MCS precipitation probability density functions and their interactions.

Top row is for westward-UTTs and bottom for eastward-UTTs. UTTwoMCS stands for precipi-

tation induced solely by UTTs, and UTTwMCS represents the precipitation caused by both UTT

and MCS.

5 Conclusions650

This work investigates the meteorological drivers for EPEs in the NAM region from651

1979 to 2018. We first delineate the NAM domain and its subregions from the CPC pre-652

cipitation dataset, rather than using individual states or latitude-longitude bounded ar-653

eas. Since the SOM-based identification method emphasizes the extreme precipitation654

characteristics and doesn’t rely on topographical features or state borders, it is better655

suited to regional precipitation studies. Given the heterogeneous topographical charac-656

teristics and precipitation distributions in the NAM region, the subregion delineation is657

still necessary to understand the precipitation drivers.658

Candidate meteorological features selected to investigate as drivers of EPEs include659

TCs, UTTs, GOC moisture surges, fronts, mid-tropospheric lows and MCSs. This se-660

lection appears sufficient to capture all EPE drivers, as essentially all EPEs fall into at661

least one of these categories; for the singular unclassified EPE after 2003, the PV200 anoma-662

lies are quite weak, and its precipitation rate is close to our EPE threshold. This con-663

nection suggests a potential quantitative link between precipitation and meteorological664

conditions. Unsurprisingly, different subregions have different dominant drivers, and most665

EPEs are associated with more than one driver. Given the larger EPE precipitation frac-666

tion associated solely to them, GOC surges, MCSs and fronts tend to be the most im-667
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portant. This finding highlights the importance of developing MCS and front datasets668

for the NAM region prior to 2003. The attribution of all EPEs to feature drivers does669

not indicate these drivers are sufficient conditions for EPE occurrence. Indeed, the prob-670

ability of an EPEs given the presence of these drivers is generally less than 30%. Ad-671

ditionally, the driver with the highest extreme precipitation probability for each subre-672

gion is not the driver that produces the most extreme precipitation, reflecting variations673

in the frequency of each feature driver.674

EPE composites indicate that extreme precipitation events are associated with both675

high local water vapor content (Q850, TCWV) and upward lifting (Ω500, CAPE). Fur-676

ther examination shows significantly positive IVT-B anomalies for inland areas, indicat-677

ing the important role of onshore moisture transport in addition to IVT-A. Close asso-678

ciations are found between TCs and GOC surges, and between mid-tropospheric lows679

and fronts. For UTT-EPEs, the propagation direction of the upper-level disturbance plays680

a major role in the subsequent precipitation anomalies. Because of the direction in en-681

vironmental winds, there are more westerly disturbances for northern subregions (e.g.,682

Sub3) whereas easterlies are more common for southern subregions (e.g., Sub6 and Sub7).683

Both types of UTTs tend to suppress precipitation to the north of the feature and en-684

hance it to the south, although the enhancement is weak for westward propagating UTTs.685

Our double driver analysis suggests co-occurring UTTs tend to suppress TC precipita-686

tion, but may be enhanced by MCS (although these results are sensitive to subregion).687

We are primarily interested in the co-occurrence of atmospheric drivers with EPEs,688

which does not necessarily indicate causality. In terms of future research, a causal in-689

ference analysis could be conducted to better examine the conditions necessary for a fea-690

ture to produce an EPE. Additionally, given the modest PV200 anomalies for the un-691

classified EPE with a lower precipitation rate, we see chances to incorporate quantita-692

tive analysis between atmospheric drivers and precipitation rates. Some quantitative anal-693

ysis, like Sukhdeo et al. (2022), could be used to quantify the predictability. Overall, the694

work presented here aims to better quantify the relative importance of meteorological695

drivers to EPEs in different monsoonal subregions. Future work will seek to apply a sim-696

ilar analysis to other global regions.697

Acknowledgments698

ERA5 data can be accessed at https://cds.climate.copernicus.eu. The CPC699

global precipitation dataset is available at https://psl.noaa.gov/data/gridded/data700

.cpc.globalprecip.html. Our NAM domain shapefiles and GOC moisture surge records701

can be accessed at Duan et al. (2022). This material is based upon work supported by702

the U.S. Department of Energy, Office of Science, Office of Biological and Environmen-703

tal Research, Climate and Environmental Sciences Division, Regional and Global Model704

Analysis Program, under Award DE-SC0019367 and DE-SC0016605. Computational re-705

sources are from the National Energy Research Scientific Computing Center (NERSC),706

which is a DOE Office of Science User Facility and the Tempest cluster at UC Davis. Spe-707

cial thanks to Dr. Matthew Igel for helpful discussions.708

References709
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