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interpreted as derivations from carbonated sources paradoxically displays geochemical signatures (low Ca/Al and high K2O

contents) resembling partial melts of uncarbonated sources. Negative correlations of δ26Mg vs TiO2 and FCKANTMS, the proxy

of pyroxenitic melts, and adiabatic melting modeling suggest presence of Mg-isotopically light source pyroxenites transformed

from decarbonated altered oceanic crust. This may explain ubiquitous pyroxenitic contributions in many low-δ26Mg basaltic
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Key Points:

• The Langshan basaltic rocks and the post-110 Ma eastern Asian equiva-
lents paradoxically have low �26Mg but low Ca/Al and high K2O contents

• The paradox suggests transformation of low-�26Mg mantle pyroxenites
from decarbonated altered oceanic crust before the magmatism

• Decarbonation-related pyroxenite is pervasive in sources of intracontinen-
tal basaltic provinces and has implication for deep carbon cycling

Abstract

Mass recycling from subduction to magmatic extrusion shapes our habitable en-
vironment and Earth’s interior. Subducted igneous crust may form pyroxenites
before participating magmatism, but the deep journey of associated carbon-
ates remains unclear. Here we report new Mg-isotope data for ~89 to 81 Ma
basaltic rocks in Langshan area, central Asia (�26Mg = -0.391 to -0.513 ‰)
with a synthesis for post-110 Ma basalts across eastern Asian continent. The
merged low-�26Mg basaltic province normally interpreted as derivations from
carbonated sources paradoxically displays geochemical signatures (low Ca/Al
and high K2O contents) resembling partial melts of uncarbonated sources. Neg-
ative correlations of �26Mg vs TiO2 and FCKANTMS, the proxy of pyroxenitic
melts, and adiabatic melting modeling suggest presence of Mg-isotopically light
source pyroxenites transformed from decarbonated altered oceanic crust. This
may explain ubiquitous pyroxenitic contributions in many low-�26Mg basaltic
suites and has significant implication for deep carbon cycling.

Plain Language Summary

Oceanic slab subduction and returning to the surface via magmatism exerts
important control on our habitable environment and Earth’s interior. However,
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the deep journey of different subducted components (e.g., igneous crust, car-
bonates, etc.) is understood unevenly. Subducted igneous crust usually forms
mantle pyroxenites before involvement in basaltic generation, but it is unclear
if associated carbonates are directly involved or undergo other steps. Here, we
explore this puzzle by integrating new Mg-isotope data for Late Cretaceous
basaltic rocks in central Asia (�26Mg = -0.391 to -0.513 ‰) with a synthesis for
post-110 Ma intraplate basalts across eastern Asia. The merged low-�26Mg mag-
matic province traditionally interpreted as derivations from carbonated sources
paradoxically shows element evidence (low Ca/Al and high K2O contents) for
uncarbonated sources. Negative correlations of �26Mg values with TiO2 con-
tents and the proxy of pyroxenite contribution and adiabatic melting model-
ing further suggest presence of Mg-isotopically light pyroxenites in the magma
sources that may be transformed from decarbonated altered oceanic crust. This
may represent a ubiquitous mechanism for pyroxenitic contributions in many
geochemically similar intracontinental small-volume basalts and has important
implication for global deep carbon cycling.

1 Introduction
Oceanic slab subduction and returning to the surface shapes our habitable envi-
ronment and Earth’s interior. Intracontinental basaltic magmatism, commonly
occurring as widely dispersed monogenetic basaltic activities (McGee and Smith,
2016), is an important outflux of subducted materials (Foley and Fisher, 2017).
However, the deep journey of different subducted components (e.g., igneous
crust, carbonates, etc.) is understood unevenly. The residual igneous crust
after extraction of fusible components (e.g., silica, volatiles, etc.) in the shal-
low subduction processes (Stracke et al., 2003) is generally considered to form
pyroxenites (and eclogites) before participating basaltic magmatism (e.g., Ko-
giso et al., 2003). Proposed mechanisms for the pyroxenite formation include
(1) metamorphic transformation of the residual crust, (2) reaction between the
transformed pyroxenite (or its partial melts) and ambient peridotite, and 3) the
cumulates caused by the commingling between pyroxenitic and peridotitic par-
tial melts (Herzberg, 2011). In contrast, it is still controversial if the subducted
carbonates, including the sedimentary carbonates and those precipitated in the
altered oceanic crust, are directly involved in, or undergo other steps before the
magmatism (Li et al., 2017; Wang et al., 2018).

Direct carbonate involvement, especially in the intraplate alkaline basaltic ex-
trusions, has been proposed to interpret the distinct metal stable isotopic com-
positions (e.g., light Mg, heavy Zn) of these extrusions (e.g., Li et al., 2017; Liu
et al., 2022). The philosophy behind includes the possible carbonate survival
from subduction processes into the asthenosphere or even deeper (Kelemen and
Manning, 2015), the canonical stable metal isotope signatures (e.g., Teng et
al., 2017), and the negligible isotope fractionation during the high-temperature
mantle processes that enable the propagation of the isotope signatures from recy-
cled carbonates to their derivatives (Liu and Li, 2019). Alternatively, extensive
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studies using elemental and radiogenic isotopic systematics suggest that alkaline
basaltic extrusions may represent low-degree partial melts of mantle domains
containing non-peridotite lithologies (Hauri, 1996; Herzberg et al., 2014). Thus,
it seems the Jainist concept of Anekantavada, where the stable metal isotopic
protocols and the traditional element-isotopic systematics tap different aspects
of the melt sources.

The post-110 Ma dispersed basaltic eruptions across the central-eastern Asia
(Fig. 1A) constitute a typical “diffuse” intercontinental basaltic province. They
have highly similar geochemical signatures (Fig. S1), including low silica and
high alkali-element contents, oceanic island basalt (OIB)-like trace-element pat-
terns and moderately depleted Sr-Nd isotope compositions (Sheldrick et al.,
2020). Their mantle sources are now considered to be pyroxenite-bearing as-
thenospheric domains polluted by recycled slab materials from multiple subduc-
tion episodes that contributed to the construction of the vast central-eastern
Asian landmass (Xu et al., 2018; Dai et al., 2021a). In particular, the basaltic
rocks east of the N-S gravity lineament cutting the North China Craton (di-
rectly above the stagnant (Paleo-) Pacific slab, Fig. 1B) commonly have light
Mg-isotope compositions (�26Mg = -0.24 to -0.63 ‰ with an average of -0.41
‰); they are considered as evidence for a huge, recycled carbon reservoir in the
upper mantle (e.g., Li et al., 2017) that is genetically linked to the subducted
(Paleo-) Pacific slab based on their spatial and temporal affinity and the light
Mg isotopes canonical to sedimentary carbonates (Teng et al., 2017). Due to the
scarcity of Mg-isotope data for basalts west of the gravity lineament, it is not
yet clear if such isotopic signatures and the inferred subduction-related carbon
reservoir can be extended to the region beyond the influence of the present-day
stagnant Pacific slab (Fig. 1B). Moreover, the genetic link between the recy-
cled carbonates and pyroxenites in the sources of these basaltic rocks remains
unclear.

In this study, new Mg-isotope data (Supplementary Table S1) on Late Creta-
ceous basaltic rocks from the Langshan area, central Asia (outside the influence
of the stagnant Pacific slab, Fig. 1B) are integrated with a large dataset compi-
lation for the post-110 Ma eastern Asia basalts (Supplementary Table S2) and
experimental melts from carbonated and uncarbonated sources (Supplementary
Table S3). The aims are to evaluate the possible role of older subduction episodes
before the (Pacific) subduction in the genesis of this magmatic province and to
explore the genetic link between mantle pyroxenites and recycled carbonates in
the source of the intraplate basaltic magmatism.

2 Geological setting and data
The central-eastern Asia continent formed a coherent landmass by pre-
Cretaceous subduction episodes involving ancient continental blocks (Fig. 1A;
Zhao et al., 2018). These include the suturing of the archipelagic Paleo-Asian
Ocean before 230 Ma along the Solonker Suture zone, and the closure of the
Paleo-Tethyan Ocean before 320 Ma along the Qinling-Dabie-Sulu Orogenic
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belt, and the westward subduction of the (Paleo-) Pacific plate since ~140 Ma
(Wu et al., 2019). The subducted Pacific slab now is stagnant in the mantle
transition zone and underlies a “big mantle wedge” (BMW) beneath eastern
Asia (Fig. 1B; Huang and Zhao, 2006; Xu et al., 2018); the western leading
edge of the slab approximately coincides with the surface location of the N-S
trending gravity lineament in the North China Craton (NCC; Fig. 1A).

The post-110 Ma “diffuse” basaltic provinces extend far west of the gravity linea-
ment (outside the BWM), and the presence of low-�26Mg basalts at Huihe (He et
al., 2019), high-�66Zn basalts at Abaga and Chifeng (Liu et al., 2022), and high-
206Pb/204Pb basalts at Wudi (Sun et al., 2017) and Niutoushan (Qian et al.,
2020) on both sides of the lineament (Fig. 1A), indicate contributions from older
ancient subductions. The 89-81 Ma Langshan lamprophyre-basalt association
lies outside the present-day BMW (Fig. 1B), but their elemental and Sr-Nd iso-
topic compositions are indistinguishable from those of the post-110 Ma basalts
lying above the BMW (Fig. S1). The basaltic associations were considered to
originate from highly similar pyroxenite-bearing asthenospheric sources fluxed
by components from the subducted Paleo-Asian oceanic igneous crust (Dai et
al., 2021a). The samples previously used for whole-rock major-, trace-element
and Sr-Nd-Pb isotope analyses were selected here for Mg-isotope determination.
The detailed methods are described in the Supporting Information. The results
(Fig. 2A) show that the Langshan basaltic rocks are isotopically light (�26Mg =
-0.391 to -0.513 ‰), analogous to their post-110 Ma equivalents directly above
the BMW (�26Mg = -0.24 to -0.63 ‰).

3 Paradox of light Mg-isotope compositions vs whole-rock
chemistry of the Langshan basaltic associations
Careful evaluation on the potential fractionation processes for Mg isotopes us-
ing the considerations in Liu and Li (2019) suggest that the light Mg-isotopic
signatures of Langshan basaltic rocks are most likely inherited from the Mg-
isotopically light mantle sources (Supporting Information). Such isotopic signa-
tures are normally interpreted as evidence of recycled carbonates in the sources
(Li et al., 2017) but paradoxical to the evidence from major elements.

The Langshan basaltic rocks are compared with compiled experimental melts
of carbonated sources (peridotite, pyroxenite) and uncarbonated sources
(peridotite, silica-deficient pyroxenite, hornblendite, phlogopite). Experimental
melts of carbonated rocks generally have high CaO/Al2O3 ratios typically
higher than 1.4 while those of uncarbonated lithologies are characterized by
low CaO/Al2O3 (Fig. 2A). The Langshan basaltic rocks, and other basalts
from eastern Asia are consistently characterized low CaO/Al2O3 (e.g., <1),
thus indicating derivation from uncarbonated sources. Besides, basaltic rocks
considered generally have high K2O and low TiO2 contents relative to those
of the partial melts from carbonated sources (Fig. 2B). Instead, the detailed
comparison with experimental melts (Fig. S2) and other experimentally
calibrated geochemical proxies (Figs. S3 and S4) suggests that the Langshan
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basaltic rocks and other low-�26Mg equivalents in eastern Asia can be reason-
ably interpreted as originating from source domains containing silica-deficient
pyroxenites (Supporting Information).

4 Reconciling the Mg-isotopic vs elemental paradox by de-
carbonation of altered oceanic crust
Altered oceanic crust usually have distinctly light Mg-isotopic compositions with
�26Mg down to - 1.70‰, due to precipitation and accumulation of carbonates
(Huang et al., 2018). The carbonates will break down during subduction or in
the upper mantle and liberate the isotopically light cations to the pyroxene-rich
products (Dasgupta and Hirschmann, 2007; Stagno et al., 2013). The Mg-
isotopically light pyroxenite/eclogite xenoliths reported in the eastern Asia and
west Africa contain no carbonates and are considered as the transformation from
decarbonated altered oceanic crust (Wang et al., 2015; Yu et al., 2021). Thus,
presence of decarbonated altered oceanic crust in the mantle sources may serve
as a tentative reconciliation of the paradox arising from the Mg-isotopic and
major-element signatures of the basaltic rocks considered (Fig. 2). Here, the fea-
sibility of this reconciliation is evaluated via qualitative consideration on linkage
of low-�26Mg signatures to the source pyroxenite and quantitative modelling on
the melt Mg-isotopic compositions for adiabatic melting of pyroxenite-bearing
source domains.

4.1 Linkage of basaltic low- �26Mg signatures to pyroxene-rich source
domains

Mantle decarbonation may occur via either (1) extraction of carbonate-bearing
melts from mantle domains with remarkable solidus depression due to the pres-
ence of crystalline carbonates or (2) release of CO2 vapor controlled by the
carbonate ledge, the subsolidus silicate-carbonate reaction at relatively low-
ered pressures (Hammouda and Keshav, 2015). However, the two scenarios
of decarbonation have contrasting effects on the trace-element budget of the
sources. The decarbonated residua after melt extraction would be highly de-
pleted in incompatible trace-elements because the extracted melts usually have
high partition coefficients for most incompatible trace elements and would scav-
enge these elements in the source (Williams and Knittle, 2003; Dasgupta and
Hirschmann, 2006). In contrast, the residua after release of CO2 vapor would
retain the original trace-element budget. In this context, the low-�26Mg basaltic
rocks considered here are highly enriched in incompatible trace element (e.g.,
�REE= 334-488 ppm; Fig. S1) and thus would prefer enriched source domains
like the residua left behind by release of CO2 vapor. Moreover, the �26Mg of
the Langshan basaltic rocks are negatively correlated with TiO2 contents, the
proxy for melting degrees (Fig. 3A), and the FCKANTMS, the newly proposed
indicator of pyroxenite contribution in the melt sources (Fig. 3B; Yang et al.,
2019). That is, low-extent partial melts with high TiO2 contents generally have
low �26Mg and contain high mass contributions from source pyroxenites (high
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FCKANTMS values). These correlations suggest that the Mg-isotopic signa-
tures of the basaltic rocks may be controlled by the relatively fusible pyroxenite
embedded in the source domains.

The linkage of light Mg-isotopic signatures of the basaltic rocks to pyroxene-rich
mantle sources remains reasonable when the P-T-f O2 conditions are considered.
Experimental studies have shown that the release of CO2 from peridotitic sys-
tems generally occurs at <3 GPa given ambient mantle T-f O2 conditions and
much higher pressures (> 5 GPa) for pyroxenitic (basaltic) systems. The litho-
sphere of the Langshan area is 70-80 km thick, as constrained by seismic imag-
ing (Chen et al., 2014) and the basalt-borne xenolithic suite (Dai et al., 2021b).
Thermal condition of the lithosphere (Huang and Xu, 2010) and sub-lithospheric
mantle (Dai et al., 2021b) are comparable to those for typical circum-craton re-
gions worldwide (O’Reilly et al., 1997) and the ambient convecting upper man-
tle (Herzberg et al., 2010). Under such mantle conditions, the carbonate ledge
requires that the decarbonation of peridotitic asthenosphere and the altered
oceanic crust would take place via partial melting and release of CO2 vapor,
respectively. On this ground, the decarbonated altered oceanic crust would not
only inherit the isotopically light Mg but also the highly enriched trace-element
budget, and thus have the potential to produce partial melts with low-�26Mg
signatures and high contents of incompatible trace elements.

4.2 Modelling the melt Mg-isotopic compositions through adiabatic
melting of pyroxenite-bearing sources

To quantitatively constrain the Mg-isotopic characteristics of partial melts
from garnet pyroxenites (transformed from decarbonated altered oceanic
crust)-bearing mantle, adiabatic melting modelling have been conducted on
such lithologically heterogeneous mantle sources. The details on the modelling,
including the initial conditions of the source domains, the adiabatic melting
modelling, and the calculation of the adiabatic melt �26Mg, are explained in
the Supporting Information.

Figure 4 shows the modelled Mg isotopic composition of adiabatic melts ex-
tracted from source domains containing variable fractions (0%, 2%, 10%, 20%,
50%, and 100%) of Mg-isotopically light silica-deficient pyroxenites in peridotitic
matrix. For the melting of peridotite, the adiabatic melts display �26Mg ranging
from around -0.358 to -0.380‰, all lower than the �26Mg of the melting residua
(Fig. 4A). The melt-residua isotope fractionation is caused by the preferen-
tial melting of garnet over the refractory phases like olivine and orthopyroxene,
because garnet with a coordination number of 8 for Mg usually contains isotopi-
cally light Mg relative to coexisting mantle silicates (Huang et al., 2013). Simi-
larly, the positive correlation between �26Mg and melting depth is the result of
increasing stability of garnet with depth. For the melting of silica-deficient py-
roxenite with an assemblage of garnet, clinopyroxene and olivine (Fig. S3), the
adiabatic melts have lowered �26Mg (<5‰) compared to the initial Mg-isotopic
composition (�26Mg = -0.5‰) of the pyroxenite, also due to the preferential
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melting of the Mg-isotopically light garnet.

For the melting of peridotite-pyroxenite mixture, the adiabatic melts �26Mg shift
rapidly to low values with increasing fractions of Mg-isotopically light pyroxen-
ites in the source (Fig. 4A). This is because the pyroxenitic mass contributions
in the melt usually overweigh its fractions in the source (Fig. 4B) due to the
preferential melting of pyroxenite over coexisting peridotite, especially when
the heat transfer from refractory to fusible lithologies is considered (Brunelli et
al., 2019). The negative correlation of adiabatic melt �26Mg with depth (Fig.
4A) is primarily controlled by the increased pyroxenitic mass contributions in
the melt with increasing melting depths (Fig. 4B). The results show that the
Mg-isotopic characteristics of the Langshan basaltic rocks and most low-�26Mg
Cenozoic basalts from eastern Asia can be well explained by the adiabatic melt-
ing of source domains containing variable fractions of isotopically light pyrox-
enites, where the fraction is 2-5% for the Langshan basalts and up to 50% for
the lamprophyres. Notably, the high pyroxenites fractions in the source of the
lamprophyres align well with and thus cross-validate by our previous estimates
(55 wt.% pyroxenites in the source) using trace elements (Dai et al., 2021a).

Taking together, the low-�26Mg signatures of the Langshan lamprophyre-basalt
associations suggest mass contribution from recycled carbonates while the low
CaO/Al2O3 and high K2O contents require uncarbonated source domains. This
paradox can be well explained by the decarbonation of subducted altered oceanic
crust via release of CO2 vapor and the concomitant formation of residual,
low-�26Mg pyroxenites with high trace-element contents before involved in the
sources of the basaltic rocks.

5 Carbonate recycling from superposed subductions in
central-eastern Asia
The Langshan basaltic rocks are compositionally like the post-110 Ma equiva-
lents across central-eastern Asia (Fig. S1). Available Mg-isotope data, including
new data in this study, show that these basaltic rocks constitute a vast low-�26Mg
magmatic province in central-eastern Asia (Fig. 1A; Li et al., 2017; He et al.,
2019), stretching significantly westward beyond the influence of the stagnant
Pacific slab forming the current BMW (Fig. 1B). This magmatic province may
record contributions from carbonate-bearing oceanic crust associated with re-
peated subduction events through time, especially when the following aspects
are considered.

(1) The spatial variation in Zn isotope compositions of Cenozoic basalts west
of the N-S trending gravity lineament (Fig. 1A; Abaga to Chifeng) suggests
that the subduction of the Paleo-Asian oceanic slab should have injected car-
bonates into the asthenospheric sources (Liu et al., 2022). Moreover, radiogenic
Pb-isotope compositions (e.g., 206Pb/204Pb>18.5, 208Pb/204Pb>38.5), typical
of ancient recycled components, have now been recognized in basaltic rocks on
both sides of the gravity lineament (Fig. 1A, e.g., Langshan, Dai et al., 2021a;
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Niutoushan, Sun et al., 2017; Wudi, Qian et al., 2020). Accordingly, the as-
thenospheric sources of the vast post-110 Ma diffuse basaltic province should
have been pervasively infiltrated by recycled components from older subduction
episodes before the subduction and stagnation of (Paleo-) Pacific slab beneath
eastern China.

(2) The subducted Paleo-Asian oceanic slab under Siberia Craton remains de-
tectable more than 150 Ma after the subduction event (van der Voo et al.,
1999); the relic of this subducted slab is also detected underneath the West-
ern Junggar, Northwest China (Wu et al., 2018). These geophysical studies
suggest that the convection of subcontinental asthenosphere should be highly
sluggish. This is consistent with the knowledge arising from post-subduction
arc-type magmatism that asthenosphere polluted by recycled components can
remain semi-stationary relative to the overriding lithosphere for tens of million
years (van Hinsbergen et al., 2020). Thus, the recycled components from super-
posed Phanerozoic subductions may still reside in the asthenosphere beneath
central-eastern Asia.

(3) Recent seismic studies show that deep asthenosphere in central-eastern Asia
is generally characterised by low seismic velocities (Zhao, 2021; Li et al., 2022a).
This low-velocity anomaly can extend westward beneath the Western Junggar
basin and has been interpreted as partial melting induced by addition of volatile
components from ancient subducted slabs (Li et al., 2022b). This interpreta-
tion is in accordance with repeated subduction events in the prolonged con-
struction of the Eurasian continent (Zhao et al., 2018). Therefore, the recycled
components in mantle sources of the vast low-�26Mg basaltic province across
central-eastern Asia should not be ascribed to any single subduction event but
are causally linked to multiple subduction episodes.

6 Ubiquitous subduction-related decarbonation and pyrox-
enite formation in the upper mantle
The central-eastern Asia continent became an intraplate setting after the pre-
Cretaceous amalgamation of various ancient blocks (Zhao et al., 2018). The
post-110 Ma diffuse basaltic activities covering this vast continent (Fig. 1)
usually have similar elemental and isotopic (Sr-Nd-Pb-Mg) signatures (Figs. S1
& 2) and are derived from asthenospheric domains underneath thin lithosphere
(70-100 km, Supporting Information). Based on these tectonic and geochemical
similarities, we infer that decarbonation of altered oceanic crust and concurrent
formation of isotopically distinct pyroxenites recognized in the sources of the
Langshan basaltic rocks should be a prevailing process in asthenospheric sources
for the vast low-�26Mg basaltic province. That is, carbonate precipitated in the
altered oceanic crust from repeated subduction events (Zhao et al., 2018) should
have broken down and liberated isotopically light Mg to the transformed garnet
pyroxenite before involvement in the melt generation.

Moreover, global small-volume intraplate continental basaltic rocks generally
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share similar melting conditions, with mantle potential temperatures of ~1400
oC and final melting depths of 70-100 km (Lee et al., 2009). Under such con-
ditions, the recycled carbonates would break down to release CO2 vapor due
to the reaction with associated silicates in the altered oceanic crust, leaving
behind residual (decarbonated) pyroxenite-rich domains containing the isotopi-
cally distinct cations originally bound to the carbonates (Stagno et al., 2013;
Dasgupta et al., 2013). We suggest that the subducted-related decarbonation
and concurrent pyroxenite formation should be a ubiquitous process that can
explain the pyroxenitic contribution in many other low-�26Mg intracontinental
basaltic provinces worldwide. Therefore, the integration of isotope data with
major- and trace-elements and mantle conditions are necessary for the identifi-
cation of the deep carbon cycling in paleotectonic regimes and the re-evaluation
of mass fluxes through Earth’s different layers.

7 CONCLUSIONS
The Langshan associations have light Mg-isotopic compositions (�26Mg = -0.391
to -0.513 ‰) like those of recycled carbonates but display low CaO/Al2O3
and high K2O contents paradoxically resembling those of partial melts from
uncarbonated sources. Negative �26Mg vs FCKANTMS (pyroxenite marker)
correlation and thermodynamically constrained melting modeling on pyroxenite-
peridotite mixtures suggest the presence of low �26Mg pyroxenite in the melt
source that can be interpreted as transformation from decarbonated altered
oceanic crust. This model can explain pervasive pyroxenitic contributions in
the post-110 Ma low-�26Mg intraplate basaltic extrusions across eastern Asia
related to superposed multiple subduction episodes and can be applied to many
other similar basaltic provinces worldwide. This ubiquitous subduction-related
decarbonation processes have important implications for global deep carbon
cycling.
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Figure and captions
Figure 1. (A) Distribution of post-110 Ma magmatic province in central-
eastern Asia (here defined as the regions on each side of the N-S trending gravity
lineament (dark pink dashed line)) with major Phanerozoic tectonic boundaries.
The 50-110 Ma and <50 Ma basaltic rocks are indicated by red crosses and irreg-
ular shapes filled in dark green, respectively. Triangles highlight those with Mg
isotope data from the literature (yellow) and this study (pink). (B) Western
Pacific-eastern China mantle P-wave tomography sections at the latitudes of
41°N and 37°N (modified from Huang and Zhao, 2006). The big mantle wedge
refers to mantle domain above the stagnant slab.

Figure 2. (A) �26Mg vs CaO/Al2O3 (weight ratios) and (B) K2O vs TiO2
contents of the Langshan basaltic rocks and the post-110 Ma equivalents from
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eastern China (shown as triangles in Figure 1A). The inset histogram in (A)
shows experimental melt CaO/Al2O3 of carbonated and uncarbonated sources
(Supplementary Table S3), where the colors of axis scales keep the same as those
of the corresponding data series.

Figure 3. Correlations of �26Mg with TiO2 (A) and FCKANTMS (B) for
the Langshan basaltic associations. FCKANTMS, a combination of log-ratios
involving all major elements, is a recently-proposed indicator of pyroxenite con-
tribution in the mantle source of basaltic rocks (Yang et al., 2019).

Figure 4. (A) �26Mg and (B) pyroxenitic mass contributions for adiabatic melts
extracted from source domains with a potential temperature of 1400 oC and
containing variable pyroxenite fractions source domains. The melting pressure
of the basaltic rocks are the same as those in Figure S4B according to Herzberg
(2011). The percentages aside the gradient color curves in (A) and (B) denote
pyroxenite fractions in the sources. The discussion and details on the modeling
are included in the text and Supporting Information, respectively.
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