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Abstract

The transport of meltwater through porous snow is a fundamental process in hydrology that remains poorly understood but

essential for more robust prediction of how the cryosphere will respond under climate change. Here we propose a continuum

model that resolves the nonlinear coupling of preferential melt flow and the nonequilibrium thermodynamics of ice-melt phase

change at the Darcy scale. We assume that the commonly observed unstable melt infiltration is due to the gravity fingering

instabililty, and capture it using the modified Richards equation that is extended with a higher-order term in saturation. Our

model accounts for changes in porosity and the thermal budget of the snowpack caused by melt refreezing at the continuum

scale, based on a mechanistic estimate of the ice-water phase change kinetics formulated at the pore scale. We validate the

model in 1D against field data and laboratory experiments of infiltration in snow and find generally good agreement. Compared

to existing theory of stable melt infiltration, our 2D simulation results show that preferential infiltration delivers melt faster to

deeper depths, and as a result, changes in porosity and temperature can occur at deeper parts of the snow. The simulations

also capture the formation of vertical low porosity annulus known as ice pipes, which have been observed in the field but lack

mechanistic understanding to date. Our results demonstrate how melt refreezing and unstable infiltration reshape the porosity

structure of snow and impacts thermal and mass transport in highly nonlinear ways, which are not captured by simpler models.

1



manuscript submitted to Water Resources Research

A thermodynamic nonequilibrium model for1

preferential infiltration and refreezing of melt in snow2

Adrian Moure1, Nathan Jones1, Joshua Pawlak1, Colin Meyer2, Xiaojing Fu1
3

1Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA,4

United States5

2Thayer School of Engineering, Dartmouth College, Hanover, NH, United States6

Key Points:7

• We propose a continuum model of gravity-driven preferential flow and refreezing8
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Abstract14

The transport of meltwater through porous snow is a fundamental process in hydrology15

that remains poorly understood but essential for more robust prediction of how the cryosphere16

will respond under climate change. Here we propose a continuum model that resolves17

the nonlinear coupling of preferential melt flow and the nonequilibrium thermodynam-18

ics of ice-melt phase change at the Darcy scale. We assume that the commonly observed19

unstable melt infiltration is due to the gravity fingering instabililty, and capture it us-20

ing the modified Richards equation that is extended with a higher-order term in satu-21

ration. Our model accounts for changes in porosity and the thermal budget of the snow-22

pack caused by melt refreezing at the continuum scale, based on a mechanistic estimate23

of the ice-water phase change kinetics formulated at the pore scale. We validate the model24

in 1D against field data and laboratory experiments of infiltration in snow and find gen-25

erally good agreement. Compared to existing theory of stable melt infiltration, our 2D26

simulation results show that preferential infiltration delivers melt faster to deeper depths,27

and as a result, changes in porosity and temperature can occur at deeper parts of the28

snow. The simulations also capture the formation of vertical low porosity annulus known29

as ice pipes, which have been observed in the field but lack mechanistic understanding30

to date. Our results demonstrate how melt refreezing and unstable infiltration reshape31

the porosity structure of snow and impacts thermal and mass transport in highly non-32

linear ways, which are not captured by simpler models.33

1 Introduction34

Water stored in snow and ice counts for 75% of Earth’s freshwater volume. Reli-35

able predictions of the hydrological cycle in cold environments such as terrestrial snow-36

pack and glaciers remain challenging, but are necessary to improve both water resources37

and geohazards management under climate variability. A fundamental process that re-38

mains poorly understood is how surface-generated melt—water released from its frozen39

state due to heating of the snow—transports and distributes within the snowpack be-40

fore entering the groundwater or surface water systems. A robust model for meltwater41

flow through snow is crucial to formulate reliable predictions in larger-scale models of42

snow cryohydrology and glaciology.43

One key challenge of modeling snowmelt hydrology is the ability to robustly cap-44

ture the infiltration rate and storage location of meltwater within the snowpack. While45
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the generation of melt at snow surface can be relatively uniform in space, meltwater in-46

filtration through the underlying snowpack is known to be highly heterogeneous in na-47

ture, forming (1) vertical preferential flow pathways that channelize meltwater (e.g., ice48

pipes) and (2) lateral flow pathways guided by horizontal low permeability zones (e.g.,49

capillary barriers or ice lenses). Both types of preferential pathways have been observed50

in the field directly or indirectly (Campbell et al., 2006; Humphrey et al., 2012; Kinar51

& Pomeroy, 2015; Culberg et al., 2021; Clerx et al., 2022), but systematic investigation52

and mechanistic understanding of these phenomena are lacking. In particular, labora-53

tory experiments in 3D samples (Waldner et al., 2004; Katsushima et al., 2013; Avanzi54

et al., 2016) have shown the percolation of meltwater into 3D snowpack/column to be55

intrinsically unstable, analogous to gravity-driven water infiltration through dry soil (Glass56

et al., 1989; Selker et al., 1992; Glass & Nicholl, 1996). However, direct observation of57

this process is difficult due to the opacity of snow. Additionally, when melt interacts with58

subfreezing snowpack, it can readily refreeze as ice and decrease local snow porosity. This59

refreezing process reduces the effective infiltration rate by both consuming liquid water60

available for transport and by lowering the hydraulic conductivity of snow, which hin-61

ders vertical percolation and promotes lateral runoff (Culberg et al., 2021; Clerx et al.,62

2022). The resulting heterogeneous porosity structures, such as ice pipes or ice lenses,63

play an important role in snow hydrology and geohazard assessment but the mechanism64

of their formation remains poorly understood.65

Existing models of snowmelt transport are limited by simplified flow physics and66

thermodynamics and fail to address the important phenomena observed in the field as67

mentioned above. Meltwater infiltration through snowpack is traditionally modeled us-68

ing the Richards equation (S. Colbeck, 1972; S. C. Colbeck, 1976). However, the Richards69

equation does not readily reproduce unstable infiltration patterns in 2D and is therefore70

limited in its ability to capture nonlinearity in drainage dynamics (DiCarlo, 2010, 2013).71

Within the snow hydrology literature, more recent models have explored alternatives or72

extensions to the Richards equation in order to capture unstable infiltration of meltwa-73

ter (Hirashima et al., 2014, 2019; Leroux & Pomeroy, 2019; Leroux et al., 2020). These74

studies assume the snowpack is at the melting point (isothermal condition) such that no75

phase change occurs between melt and ice. Although this neglects an important aspect76

of the physics involved, these isothermal models have proved useful in providing insight77

into unstable melt infiltration. In these models, the Richards equation and the van Genuchten78
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model for capillary pressure (Van Genuchten, 1980) have been adapted for snow hydrol-79

ogy by empirically calibrating the water retention curve via infiltration experiments (Ya-80

maguchi et al., 2010, 2012). Some authors have improved the capabilities of these mod-81

els by accounting for imbibition and draining hysteresis (Leroux & Pomeroy, 2017) or82

a dynamic capillary pressure (Leroux & Pomeroy, 2019). However, an initial random dis-83

tribution for the snow density and/or grain size is required to produce the phenomenon84

of preferential flow in these models (Hirashima et al., 2014; Leroux & Pomeroy, 2019).85

In order to capture melting and freezing processes, isothermal models from the 1970s86

(S. Colbeck, 1972) have since been expanded to consider non-isothermal effects from the87

release of latent heat during melt-ice phase change and its impact on the thermal energy88

balance of the snowpack (Illangasekare et al., 1990). Most non-isothermal models of melt-89

water infiltration have considered a single temperature field to account for both the melt90

and ice phase (Illangasekare et al., 1990; Leroux & Pomeroy, 2017; Meyer & Hewitt, 2017),91

which implies that ice in contact with liquid water reaches the melting point instanta-92

neously (always at equilibrium) and thus meltwater is always at the melting point. Lim-93

ited by this equilibrium assumption, the rate of phase change needs to be prescribed (Ler-94

oux & Pomeroy, 2017) or based on empirical functions of temperature (Illangasekare et95

al., 1990; De Michele et al., 2013), which do not resolve the nonequilibrium thermody-96

namics during melt refreezing and can over- or under-estimate the refreezing rate. Some97

authors have reformulated the non-isothermal problem in terms of two unknowns: the98

enthalpy and the total water content (Aschwanden et al., 2012; Meyer & Hewitt, 2017).99

This type of model also considers thermal equilibrium, which allows for estimation of the100

liquid water saturation, porosity, and snow temperature from the enthalpy and total wa-101

ter content, enabling a simpler problem formulation. Some of these models (Illangasekare102

et al., 1990; De Michele et al., 2013; Leroux & Pomeroy, 2017; Meyer & Hewitt, 2017)103

account for changes in porosity due to melting and refreezing; however, they mainly fo-104

cus on 1D scenarios and do not investigate the formation of macroscopic porosity struc-105

tures in 2D or 3D such as ice pipes or ice lenses.106

Here, we propose a model that couples the physics of unstable water infiltration107

in unsaturated porous media with the nonequilibrium thermodynamics of ice-water phase108

transitions at the Darcy-scale using a continuum description. To capture unstable melt109

infiltration, we adopt the framework proposed by Cueto-Felgueroso & Juanes (2008, 2009b)110

that extends the Richards equation with a higher-order term of the saturation gradient.111
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Such extension has been shown to give rise to a gravity fingering instability and requires112

only a small number of model parameters. In comparison to other recent models of un-113

stable meltwater infiltration (Hirashima et al., 2014; Leroux & Pomeroy, 2017; Leroux114

et al., 2020), the infiltration model we adopt has a simpler formulation while remaining115

still robust in producing infiltration patterns consistent with experimental observations116

(Cueto-Felgueroso & Juanes, 2009b; Cueto-Felgueroso et al., 2020a,b). The model ac-117

counts for the phase change process of melt refreezing to ice by (1) modeling a decrease118

in local snow porosity due to refreezing and (2) updating the thermal budget based on119

the release of latent heat. Contrary to previous meltwater infiltration models that con-120

sider thermal equilibrium, our model assumes local thermal non-equilibrium (LTNE),121

which permits that the ice and water phases may coexist at different temperatures. The122

LTNE assumption allows us to mechanistically estimate the rate of ice-water phase change123

as a function of both the ice and water temperatures. The LTNE model has been recently124

used to improve thermodynamic description of frozen soil (Hamidi et al., 2019; Heinze,125

2021), and, to the best of our knowledge, has not been used to investigate the thermo-126

dynamics of snowpack. The thermodynamic component of this model can be readily used127

to investigate melting instead of refreezing.128

To organize this paper, we first provide the complete description of the model (Sec-129

tion 2) and its numerical implementation in the FEM framework (Section 3). In Section 4,130

we first perform limited model validations using laboratory experiments and field obser-131

vations. In particular, we compare 1D numerical results with recent experimental stud-132

ies that measure the hydraulic properties of snow under isothermal conditions in Sec-133

tions 4.1.1 and 4.1.2 and with the thermal profile observed in the field during melt in-134

filtration and refreezing in Section 4.1.3. We then present 2D simulations of our model135

in its reduced form under isothermal conditions (Section 4.2), and then in its full form136

under non-isothermal conditions (Section 4.3), and show its ability to capture preferen-137

tial melt flow coupled with melt refreezing that lead to the formation of heterogeneous138

porosity structures when melt infiltrates into subfreezing snow.139

2 Mathematical model140

We propose a Darcy-scale model for unstable meltwater infiltration and refreezing141

through a snowpack. Here, we consider a snowpack as a porous medium composed of142

ice, air, and liquid water (Fig. 1). For simplicity, we refer to liquid water as water from143
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here on. The model unknowns are defined here as averaged quantities over a represen-144

tative elementary volume (REV) and are (Fig. 1, inset): porosity φ(x, t), saturation S(x, t),145

Darcy velocity of meltwater flow u(x, t), ice temperature Ti(x, t), and water tempera-146

ture Tw(x, t). Here, x denotes spatial coordinates and t denotes time. The liquid wa-147

ter content (LWC) is computed as LWC = φS and the relative volume of ice as 1−φ.148

Our model accounts for the ice-water phase transitions, i.e., melting and freezing. We149

disregard phase transitions involving water vapor because their kinetics are much slower150

than the time scale we consider in this work (Kaempfer & Schneebeli, 2007). We describe151

the model equations in the following paragraphs.152

2.1 Mass conservation153

The ice mass conservation equation can be written as

ρi
∂(1− φ)

∂t
= −ρiRmWSSA(Tint − Tmelt), (1)

where ρi is the ice density, which we assume constant, Rm is the phase change rate co-154

efficient, WSSA is the wet specific surface area, Tint is the volume-averaged temperature155

of the ice-water interface, and Tmelt is the melting point. The right-hand side in Eq. (1)156

accounts for the amount of ice mass lost/gained due to melting/refreezing, and results157

from upscaling the Wilson-Frenkel law (Libbrecht, 2017) for ice growth (see Appendix158

for more details). Note that we do not consider snow compaction here. The coefficient159

Rm is defined as Rm = cp,w/(Lsolβsol), where cp,w is the specific heat capacity of wa-160

ter, Lsol is the solidification latent heat, and βsol is the kinetic attachment coefficient for161

ice growth from liquid water (Libbrecht, 2017), which we assume is constant.162

WSSA represents the water-ice interfacial area per unit volume (units m2 m−3). We

follow Koponen et al. (1997) and assume that the snow specific surface area (SSA) evolves

as a function of porosity such that SSA ∼ φln(φ). Note that Domine et al. (2007) and

Matzl & Schneebeli (2006) reported similar trends of SSA for different types of snow.

We also assume that the relative amount of ice surface in contact with water with re-

spect to the total ice surface is proportional to S. Thus, we can express WSSA as

WSSA(φ, S) = S
SSA0

φ0ln(φ0)
φln(φ), (2)

where SSA0 is the initial SSA of a snowpack with porosity φ0. The estimation of Tint163

is explained below in Section 2.2.1.164
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Ice
Air

Water
Porosity

Saturation

Darcy scale

Meltwater

Dry snowpack

REV

refreezing

u

liquid water
flow

Darcy's flow

REV integrals:

Ice temp.

Water temp.

Darcy-scale variables:

Melt generation

Figure 1. Model description and unknowns. Meltwater infiltration through the snow-

pack is modeled at the Darcy scale as an unsaturated flow within an evolving porous medium.

Changes in the snow microstructure are caused by ice-liquid water phase changes. The problem

unknowns (right inset), which are continuous at the Darcy scale, represent the volume averaged

quantities in a Representative Elementary Volume (REV). The superscript P in the right-hand

side expressions denotes pore-scale variables.

The water mass conservation equation reads

ρw

(
∂(φS)

∂t
+∇ · u

)
= ρiRmWSSA(Tint − Tmelt), (3)

where ρw is the water density, which we assume constant. Eq. (3) is an advection-reaction165

equation and accounts for the meltwater flow and the ice-water phase change. The right-166

hand side terms in Eq. (3) and in Eq. (1) have the same magnitude but opposite signs,167

which ensures mass conservation during ice-water phase transitions.168

2.1.1 Unsaturated meltwater flow169

The flow of meltwater through partially dry snow is often modeled using the Richards170

equation, which is the classic model for unsaturated gravity-driven flow through porous171

media. However, the Richards equation is known to reproduce only stable infiltration172

front and does not capture unstable infiltration phenomena known as gravity fingering,173

which has been observed during water infiltration through natural porous media such174

as sand, soil, and snow (DiCarlo, 2013; Humphrey et al., 2012; Avanzi et al., 2016).175
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Here, we use a natural extension of Richards equation proposed in Cueto-Felgueroso

& Juanes (2008, 2009b) to model unstable meltwater infiltration. The meltwater veloc-

ity is expressed as

u = −Ks(φ)kr(S)∇Π(S), (4)

where Ks is the saturated hydraulic conductivity, kr is the relative permeability, and Π

is the total flow potential. We follow Calonne et al. (2012) and use the empirical expres-

sion for snow hydraulic conductivity

Ks(φ) = 3

(
di
2

)2
ρwg

µw
exp[−0.013ρi(1− φ)], (5)

where di is the ice grain diameter, which we assume constant, g is the gravitational ac-

celeration, and µw is the water dynamic viscosity, which we assume constant. Note that

the dry snow density (ρsnow) and porosity are related by the expression ρsnow = ρi(1−

φ), which appears in the exponential argument in Eq. (5). We assume the relative per-

meability is a convex function of saturation (Bear, 1972; Brooks & Corey, 1966) defined

as

kr(S) =

(
S − Sr
1− Sr

)a
, (6)

where Sr is the irreducible water saturation and the parameter a > 1 varies for differ-

ent types of snow. The irreducible water saturation in subfreezing snow is approximately

zero. Sr values slightly higher than zero could represent pre-melted water (Hansen-Goos

& Wettlaufer, 2010; Slater & Michaelides, 2019) at temperatures below the melting point.

Eq. (6) displays the same trend as the Genuchten-Mualem model (Mualem, 1976). Fi-

nally, the flow potential accounts for gravitational and capillary forces and is defined as

Π(S) = z − ψ(S)−
√
κ∇ · (

√
κ∇S), (7)

where the first and second terms constitute the classical Richards model for unsaturated

flow, while the third term is a non-local (also known as second-gradient) term associated

with a macroscopic surface tension effect that gives rise to an unstable infiltration front

and the emergence of gravity fingering (Cueto-Felgueroso & Juanes, 2008, 2009b). In Eq. (7),

the z-coordinate increases with height, ψ is the Leverett J-function which accounts for

capillary pressure, and κ is the expansion coefficient for the second-gradient theory (Bel-

jadid et al., 2020). The functions ψ(S) and κ(S) are defined as

ψ(S) = hcapS
− 1
α

{
1− exp [β(S − νe)]

(
1 + β

α

α− 1
S

)}
, (8)

–8–
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κ(S) = h2
cap

∫ S

0

ψ(S) dS = h3
cap

α

α− 1
S
α−1
α {1− exp [β(S − νe)]} , (9)

where hcap, α, β, and νe are constants. The parameters hcap, α, β, and νe, which may176

take different values for different types of snow, can be calibrated from water retention177

curves obtained from experiments or other models (Yamaguchi et al., 2010, 2012; Kat-178

sushima et al., 2013).179

Remark: The relative permeability and the Leverett J-function (Eqs. (6) and (8)) ac-180

count for infiltration through fixed porous microstrutures. Due to the lack of informa-181

tion about the evolution of these hydraulic properties as the snow microstructure changes,182

we assume that the parameters involved in Eqs. (6) and (8) are constant during melt-183

water infiltration and refreezing.184

2.2 Thermal balance185

The evolution equations for the thermal energy in the ice and water phases are ex-

pressed as:

ρicp,i
∂[(1− φ)Ti]

∂t
= ∇ · (Ki(1− φ)∇Ti)− αiρLsolRmWSSA(Tint − Tmelt) (10)

ρwcp,w

[
∂(φSTw)

∂t
+∇ · (uTw)

]
= ∇ · (KwφS∇Tw)− αwρLsolRmWSSA(Tint − Tmelt), (11)

where cp,i is the specific heat capacity of ice and Ki and Kw, which we assume constant,186

are the ice and water thermal conductivity, respectively. The value of ρ depends on the187

direction of the phase transition such that ρ = ρw in case of freezing or ρ = ρi in case188

of melting. The coefficient αi (respectively, αw) represents the percentage of latent heat189

released (or absorbed) by the ice phase (respectively, water phase) due to ice-water phase190

transitions. Note that αi + αw = 1. The estimation of αi and αw is described in the191

following section. Due to the lower density and specific heat capacity of air, we assume192

that heat exchange occurs only between ice and water.193

2.2.1 Interfacial temperature Tint and latent heat partition194

We resort to a pore-scale solidification model (i.e., the generalized Stefan problem;

see Gomez et al. (2019)) to estimate the temperature at the ice-water interface (Tint) and

the amount of latent heat partitioned to the ice and water phases (αi and αw). Sharp-

interface models of solidification such as the generalized Stefan problem usually consider

–9–
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Temperature profile and gradient approximation

ice-water interface (Γiw)

vn

Water Ice

TP (pore scale)

Tw (Darcy scale)

vn

ri

rw

refreezing velocity

Tint

Ti (Darcy scale)

Water

Air

Ice

vn

ice-water interface (Γiw)

Δ

Ti
p

Δ

Tw
p

ni

REV

Figure 2. Approximation of the pore-scale temperature gradients on the ice-water

interface (Γiw). Ice and water pore-scale temperature gradients (∇TP
i and ∇TP

w ) can be esti-

mated from the Darcy-scale temperatures Ti and Tw, the ice-water interface (Γiw) temperature

Tint, and the characteristic lengths ri and rw. The parameters ri and rw can be calibrated from

experimental data or pore-scale numerical simulations.

the following conditions on the moving ice-water interface, denoted as Γiw:

TPint = TPi

∣∣∣
Γiw

= TPw

∣∣∣
Γiw

, (12)

Ki∇TPi
∣∣∣
Γiw
· ni −Kw∇TPw

∣∣∣
Γiw
· ni = Lsolρvn, (13)

TPint − Tmelt

Lsol/cp,w
= −d0χ− βsolvn, (14)

where TPint, T
P
i and TPw are the pore-scale temperatures (denoted using superscript P )195

at the ice-water interface, within the ice phase, and within the water phase, respectively.196

Eq. (12) imposes temperature continuity at the interface. Eq. (13) accounts for the ther-197

mal energy conservation across Γiw. Eq. (14) is known as the Gibbs-Thomson condition198

and relates the velocity (vn), curvature (χ), and temperature (TPint) of the interface. In199

Eq. (13), ni is the outwards unit normal vector of the ice phase pointing toward the wa-200

ter phase (see Fig. 2), vn is the normal velocity of the interface (positive for ice growth),201

and ρ = ρw during freezing or ρ = ρi during melting. In Eq. (14), the parameter d0202

is the capillary length and χ is the interface curvature (positive for spherical ice grains).203

To upscale the pore-scale solidification process defined by Eqs. (12)–(14) to the Darcy

scale, we integrate Eqs. (13) and (14) along Γiw in a REV, which results in the expres-

–10–
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sions:

Ki∇TPi
∣∣∣
Γiw
−Kw∇TPw

∣∣∣
Γiw

= Lsolρvn, (15)

TPint − Tmelt

Lsol/cp,w
= −βsolvn, (16)

where we define the volume-averaged quantities:

∇TPi
∣∣∣
Γiw

=

∫
Γiw
∇TPi · ni da∫

Γiw
da

, ∇TPw
∣∣∣
Γiw

=

∫
Γiw
∇TPw · ni da∫

Γiw
da

, (17)

vn =

∫
Γiw

vn da∫
Γiw

da
, TPint =

∫
Γiw

TPint da∫
Γiw

da
= Tint, χ =

∫
Γiw

χda∫
Γiw

da
≈ 0. (18)

Note that TPint is the equivalent Darcy-scale interface temperature Tint (assumed constant204

in the REV). We assume that the volume-averaged curvature of the ice-water interface205

χ is zero. In addition, we note that, during meltwater refreezing for typical values of ice206

grain curvature and temperature, |d0χ| << |(TPint−Tmelt)cp,w/Lsol|. Thus, we neglect207

the d0χ contribution to the interface dynamics when upscaling from Eq.14 to Eq.16.208

To estimate temperature gradients across the interface, we assume that the pore-

scale temperature varies linearly between the interface temperature Tint and the Darcy-

scale temperature of the corresponding phase (Ti or Tw) over a finite thermal diffusion

length (ri or rw). We illustrate this approximation in Fig. 2, which yields the following

expressions:

∇TPi
∣∣
Γiw

=
Tint − Ti

ri
, ∇TPw

∣∣
Γiw

=
Tw − Tint

rw
. (19)

Combining Eqs. (15) and (16) and the temperature gradient approximation defined in

Eq. (19), we can write Tint as a function of Ti and Tw:

Tint(Ti, Tw) =

cp,w
Lsol

Tmelt + βsolKi
ρLsolri

Ti + βsolKw
ρLsolrw

Tw
cp,w
Lsol

+ βsolKi
ρLsolri

+ βsolKw
ρLsolrw

. (20)

The parameters ri and rw can be estimated from pore-scale simulations, experimental209

observations, or field data. Here, we calibrate ri and rw with numerical results of a pore-210

scale solidification model, whose details are included in the Appendix. Based on the pore-211

scale model, we take ri = 0.06di and rw = 1.35ri.212

The ice and water phases absorb or release latent heat during ice-water phase tran-

sitions. We denote the amount of thermal energy absorbed or released by phase j in the

REV as Hj , which can be computed with the integral

Hj =

∫
Γiw

Kj∇TPj · nj da, (21)

–11–
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where the index j stands for i (ice) or w (water) and nw is the outward normal vector

to the water phase, such that nw = −ni. The total amount of latent heat absorbed

(or released) is Hi+Hw, which results from integrating Eq. (13) along Γiw in the REV.

The latent heat partition can be estimated according to the relative thermal flux of each

phase at the interface. Therefore, we can define the coefficients αi = Hi/(Hi + Hw)

and αw = Hw/(Hi + Hw); see Eqs. (10) and (11). Using Eqs. (17) and (19), we can

approximate αi and αw as

αi =
Ki

Tint−Ti
ri

Kw
Tint−Tw
rw

+Ki
Tint−Ti
ri

, αw =
Kw

Tint−Tw
rw

Kw
Tint−Tw
rw

+Ki
Tint−Ti
ri

. (22)

3 Numerical implementation213

3.1 Strong form of the problem214

We rearrange the equations presented in Section 2 in the following way. First, we215

split the flow potential (Eq. (7)) to consider the gravitational and capillary terms as sep-216

arate variables such that Π(S) = z − θ(S). Then, we use Eqs. (20) and (22) to sim-217

plify Eqs. (10) and (11). The final equations we solve for are:218

∂φ

∂t
= RmWSSA(Tint − Tmelt), (23)

∂(φS)

∂t
− ∂

∂z
(Kskr) +∇ · (Kskr∇θ) =

ρi
ρw
RmWSSA(Tint − Tmelt), (24)

θ = ψ +
√
κ∇ · (

√
κ∇S), (25)

∂[(1− φ)Ti]

∂t
= ∇ · (Di(1− φ)∇Ti) +WSSADi

Tint − Ti
ri

, (26)

∂(φSTw)

∂t
− ∂

∂z
(KskrTw) +∇ · (KskrTw∇θ) = ∇ · (DwφS∇Tw) +WSSADw

Tint − Tw
rw

,(27)

where Di = Ki/(ρicp,i) and Dw = Kw/(ρwcp,w) are the ice and water thermal diffu-219

sion coefficients, respectively. Eq. (25) defines an additional problem unknown, θ(x, t),220

which represents the capillary effects in the flow potential.221

3.1.1 Boundary conditions, initial conditions, and parameter values222

We solve the model equations in a 1D vertical domain (Ω1D, along the z axis) and223

a 2D rectangular domain (Ω2D, in the xz plane). In Ω1D and Ω2D, we denote the top and224

bottom boundaries as Γt and Γb, respectively. In Ω2D, we denote the lateral boundaries225

as Γl. If we denote the outward normal to the boundary as n, the boundary conditions226
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read227

u · n = 0, Di(1− φ)∇Ti · n = 0, (DwφS∇Tw − uTw) · n = 0 on Γl, (28)

u · n = −utop(x, t), Ti = Tmelt, Tw = Tmelt on Γt, (29)

u · n = Ks(φ)kr(S), Ti = Ti,bot, (DwφS∇Tw − uTw) · n = 0 on Γb, (30)

along with the zero flux condition ∇S · n = 0 on the entire boundary. These bound-228

ary conditions assume a closed domain for heat and melt flux in the lateral direction;229

a fixed meltwater influx through the top boundary (utop); water and ice temperatures230

equal to the freezing point (Tmelt) at the top boundary; a fixed ice temperature (Ti,bot)231

on the bottom boundary, and free water flow and temperature fluxes through the bot-232

tom boundary. For the 2D simulations shown in this work, we assume that utop is fixed233

in time and displays a mild Gaussian spatial perturbation (with mean utop and standard234

deviation utop×10−3) to accelerate the emergence of flow instabilities (Cueto-Felgueroso235

& Juanes, 2009b). We do not explicitly account for solar radiation in our model; instead,236

we impose a meltwater generation rate at the top boundary due to ice melting.237

The parameter values for the general properties of the snowpack and the meltwa-238

ter are listed in Table 1. The parameters that depend on the snow type or that vary for239

each example are defined in the corresponding subsection in Table 2 in Section 4.240

Unless otherwise stated, we consider an initially dry homogeneous snowpack with241

uniform φ, Ks, SSA0, and Ti. The initial conditions are: φ(x, 0) = φ0, S(x, 0) = 10−3,242

Ti(x, 0) = Ti,0, and Tw(x, 0) = Tmelt, where the small amount of initial saturation rep-243

resents pre-melted water imposed for regularization purposes (see Section Regularity of244

functions WSSA, kr, ψ, and κ in Appendix). Note that the initial porosity φ0 can be es-245

timated from the dry snow density ρsnow as φ0 = 1−ρsnow/ρi. We estimate SSA0 with246

the empirical expression proposed in Domine et al. (2007), which relates the snow SSA247

and the snow density.248

3.2 Spatial and time discretization249

We use isogeometric analysis (Hughes et al., 2005), a finite element method that250

employs B-splines as basis functions, to solve the problem. We derive the weak form of251

the problem by multiplying Eqs. (23)–(27) with weighting functions, integrating over the252

domain, and integrating by parts considering the boundary conditions defined above. We253
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Parameter Description Value Units

ρi Ice density 919 kg m−3

ρw Water density 1000 kg m−3

cp,i Ice specific heat capacity 1.96× 103 J kg−1°C−1

cp,w Water specific heat capacity 4.2× 103 J kg−1°C−1

Lsol Solidification latent heat 3.34× 105 J kg−1

βsol Kinetic attachment coefficient ∼ 800 s m−1

Ki Ice thermal conductivity 2.29 W m−1°C−1

Kw Water thermal conductivity 0.554 W m−1°C−1

Tmelt Freezing point 0 °C

g Gravitational acceleration 9.81 m s−2

µw Water dynamic viscosity 1.792× 10−3 kg m−1s−1

Table 1. Key model parameters and their values. See Table 2 for additional parameters

and their values for different types of snow.

obtain the Galerkin form by substituting the unknowns and weighting functions with dis-254

crete approximations. Although we could use linear (bilinear in 2D) basis functions for255

the spatial discretization, we opted for employing quadratic C1-continuous B-splines, which256

provide more stable solutions. Note that there are very small non-physical oscillations257

in S (also called undershoot) located downstream the wetting front (Cueto-Felgueroso258

& Juanes, 2009a; Gomez et al., 2013). These oscillations might affect the accuracy of the259

solution (Gomez et al., 2013). Here, we reduce the oscillations by using quadratic B-splines260

and a fine mesh. We find that the influence of these minor oscillations on the overall in-261

filtration pattern is minimal. In addition, we redefine the functions kr, ψ, κ, and WSSA262

to avoid singularities when S ≤ 0; see more details in Appendix.263

For the time integration, we use the generalized-α method (Chung & Hulbert, 1993;264

Jansen et al., 2000) with an adaptive time stepping scheme based on the number of Newton-265

Raphson iterations. To perform the simulations, we develop a code on top of the open266

source libraries PETSc (Balay et al., 2022) and PetIGA (Dalcin et al., 2016).267
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4 Results268

In this section, we first present results of model validation against existing data.269

Then, we present 2D simulations of melt infiltration into homogeneous snow. In the ex-270

amples shown here, we consider two types of scenarios: isothermal and non-isothermal271

meltwater infiltration. In the isothermal case, the ice and water temperatures are fixed272

to the melting point and phase change does not occur. For the isothermal examples shown273

in this section we solve equations (24) and (25) only, where we neglect the right-hand274

side of Eq. (24) (more details in Appendix). In the non-isothermal case, a portion of the275

meltwater refreezes because the snow is below the freezing point.276

4.1 Model validation against existing data in 1D277

In this section we validate our model against existing experimental and field data.278

First, we test our model under isothermal conditions and compare against laboratory279

experiments of water infiltration in a snow column. Then, we perform non-isothermal280

simulations that mimic field conditions reported in Humphrey et al. (2012), and com-281

pare the temperature profile of a 10 m snow column during melt infiltration and refreez-282

ing events.283

4.1.1 Capillary pressure dynamics during isothermal infiltration284

Darcy-scale models of meltwater infiltration rely on knowing the hydraulic prop-285

erties of the snowpack. These properties include the relative permeability kr, the sat-286

urated hydraulic conductivity Ks, and the water retention curve (WRC, ψ in our model),287

which vary for each type of snow. Recent studies have experimentally measured these288

hydraulic properties of snow under isothermal conditions (Yamaguchi et al., 2010; Kat-289

sushima et al., 2013; Avanzi et al., 2016), where a constant water influx (at T = 0 °C290

to ensure no refreezing) is introduced at the top surface of a snow column. In particu-291

lar, Katsushima et al. (2013) estimated the hydraulic conductivity, the van Genuchten292

(Van Genuchten, 1980) and Genuchten-Mualem (Mualem, 1976) model parameters of293

the WRC and the relative permeability for four different types of snow, namely, SS, SM,294

SL, and SLL (in the order ascending ice grain size). The authors also measured the cap-295

illary pressure head 2 cm below the surface of the snow for three different water influx296

rates. The results display a capillary pressure overshoot during meltwater infiltration in297
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Figure 3. Imbibition WRCs for snow types SS, SM, SL, and SLL. Experimentally ob-

served (dots) and the estimated van Genuchten model (dashed line) WRCs during imbibition

taken from Katsushima et al. (2013). Note that Katsushima et al. (2013) reported the drainage

WRC, which is approximately twice the imbibition WRC (Leroux & Pomeroy, 2017). The pres-

sure head plotted here is half the pressure head reported in Katsushima et al. (2013). We use

least square analysis to calibrate the Leverett J-function (Eq. (8), solid red line) from the ex-

perimental data. We assume a null irreducible water saturation to account for infiltration in

subfreezing scenarios and, for simplicity, we take νe = 1. Note the Leverett J-function in our

model represents the imbibition WRC. The values of hcap, α, and β are listed in Table 2.

snow (see Fig. 4, dashed lines). Indeed, capillary pressure overshoot, indicating a higher298

water saturation at the wetting front compared to the saturation upstream, is a signa-299

ture and a necessary condition for preferential flow (Geiger & Durnford, 2000; Eliassi &300

Glass, 2003; DiCarlo, 2004, 2013). Here, we use our model to replicate the experiments301

in Katsushima et al. (2013) to reproduce the capillary pressure overshoot. Since we use302

the Leverett J-function instead of the van Genuchten model to represent the WRC, we303

need to recalibrate the model parameters used in Eq. (8) for each type of snow (Fig. 3).304

We use the Mualen-Genuchten model for relative permeability to calibrate the param-305

eter a in Eq. (6). Table 2 lists the parameter values from the calibration as well as the306

snow density, hydraulic conductivity, and ice grain size for the four types of snow (val-307

ues taken from Katsushima et al. (2013)).308

Based on the experiments in Katsushima et al. (2013), we consider a 25 cm-deep309

1D domain, discretized with 300 elements, and assume uniform Ks (see Table 2). We310

run three simulations for each type of snow, corresponding to the three water influx rates311

(utop) injected in Katsushima et al. (2013). We measure the saturation 2 cm below the312

top boundary, which we denote as SC , and compute the corresponding capillary pres-313
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Snow type ρsnow (kg/m3) Ks (cm/min) di (mm) hcap (m) α (-) β (-) a (-)

SS 387 4.764 0.231 0.06 5 11 2.8

SM 489 5.298 0.421 0.07 5 46 2.7

SL 512 9.828 1.049 0.04 4 24 2.7

SLL 501 32.220 1.439 0.025 4 22 2.8

Table 2. Parameter values used to replicate experiments in Katsushima et al.

(2013). We consider a null irreducible water saturation (Sr = 0), and assume νe = 1.

sure head as θ(SC) = ψ(SC) +
√
κ∇· (

√
κ∇SC). Figure 4 shows the time evolution of314

θ(SC) for snow types SM (top row), SL (center row), and SLL (bottom row) and for low315

(left column), medium (center column), and high (right column) utop. We set t = 0 min316

as the time when the infiltration front reaches the measurement point. We do not in-317

clude snow type SS here as the experiments do not exhibit pressure head overshoot.318

The results show that our model is able to reproduce the overall dynamics of cap-319

illary pressure during infiltration into a homogeneous snowpack. Specifically, we indi-320

cate the time for the minimum pressure based on the 1D simulations (denoted as tSov)321

and the experiments (denoted as tEov), which exhibit good agreement for most of the snow322

types and inflow rates. The 1D results also show a good agreement in the pressure val-323

ues for snow types SL and SLL, while the match is worse for snow types SM and SS (re-324

sults not shown).325

4.1.2 Rate of infiltration under isothermal conditions326

Avanzi et al. (2016) experimentally investigated unstable infiltration at 0 °C (isother-327

mal conditions) into a snow column composed of a layer of finer snow on top of a layer328

of coarser snow. The authors performed experiments in which they used different types329

of snow, namely, fine (F), medium (M), and coarse (C), and different influx rates. These330

experiments demonstrate both unstable infiltration and melt ponding at the layer inter-331

face. Some of the data analyzed includes the infiltration speed and the ponding layer thick-332

ness. Here, we focus on comparing the measured infiltration speed and leave the pond-333

ing effect for future research. Thus, we focus on the infiltration through the upper layer334

of the snow column before meltwater reaches the layer interface. In our simulations, we335

–17–



manuscript submitted to Water Resources Research

0 300

0.1

0.2

2010
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

tov (experiment) tE

tov (simulation)tS

0 300

0.1

0.2

10 20
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 200

0.1

0.2

10
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 150

0.1

0.2

105
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 150

0.1

0.2

105
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 100

0.1

0.2

5
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 100

0.1

8642
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 100

0.1

8642
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

0 60

0.1

42
Time (min)

P
re

ss
ur

e 
he

ad
 (

m
)

Low inflow Medium inflow High inflow

Sn
ow

 S
M

Sn
ow

 S
L

Sn
ow

 S
LL

Simulation
ExperimenttovtE

tovtS

utop=0.352 mm/min utop=1.092 mm/min utop=3.252 mm/min

utop=0.372 mm/min utop=1.230 mm/min utop=3.474 mm/min

utop=0.378 mm/min utop=1.296 mm/min utop=3.330 mm/min

tovtE

tovtEtovtEtovtE

tovtE tovtE tovtE

tovtS

tovtStovtStovtS

tovtS tovtS tovtS

Figure 4. Capillary pressure dynamics from snow experiments and 1D simulations.

Time evolution of the pressure head measured 2 cm below the top surface of the snow column

corresponding to snow types SM (top row), SL (middle row), and SLL (bottom row) for low (left

column), medium (middle column), and high (right column) meltwater influx rates. The solid

blue line represents our model results, while the dashed black line represents the experiments

in Katsushima et al. (2013). tSov and tEov indicate the time for minimum pressure head in our

simulations and the experiments, respectively.

consider a 1D vertical domain of 10 cm discretized with 200 elements, which has the same336

height as the upper layer of snow in Avanzi et al. (2016). We assume an initially uni-337

form snow column with constant porosity/density (Table 3). As done in Hirashima et338

al. (2017), we assume that snow types F and M in Avanzi et al. (2016) have the same339

properties as snow types SM and SLL in Katsushima et al. (2013), respectively. Thus,340

we use the hydraulic properties of snow types SM and SLL defined in Table 2 except for341

Ks, which we estimate with Eq. (5). The snow type, snow density, and meltwater influx342

rate for each experiment are listed in Table 3.343

We use our model to estimate the arrival time (ta) of the infiltration front to the344

interface, and we compare with the arrival time in the experiments tAa (Avanzi et al., 2016)345
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Exper. Snow ρsnow utop ta (this work) tAa (Avanzi) tHa (Hirashima)

FC1 SM 417 kg/m3 0.198 mm/min 19.4 min 34.8 min 16.7 min

FC2 SM 449 kg/m3 0.466 mm/min 12.7 min 15.2 min 8.7 min

FC3 SM 433 kg/m3 1.883 mm/min 5.0 min 7.1 min 4.0 min

FM1 SM 444 kg/m3 0.198 mm/min 20.9 min 20.0 min 17.0 min

FM2 SM 442 kg/m3 0.462 mm/min 12.4 min 11.3 min 10.7 min

FM3 SM 455 kg/m3 1.833 mm/min 5.5 min 6.7 min 4.3 min

MC1 SLL 472 kg/m3 0.183 mm/min 10.5 min 5.3 min 9.0 min

MC2 SLL 498 kg/m3 0.455 mm/min 6.3 min 3.0 min 4.7 min

MC3 SLL 494 kg/m3 1.850 mm/min 2.5 min 0.8 min 1.7 min

Table 3. Arrival time for isothermal infiltration. Each row represents a different exper-

iment. We indicate the upper layer snow type, snow density, and the meltwater influx rate for

each experiment. The parameter values for snow types SM and SLL are listed in Table 2. We set

di = 0.41 mm and di = 1.5 mm for snow types SM and SLL, respectively. We indicate the arrival

time computed with our model (ta), observed in the experiments (tAa , see Avanzi et al. (2016)),

and computed in Hirashima et al. (2017) (tHa ).
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and the simulated arrival time tHa by the same authors in Hirashima et al. (2017) (see346

Table 3). Our model provides a good approximation for experiments FM (center rows),347

while it underestimates the arrival time for experiments FC (three top rows in the ta-348

ble), and overestimates ta for experiments MC (three bottom rows in the table). Com-349

pared to Hirashima et al. (2017), our model provides a better estimation of the arrival350

time for experiments FC and FM, while our estimation is worse for experiments MC. There351

are two main sources of error in our numerical results. First, the hydraulic properties352

of the snow used in Avanzi et al. (2016) are taken from those of a separate experiment353

(Katsushima et al., 2013) and, thus, may be inaccurate. Second, 1D simulations are un-354

able to capture the effect of unstable infiltration on arrival time. As we show in Section 4.2,355

preferential infiltration in 2D exhibits channelized flows with enhanced infiltration speed.356

Remark: We also run 2D simulations in a rectangular domain (5 cm(w)×10 cm(h)),357

which corresponds to the diameter and height of the snow column used in the experi-358

ments (Avanzi et al., 2016). Using the parameters in Table 2 for snow SM and SLL, the359

2D simulations show capillary pressure overshoot but do not exhibit preferential infil-360

tration, contrary to experimental observation. We hypothesize that the disagreement here361

is because the characteristic finger width prescribed by the simulation parameters (e.g.362

hcap and a) is larger than the domain width. To observe preferential infiltration in a 5 cm363

wide domain for SM and SLL snow type, smaller values of hcap and/or larger values of364

a must be employed in our model.365

4.1.3 Non-isothermal infiltration: meltwater refreezing366

When meltwater infiltrates into subfreezing snow, it leads to melt refreezing. At367

the macroscopic scale, refrozen melt structures have been readily observed in the field368

at the scale of meters to kilometers (Humphrey et al., 2012; Lazzaro et al., 2015; Cul-369

berg et al., 2021). Horizontal refrozen structures are low permeability regions in snow-370

pack that hinder downward percolation, promote lateral runoff (Culberg et al., 2021; Clerx371

et al., 2022), and play an important role in snow hydrology.372

To validate our model’s ability to capture the thermal dynamics during melt in-373

filtration and refreezing, we compare results with a recent field study by Humphrey et374

al. (2012). This study collected temperature profiles along 10 m deep snowpack columns375

in the Greenland accumulation region and recorded the thermal signatures of meltwa-376

–20–



manuscript submitted to Water Resources Research

ter infiltration and refreezing events during annual melt cycles. Among other results, the377

authors provided temperature profiles at site T2 (see location in Humphrey et al. (2012))378

during an 18 day interval in the summer of 2007 in Greenland (Fig. 5A). The data shows379

a gradual increase in the snow temperature towards the surface due to the infiltration380

of meltwater and the latent heat released due to melt refreezing. Spikes observed at days381

199 and 200 are likely caused by heterogeneous meltwater infiltration and suggest the382

presence of channelized flow (ice pipes) that delivers melt to deeper points or a lateral383

flux of water along ice lenses, causing a local increase in the snow temperature.384

Here, we use our model to replicate the meltwater infiltration and refreezing pro-385

cess observed in Humphrey et al. (2012). We consider a 1D vertical domain of 9 m meshed386

with 3600 elements which represents the snowpack column from 1 m to 10 m deep. The387

approximate snow density is reported in Humphrey et al. (2012) as ρsnow = 375 kg m−3,388

which has similar density to snow type SS (Table 2). Hence, we assume the hydraulic389

properties of snow type SS for this field site and compute the snow hydraulic conduc-390

tivity with Eq. 5. As initial conditions, we consider a uniform porosity and SSA estimated391

from ρsnow, yielding φ = 0.5924 and SSA0 = 3514 m−1 (Section 3.1.1). We consider392

the temperature profile observed in day 185 as the initial ice temperature in our simu-393

lations. We follow Meyer & Hewitt (2017) and assume a constant influx rate between394

days 185 and 197 (utop,1), and a different and constant influx rate between days 197 and395

203 (utop,2). The exact values of utop,1 and utop,2 are calibrated such that the infiltra-396

tion front (i.e., the deepest point where Ti ≈ Tmelt) at days 197 and 203 match the ob-397

servations, which yield utop,1 = 0.129 mm/h and utop,2 = 0.526 mm/h.398

In Fig. 5B–E, we plot the simulated LWC, porosity, ice temperature, and water tem-399

perature profiles for the initial time (day 185) and days 197 and 203, and compare against400

the measured ice temperature profile (dashed lines in Fig. 5D). Despite the simplifying401

assumptions, our results show good agreement with the temperature profile observed in402

the field.403

The simulated LWC, porosity, and water temperature results exhibit some of the404

main features of the LTNE assumption in our model. First, the porosity does not dis-405

play a piecewise uniform distribution as predicted in Meyer & Hewitt (2017). For instance,406

the porosity distribution at day 203 (green line in Fig. 5C) shows a gradual decrease in407

porosity from 2 m to 3.5 m depth. A higher porosity at 2 m implies that less refreezing408
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Figure 5. Meltwater infiltration and refreezing during heating and cooling events.

(A) Field data: Snow temperature profile measured in Humphrey et al. (2012) at days 185, 197,

199, 200, and 203 (adapted from Humphrey et al. (2012)). Simulation results: (B) LWC, (C)

porosity, (D) ice temperature, and (E) water temperature profiles along the snow depth at days

185 (initial time, blue), 197 (red), and 203 (green). Dashed lines in (D) correspond to field data

measured in Humphrey et al. (2012). The inset in (B) indicates the meltwater influx rate utop as

a function of time, which we assume piecewise constant.

has occurred, which can be attributed to (1) ice warming to the melting temperature sooner409

at such depth, and/or (2) differences in refreezing kinetics caused by local changes in Tint410

and WSSA.411

Second, our results display the undercooling of the liquid water due to the parti-412

tioning of the latent heat into the ice and water phases. Water undercooling is also cap-413

tured in pore-scale simulations of water solidification (see Fig. 10B in Appendix). Un-414

fortunately, we do not have available field or experimental data to validate the Tw re-415

sults. Note that the undercooling peak is located just downstream the wetting front (Fig. 5E),416

where we numerically impede a total refreezing of water (we impose a minimum LWC ∼417

10−3; see Section Regularity of functions WSSA, kr, ψ, and κ in Appendix). This may418

lead to the overestimation of the undercooling spike. We also ran simulations in which419

we disregard the latent heat partition by imposing αi = 1 and αw = 0 in Eqs. (10)420
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Figure 6. Influence of the latent heat partition in meltwater infiltration and re-

freezing. (A) LWC, (B) porosity, (C) ice temperature, and (D) water temperature profiles along

the snow depth at days 197 (blue) and 203 (red). Simulation results considering (dashed line)

and neglecting (solid line) latent heat partition. We neglect the latent heat partition by imposing

αi = 1 and αw = 0 in the Ti and Tw evolution equations; see Eqs. (10) and (11). We consider the

same parameter values and influx rates as in Fig. 5.

and (11). In this case, the latent heat is entirely absorbed by the ice phase so that the421

water temperature remains at the melting point. In Fig. 6, we compare the results con-422

sidering (dashed line) and neglecting (solid line) the latent heat partition and find that423

the infiltration speed is slightly lower and changes in porosity are slightly higher in case424

of neglecting the latent heat partition.425

4.2 Isothermal preferential infiltration426

The isothermal version of our model (Ti = Tw = 0 °C, thus solving only Eqs. (24)–427

(25)) is equivalent to that proposed by Cueto-Felgueroso & Juanes (2008), which was428

proposed to describe infiltration in soil. The reader is referred to Cueto-Felgueroso &429

Juanes (2008, 2009b); Cueto-Felgueroso et al. (2020a,b) for a more extensive analysis of430

the model. Here, we briefly discuss the results of isothermal infiltration, simulated with431

the proposed model applied to real snow properties. We run a simulation in a 1 m × 2 m432

domain, discretized with 400× 800 elements. We consider the hydraulic properties of433

the snow type SLL (Table 2) with di = 1.5 mm and Ks taken from Eq. (5). As men-434

tioned in Section 4.1.2, we need to reduce hcap and/or increase a (in Eqs. (6) and (8))435

to produce fingers with cm-scale width observed in experiments and field. Here, we opted436

for increasing the relative permeability exponent a and take a = 5. We impose a con-437
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stant meltwater influx utop = 0.6 mm/min. In addition, we perform the equivalent sim-438

ulation in 1D using the same parameter values, which will not capture unstable infiltra-439

tion.440

In Fig. 7A, we plotted the LWC distribution of the 2D simulation at five different441

times. The 2D results show the ability of our model to reproduce unstable flow through442

completely homogeneous snow with a constant meltwater influx. The perturbation cor-443

responds to small-scale heterogeneities in natural environments. Numerically, if we do444

not include this perturbation, fingers would appear later in the simulation (at t ≈ 60 min)445

and at a deeper point in the snowpack (results not shown). The fingering pattern ap-446

pears as smooth vertical channels distributed with uniform spacing that preferentially447

conduct downward melt flow. In Fig. 7B, we compare the LWC profile of the 1D sim-448

ulation (red line) with the horizontally averaged LWC of the 2D simulation (blue line).449

The results show that unstable infiltration in 2D delivers melt to deeper depths than sta-450

ble infiltration would predict. We also note that the 1D results shown here illustrate the451

saturation overshoot at the infiltration front, while the 1D results in Section 4.3 do not452

(Fig. 5A). This is because the saturation overshoot depends on the melt influx rate and453

the parameters values (Cueto-Felgueroso & Juanes, 2009b). Thus, we find that not all454

snow property values produce saturation overshoot.455

4.3 Non-isothermal preferential infiltration456

We now consider the full model in 2D and investigate the non-isothermal problem457

of melt at 0 °C infiltrating into an initially subfreezing snowpack of T = −10 °C. We458

adopt the same snow properties and simulation setup as Section 4.2 and take SSA0 =459

3514 m−1 (see also Section 4.1.3). The only difference with respect to Section 4.2 is the460

initial ice temperature (Ti,0) and the ice temperature on the bottom boundary (Ti,bot).461

Here we impose an uniform ice temperature initially: Ti,0 = Ti,bot = −10 °C. The ini-462

tial Ti distribution is discontinuous at the top boundary where Ti,top = Tmelt = 0 °C463

(Section 3.1.1). Temperature profile of a real snowpack would exhibit a thermal gradi-464

ent caused by surface heating or cooling. Thus, here the assumption of an initially uni-465

form Ti is a simplification. As we show below, such simplification in initial Ti only af-466

fects the porosity evolution near the snow surface, as a thermal equilibrium quickly es-467

tablishes beneath the surface and does not affect the infiltration and refreezing process468
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Figure 7. Isothermal preferential infiltration through homogeneous snow. LWC dis-

tribution at t = 28, 57, 114, 171, and 228 min. (A) 2D simulation results. (B) 1D (red line, stable

flow) and horizontally averaged 2D (blue line, unstable flow) simulation results. The 1D and 2D

simulations are performed with the same initial conditions and parameter values. We consider a

constant influx rate utop. See Video S1 in the Supporting Information.

underneath. As done in the previous section, we also run an equivalent 1D simulation469

to compare stable (1D) and unstable (2D) infiltration.470

We show the simulation results at four different times in Fig. 8. The left-hand side471

of the figure displays the LWC, porosity, Ti, and Tw distributions (from top to bottom)472

of the 2D simulation. The right-hand side of Fig. 8 shows the LWC, porosity, Ti, and473

Tw profiles (from top to bottom) of the 1D simulation (red line) and the corresponding474

horizontally averaged distributions of the 2D simulation (blue line).475

At the initial times (t ≈ 57 min) the LWC displays an initial set of fingers which476

are vertical and roughly uniformly spaced, similarly to the isothermal case (see Fig. 7A).477

The refreezing of melt leads to porosity decrease in melt-occupied region (Fig. 8B, left).478
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Figure 8. Non-isothermal preferential infiltration through homogeneous snow. (A)

LWC, (B) porosity, (C) Ti, and (D) Tw distributions at t = 57, 114, 171, and 228 min. Left: 2D

simulation snapshots. Right: 1D (red line, stable flow) and horizontally-averaged 2D (blue line,

unstable flow) simulation results. See video S2 in the Supporting Information.
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The porosity distributions at t = 57 and 114 min show the onset of ice piping, i.e., the479

formation of a low porosity annulus surrounding the fingers, which may correspond to480

the ice pipes observed in Humphrey et al. (2012). Within each melt finger, ice temper-481

ature quickly reaches Tmelt = 0 °C due to rapid heat exchange with the melt phase. There-482

fore, melt within the fingers does not freeze completely and the finger interior remains483

porous. Along the finger interface, however, melt can continue to refreeze due to the dif-484

fusion of cold content from the surrounding un-infiltrated snow. Overall, this results in485

significantly more porosity decrease along the finger interface than finger interior, lead-486

ing to the formation of ice pipes (Fig. 8B, left).487

Our results thus far show that melt refreezing dynamically changes the porosity488

structure of the initially homogeneous snowpack, leading to highly heterogeneous per-489

meability fields. Such structural change significantly impacts ensuing melt transport and490

produces flow behaviors that are drastically different from isothermal infiltration (Sec-491

tion 4.2). For instance, at t = 114 min, the LWC displays a set of secondary fingers,492

different from the initial ones, which emerge in regions of higher porosity in between the493

initial fingers (Fig. 8A, left). These secondary fingers seek regions of higher porosity, form-494

ing meandering paths that are initially independent but eventually merge with pre-existing495

melt channels (t = 228 min in Fig. 8A, left). Note that the width of fingers, which in-496

dicate melt-occupation, becomes thinner as the ice pipe structures grow and consumes497

melt locally (t = 57 and 114 min in Fig. 8A, left). The arrival of the first set of fingers498

significantly warms the ice temperature due to heat exchange and the release of latent499

heat. Thus, we observe significantly weaker porosity reduction in these regions during500

the infiltration of secondary fingers. In addition, we also observe that the Tw distribu-501

tion displays a region of supercooled water surrounding the fingering front (Fig. 8D, left,502

also see Section 4.1.3).503

The right-hand side of Fig. 8 shows the difference between stable (1D, red line) and504

unstable (2D, blue line) meltwater flow. As observed in isothermal infiltration, unsta-505

ble flow reaches deeper points faster than stable flow (Fig. 8A, right). For that reason,506

changes in porosity and Ti are observed deeper in the snowpack for unstable infiltration507

(Figs. 8B and 8C, left). The discontinuity in porosity profile at the snow surface is caused508

by the discontinuity in the imposed initial Ti. However, such discontinuity does not af-509

fect the infiltration and refreezing process deeper in the snowpack. While the rate of melt510

arrival at the top of the snowpack is the same in both 1D and 2D simulations, we find511
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that the total change in porosity and in Ti is larger for unstable infiltration (2D). These512

results show that unstable infiltration enhances the refreezing process by creating more513

melt/ice interfaces that promote thermal exchange and melt refreezing.514

In addition, Fig. 8B, left shows another interesting result: the change in porosity515

above the stable (1D) wetting front is the same for the horizontally-averaged 2D results,516

despite the highly nonlinear nature of the 2D problem. Moreover, if we disregard the dis-517

continuity at the snow surface, the porosity distribution is approximately uniform in points518

above the stable wetting front. This behavior differs from the results in Section 4.1.3,519

in which the porosity displays a non-uniform distribution (e.g., day 203 in Fig. 5B). As520

we mentioned in Section 4.1.3, the infiltration and refreezing process depends on the in-521

terplay between the meltwater flow velocity, the advective and diffusive heat transport522

rates, and the ice-water phase change rate. In this section, we consider a meltwater in-523

flux rate (utop) larger than in Section 4.1.3, which could explain the differences observed524

in the porosity profiles during refreezing events.525

5 Discussion526

5.1 The influence of preferential infiltration on melt transport527

We have shown that preferential infiltration delivers melt faster to deeper depth528

compared to stable infiltration (Fig. 7B), as is expected for unstable infiltration in typ-529

ical porous media (DiCarlo, 2013). In the context of melt refreezing during transport,530

our results show that preferential infiltration facilitates more melt to reach deeper parts531

of the snow before becoming frozen (see Fig. 8A, right). As a consequence, changes in532

ice temperature and porosity occurs in deeper parts of the snow under preferential in-533

filtration (Figs. 8B-C, right). To this end, our work joins previous efforts (Hirashima et534

al., 2019; Leroux et al., 2020) to show that preferential flow has a strong impact in the535

fate of meltwater transport in snow and, in particular, prolongs the travel paths of melt.536

5.2 The influence of refreezing on melt infiltration537

Melt refreezing directly impacts infiltration by reducing the amount of meltwater538

available for transport. In Fig. 9, we compare the results from isothermal and non-isothermal539

preferential infiltration shown in Figs. 7 and 8 by plotting the 2D LWC distribution (Fig. 9A)540

and the horizontally-averaged LWC profile (Fig. 9B) at five different times. The direct541
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comparison shows that, indeed, isothermal infiltration reaches deeper depth than infil-542

tration under refreezing, and the total amount of water that remains as the melt phase543

(depth-integration of the curves in Fig. 9B) is less due to refreezing. The reduced infil-544

tration depth is also caused, to a lesser extent, by a porosity decrease in the initial fin-545

gers which promotes the formation of secondary fingers in new locations and thus diverts546

flow away from the pre-established melt channels (Figs. 8A-B, left).547

The 2D results shown in this paper assume an initially homogeneous snow to al-548

low us to focus on heterogeneous melt flow due to gravity-driven flow instability. In prac-549

tice, snowpack porosity structure is highly heterogeneous, as it is dynamically shaped550

by intermittent snowfalls, snow compaction, and snow metamorphism (Armstrong & Brun,551

2008; Rempel, 2007; Jones & Orville-Thomas, 2012). Here, we demonstrate that melt552

refreezing is another important mechanism that reshapes the porosity structure of the553

snowpack and could significantly influence melt transport (Culberg et al., 2021). Com-554

pared to isothermal infiltration, we show that the interaction between an evolving poros-555

ity structure and channelized flow exacerbates the nonlinear nature of the flow (Fig. 9A).556

The subject of how pre-existing porosity structures (e.g. layers and lenses) impact melt557

transport will be the focus in future studies.558

5.3 Improvements and extensions of the model559

In comparison to existing models which often assume equilibrium thermodynam-560

ics or impose empirical estimations of phase change kinetics, a key feature of the model561

presented here is a physically-resolved treatment of the ice-water phase change kinetics562

at the continuum scale. Our approach results from upscaling the Wilson-Frenkel law that563

relates the ice growth rate and the temperature at the ice-water interface. To estimate564

the interface temperature at the Darcy scale (Tint), we leverage the Gibbs-Thomson con-565

dition and the thermal energy conservation at the ice-water interface. The estimated value566

of Tint depends only on two physical parameters, ri and rw, that represent characteris-567

tic thermal diffusion lengths and require calibration. Preliminary results show that the568

model results are robust to the assumptions of ri and rw, although further research is569

needed. The model can also be readily extended to account for the solar heat flux that570

induces melting in the upper layers of the snowpack. Although we do not investigate melt-571

ing in this work, it will be explored in future works.572

–29–



manuscript submitted to Water Resources Research

0
LWC (%)

2010

t1=28 min

0
LWC (%)

D
ep

th
 (

m
)

2

1

0

2010

Isothermal Non-isothermal

0
LWC (%)

2010 0
LWC (%)

2010

t2=57 min t3=114 min t4=171 min t5=228 min

2 
m

0

25
20

10

LWC (%)

t1=28 min t2=57 min t3=114 min t4=171 min t5=228 min

0
LWC (%)

2010

0.765 m 0.765 m

utop=0.6 mm/min

Isoth. Non-isoth. Isoth. Non-isoth. Isoth. Non-isoth. Isoth. Non-isoth. Isoth. Non-isoth.

(B)

(A)

Figure 9. Comparison between isothermal and non-isothermal unstable infiltra-

tion. (A) LWC at t = 28, 57, 114, 171, and 228 min for isothermal (left half) and non-isothermal

(right half) infiltration. (B) Horizontally-averaged LWC at t = 28, 57, 114, 171, and 228 min for

isothermal (green) and non-isothermal (blue) infiltration. The results correspond to the simula-

tions shown in Figs. 7 and 8.

5.4 A need for well-controlled experiments of melt infiltration573

We present a Darcy-scale model that accounts for preferential meltwater infiltra-574

tion and refreezing through snow. Previous models of unstable melt infiltration (Hirashima575

et al., 2014; Leroux & Pomeroy, 2017; Leroux et al., 2020) build upon the Richards equa-576

tion and require heterogeneous snow properties combined with imbibition/draining hys-577

teresis and/or dynamic capillary pressure to capture flow instability. In comparison, our578

model incorporates a Richards-like equation extended with a higher-order term in sat-579

uration (Eq. (7)) that robustly reproduces the formation of preferential flow in homo-580

geneous snow with a small number of parameters (Fig. 7). The reduced complexity of581

this model allows us to directly compare against existing experiments at the centime-582

ter scale as well as field data at the meter scale. The comparison with limited labora-583

tory experiments (Sec.4.1.1 and 4.1.2) have shown that the model can reproduce the tem-584

poral dynamics of capillary pressure and the rate of infiltration with reasonable accu-585
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racy. However, our results generally underestimates the magnitude of capillary pressure586

overshoot in snow (see Fig. 4), which could be amended by imposing an imbibition/drainage587

hysteresis in the capillary pressure (Leroux et al., 2020). At the larger scale, we have com-588

pared against field measurements of temperature profiles in Sec. 4.1.3 and find good agree-589

ment with minimal parameter tuning. However, it is challenging to validate/verify other590

aspects of this model due to the lack of more detailed experimental observations. For591

instance, we are not able to directly compare the patterns of infiltration (e.g. width of592

fingers) against experiments, although we did find that, in order to capture cm-wide fin-593

gers observed in Avanzi et al. (2016), hcap and the exponent a in relative permeability594

need to be tuned (see Remark in Sec. 4.1.2). On the other hand, there has only be lim-595

ited field evidence that supports the emergence of low-porosity structures predicted in596

this model (Sec.4.3), and a systematic investigation of its formation process in the lab-597

oratory is lacking. The development of well-controlled experiments will be a focus on our598

future work, and will allow us to further understand the mechanisms behind unstable599

infiltration in snow.600

6 Conclusions601

We present a model that resolves the nonlinear coupling of preferential melt flow602

and the nonequilibrium thermodynamics of ice-melt phase change to investigate the in-603

fluence of melt refreezing in the overall efficiency of melt transport. We validate the model604

in 1D against laboratory infiltration experiments in snow and find good agreement in605

the point-wise pressure profile and its temporal dynamics. Comparison against 1D tem-606

perature profiles measured along a 10m-deep snow section in Greenland demonstrates607

that our model captures the thermal signatures of melt infiltration and refreezing at the608

meter-scale. We then use our model to study the differences between stable and unsta-609

ble infiltration under isothermal and non-isothermal scenarios in 2D. The results demon-610

strate that, compared to stable infiltration, unstable infiltration delivers melt to deeper611

parts of the snowpack and prolongs the travel paths of melt. Thus, changes in porosity612

and the thermal profile incur at deeper depths due to preferential infiltration. When melt613

infiltrates into subfreezing snow, our model demonstrates that melt refreezing is an im-614

portant mechanism that actively reshapes the porosity structure of the snow. In partic-615

ular, our model readily captures the formation of ice pipes that have been observed in616

the field. The dynamic coupling between preferential infiltration and melt refreezing re-617
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sults in highly meandering melt pathways. However, we find that, melt and ice phase618

can quickly establish a thermal equilibrium (T = 0oC) upon the arrival of the first set619

of melt fingers, allowing ensuing melt to bypass this region without refreezing. Such mech-620

anism may help deliver melt over long distances without refreezing and might play an621

important role in snow avalanches, perennial firn aquifers, and snow melt breakthrough622

events.623

In this work, we focus on exploring the model results under one specific set of en-624

vironmental parameter values (e.g. Ti, utop, φ0). In future work, the model can be read-625

ily used to gain insight into the role of pre-existing porosity/permeability heterogene-626

ity in snowpack and the role of temporal variability of surface conditions during diur-627

nal or seasonal cycles. The model may help improve the mechanistic understanding of628

how melt transports in snow under dynamic environmental conditions and advance the629

predictive capability in hydrology to understand how Earth’s largest freshwater resource630

will respond to climate change.631
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Appendix828

Isothermal meltwater infiltration: problem formulation829

By isothermal infiltration we refer to the case in which Ti,bot = Ti,0 = Tmelt (see830

Section 3.1.1), i.e., the initial ice temperature, the initial water temperature, and the tem-831

perature of the melt influx are fixed at the melting point. In that case, from Eq. (20)832

we have Tint(x, 0) = Tmelt and, hence, ∂φ
∂t (x, 0) = 0, ∂Ti

∂t (x, 0) = 0, and ∂Tw
∂t (x, 0) =833

0. These conditions lead to φ(x, t) = φ0, Ti(x, t) = Tmelt, and Tw(x, t) = Tmelt for all834

t, which implies that we can disregard the porosity, ice temperature, and water temper-835

ature evolution equations (Eqs.(23), (26), and (27)) and the right-hand side term in Eq. (24).836

In the isothermal examples shown in Section 4, we only solve equations (24) and (25),837

where we neglect the right-hand side of Eq. (24).838
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Upscaling of the phase-change term839

There are different methods to derive the upscaled phase-change term in Eq. (1).

Here we present a simple approach that leverages the Wilson-Frenkel law (Wilson, 1900;

Frenkel & Joffe, 1932) for ice growth —equivalent to the Gibbs-Thomson equation ne-

glecting curvature; see Eq. (14). We start with the definition of the Darcy-scale ice mass

mi, which is the volume-averaged mass of ice in a REV:

mi = ρi(1− φ) = ρi

∫
Ωice

dxP∫
ΩREV

dxP
, (31)

where ΩREV represents the REV, which is fixed, Ωice represents the ice phase in the REV,

and we assumed a constant ice density ρi. Next, we take the time derivative of the ice

mass, which reads

∂mi

∂t
= ρi

∂
∂t

∫
Ωice

dxP∫
ΩREV

dxP
. (32)

We can rewrite the time derivative of the ice volume in the REV as

∂

∂t

∫
Ωice

dxP =

∫
Γiw

vn da, (33)

where vn is the normal velocity of the ice-water interface Γiw. Here, we assume that changes

in the ice phase are caused by melting and freezing only. Thus, we use the Gibbs-Thomson

condition (see Eq. (14)) and substitute vn into Eq. (33) such that

∂

∂t

∫
Ωice

dxP =

∫
Γiw

− cp,w
βsolLsol

(TPint − Tmelt) da = − cp,w
βsolLsol

(Tint − Tmelt)

∫
Γiw

da, (34)

where we neglected the curvature term (d0) and assumed that TPint = Tint; see Eq. (18).

The time derivative of the ice mass in the REV can be written as

∂mi

∂t
= −ρi

cp,w
βsolLsol

(Tint − Tmelt)

∫
Γiw

da∫
ΩREV

dxP
= −ρi

cp,w
βsolLsol

(Tint − Tmelt)WSSA, (35)

where WSSA is the wet SSA, i.e., the surface of the ice-water interface in the REV di-840

vided by the REV volume. The right-hand side in Eq. (35) is identical to the phase-change841

term in Eq. (1). We could also derive the upscaled phase-change term in Eq. (1) from842

the pore-scale model for solidification introduced below; see Eqs. (36) and (37).843

Estimation of ri and rw844

We use pore-scale simulations to calibrate the parameters ri and rw (see Section 2.2.1).

We solve a phase-field model for water solidification (Karma & Rappel, 1996; Gomez et

al., 2019). The model includes a phase-field variable φP (xP , t) which captures the ice
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and water phases (φP = 1 in the ice and φP = 0 in the water) and displays a smooth

transition at the interface. The model also includes a single temperature variable TP (xP , t)

defined in the entire domain ΩREV, which accounts for the temperature in the ice and

water phases. The model equations can be written as

τ
∂φP

∂t
= ε2∇2φP − φP (1− φP )(1− 2φP )− λφP 2

(1− φP )2T
P − Tmelt

Lsol/cp,w
, (36)

ρ(φP )cp(φ
P )
∂TP

∂t
= ∇ · [K(φP )∇TP ] + ρ(φP )Lsol

∂φP

∂t
, (37)

where τ and λ are two parameters related to the parameters βsol and d0 defined in the

Gibbs-Thomson condition; see Eq. (14). The parameter ε represents the phase-field in-

terface width and the functions ρ(φP ), cp(φ
P ), and K(φP ) account for density, specific

heat capacity, and thermal conductivity, respectively, of the ice and water phases. These

functions are defined as ρ(φP ) = ρiφ
P + ρw(1− φP ). Equivalent expressions are used

for cp(φ
P ) and K(φP ). Karma & Rappel (1996, 1998) showed that Eqs. (36) and (37)

tend to the generalized Stefan problem as ε → 0. The authors also derived the rela-

tion between the parameters τ , λ, βsol, and d0, which can be expressed as

d0 = a1
ε

λ
, βsol = a1

(
τ

ελ
− a2

ε

D∗

)
, (38)

where D∗ = (Di+Dw)/2 represents thermal diffusivity (see Eqs. (26) and (27)), a1 ≈845

5, and a2 ≈ 0.1581 (Karma & Rappel, 1998). ε is a modeling parameter that must be846

small enough to fulfill certain conditions related to the ice grain geometry, the solidifi-847

cation kinetics, and the spatial discretization of the problem (Karma & Rappel, 1996,848

1998).849

Here, we consider a periodic 1D domain ΩREV with an ice grain in the center of

the domain. We run simulations with different domain size LP and ice grain diameter

di. We consider three scenarios: (LP , di) = (0.465, 0.2), (1.11, 0.6), and (2.77, 1.5)mm,

which correspond to porosity of 0.57, 0.46, and 0.46, respectively. These are similar to

the porosity and ice grain size of snow types listed in Table 2. We assume that the wa-

ter is initially at the melting point. We consider two initial ice temperatures (−8 and

−4 °C) and three different values for βsol (80, 120, and 800 s m−1). We take ε = 0.2 µm

and d0 = 0.38 nm. The rest of the parameter values are listed in Table 1. We employ

the numerical method described in Section 3.2 to run the 3×2×3 simulations. We com-
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pute the Darcy-scale unknowns as

T ?i (t) =

∫
ΩREV

φPTP dxP∫
ΩREV

φP dxP
, T ?w(t) =

∫
ΩREV

(1− φP )TP dxP∫
ΩREV

(1− φP ) dxP
, T ?int(t) =

∫
ΩREV

φP (1− φP )TP dxP∫
ΩREV

φP (1− φP ) dxP
,

(39)

where we included the symbol ? to indicate that they are computed from pore-scale sim-850

ulations. We stop the simulations when |T ?int(t)| < 0.01 °C. For each simulation, we con-851

sider a discrete set of 40 times {tj} equally distributed between the initial and final time852

of each simulation, in which we do not include the initial time. In Figs. 10A and 10B we853

plotted the phase-field φP and temperature TP profiles, respectively, for the simulation854

with di = 0.2 mm, βsol = 80 s m−1, and initial ice temperature −8 °C at times t0 (ini-855

tial time), t13, t26, and t40.856

We can write Eq. (20) as Tint = mTi + nTw, likewise as Tint/Tw = mTi/Tw +857

n, where we consider temperature in °C (Tmelt = 0 °C) and the parameters m and n858

only depend on ri, rw, and βsol. We compute the discrete set of values {(Tint/Tw)?j} and859

{(Ti/Tw)?j}, such that (Tint/Tw)?j = T ?int(tj)/T
?
w(tj) and (Ti/Tw)?j = T ?i (tj)/T

?
w(tj).860

We perform least squares analysis (linear regression) to estimate the values m and n for861

each simulation. In Fig. 10C, we plotted the pairs {(Ti/Tw)?j , (Tint/Tw)?j} for the sim-862

ulation shown in Figs. 10A and 10B. The 3 × 2 × 3 simulations exhibit a linear trend863

for {(Ti/Tw)?j , (Tint/Tw)?j} as shown in Fig. 10C, with the value of n close to zero. For864

each pore-scale simulation, we can compute ri and rw from the values of m, n, and βsol.865

We plotted ri and rw in Figs. 10D and 10E, respectively, for each simulation. Four val-866

ues of rw take large positive or negative values because n ≈ 0, which implies that the867

Darcy-scale Tint does not depend on Tw. Negative rw values imply that the linear ap-868

proximation assumption made in Eq (19) is not valid and, hence, the temperature pro-869

file would be different from the profile shown in Fig. 2. The results of ri and rw suggest870

that (i) ri (and rw) does not depend on βsol (see Figs. 10D and E), (ii) ri is proportional871

to di (see the horizontal trend of ri/di in Fig. 10F), and (iii) rw and ri are proportional872

(see the horizontal trend of rw/ri in Fig. 10G). A detailed calibration of parameters ri873

and rw is beyond the scope of this paper. Here, we simply assume that ri is proportional874

to di and rw is proportional to ri. We take ri = 0.06di and rw = 1.35ri. Despite not875

being the best fit, this choice of values represents a good approximation for intermedi-876

ate ice grain size (the dashed lines in Figs. 10F and 10G).877
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Figure 10. Calibration of parameters ri and rw. Time evolution of (A) φP and (B) TP

for simulation 1 (di = 0.2 mm, βsol = 80 s m−1, and initial ice temperature −8 °C). The times

tj are defined in Appendix. (C) Pairs {(Ti/Tw)?j , (Tint/Tw)?j} of simulation 1. Values of (D) ri

and (E) rw obtained from linear regression analysis for each simulation. The symbols β1, β2, and

β3 correspond to βsol = 80, 200, and 800 s m−1, respectively. (F) ri/di and (G) rw/ri for each

simulation. Arrows in (E) and (G) indicate values that are outside the graphs range. The dashed

lines in (F) and (G) represent the values we took to estimate ri and rw as a function of di.

Remark: We ran the non-isothermal simulations shown in Figs. 5 and 8 with different878

values of ri and rw (ri = 0.41di and rw = 2.4ri) and the results are very similar, which879

suggests that the influence of ri and rw is low. Further research is necessary to analyze880

the impact of ri and rw in our model.881

Regularity of functions WSSA, kr, ψ, and κ882

Our infiltration model displays minor S oscillations just downwards of the wetting883

front (Gomez et al., 2013). Thus, S may take negative values at some points in that area.884

To avoid singularities in the functions WSSA, kr, ψ, and κ, we need to define those func-885

tions for values S ≤ 0. Our approach consists of setting a positive saturation value Sl886

close to zero (we took Sl = 10−3) and defining C0- or C1-continuous functions which887
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take the original value if S ≥ Sl and a natural extension of those functions if S < Sl.888

By natural extension we may refer to a value close to zero (e.g., in case of kr) or a func-889

tion consistent with the flow potential (e.g., in case of ψ).890

We propose the following regularization for the functions WSSA, kr, ψ, and κ:

WSSA(φ, S) =

 (S − Sl) SSA0

φ0 ln(φ0)φ ln(φ) if S ≥ Sl,

0 if S < Sl.
(40)

kr(S) =

 Sa if S ≥ Sl,

Sl
a if S < Sl,

(41)

ψ(S) =

 hcapS
− 1
α

{
1− exp [β(S − νe)]

(
1 + β α

α−1S
)}

if S ≥ Sl,

ψl + ψ′l(S − Sl) if S < Sl,
(42)

κ(S) =


h3

cap
α
α−1S

α−1
α {1− exp [β(S − νe)]} if S ≥ Sl,

0.2κl +
κ′l
2

(S−Smin)2

Sl−Smin
if Smin ≤ S < Sl,

0.2κl if S < Smin,

(43)

where we substituted Sr = 0 into the relative permeability (kr) function. In Eq. (42),891

ψl = ψ(Sl) and ψ′l = dψ
dS (Sl). In Eq. (43), κl = κ(Sl), κ

′
l = dκ

dS (Sl), and Smin is ob-892

tained from the equality
κ′l
2 (Sl−Smin) = 0.8κl. Eq. (40) implies that there is no phase893

change if S < Sl. Thus, the numerical parameter Sl may be interpreted as premelted894

water (or irreducible water saturation). According to Eq. (41), we numerically impose895

a tiny non-null relative permeability (Sl
a) if S < Sl. If we consider kr = 0 for nega-896

tive saturation values, the saturation may remain negative and infiltration may stop be-897

cause u = 0; see Eq. (4). For the extension of the Leverett J-function ψ, we define a898

straight line which is tangent to the original ψ in S = Sl. According to this potential899

function, the saturation tends to increase (driven by the derivative of ψ) if S < Sl. Fi-900

nally, for κ we consider a quadratic convex function extension which is tangent to the901

original κ in S = Sl. The minimum value of the quadratic convex function is slightly902

higher than zero (0.2κl) and is located in S = Smin. For values S < Smin, the func-903

tion κ takes the constant value 0.2κl.904

The model equations are ill-posed in case φ = 0 or φ = 1. We do not reach that905

situation in the simulations shown in this paper. The model can be readily adapted to906

account for the situation φ = 0 by numerically impose a minimum porosity slightly higher907

than zero and the situation φ = 1 by implementing an Arbitrary Lagrangian-Eulerian908

description. More details will be provided in future work.909
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