Late Cretaceous-early Paleogene extensional ancestry of the Harcuvar and Buckskin-Rawhide metamorphic core complexes, western Arizona

Martin Sherman Wong¹, John Singleton², Nikki M. Seymour², Phillip B. Gans³, and Alexander J. Wrobel¹

December 7, 2022

Abstract

Metamorphic core complexes in the western North American Cordillera are commonly interpreted as the result of a single phase of large-magnitude extension during the middle to late Cenozoic. We present evidence that mylonitic shear zones in the Harcuvar and Buckskin-Rawhide core complexes in west-central Arizona also accommodated an earlier phase of extension during the Late Cretaceous to early Paleocene. Microstructural data indicate substantial top-NE mylonitization occurred at amphibolite-facies, and 40 Ar/ 39 Ar thermochronology documents post-tectonic footwall cooling to <500°C by the Paleocene to mid-Eocene. Amphibolite-facies mylonites are spatially associated with voluminous and variably deformed footwall leucogranites that were emplaced from ca. 74-64 Ma, and a late kinematic ca. 63 Ma dike indicates this phase of mylonitization had waned by the early Paleogene. Reconstruction of the footwall architecture indicates that this latest Cretaceous – early Paleocene deformation occurred within a NE-dipping extensional shear zone. The leucogranites were likely the result of crustal melting due to orogenic thickening, implying a model whereby crustal heating triggered gravitational collapse of overthickened crust. Other tectonic processes, such as the Laramide underplating of Orocopia Schist or mantle delamination, may have also contributed to this episode of orogenic extension. Miocene large-magnitude extension was superimposed on this older shear zone and had similar kinematics, suggesting that the location and geometry of Miocene extension was strongly influenced by tectonic inheritance. We speculate that other Cordilleran core complexes also experienced a more complex and polyphase extensional history than previously recognized, but in many cases the evidence may be obscured by later Miocene overprinting.

¹Colgate University

²Colorado State University

³University of California, Santa Barbara

1 2	Late Cretaceous-early Paleogene extensional ancestry of the Harcuvar and Buckskin-Rawhide metamorphic core complexes, western Arizona
3	r i i i i i i i i i i i i i i i i i i i
4 5	Martin S. Wong ¹ , John S. Singleton ² , Nikki M. Seymour ^{2*} , Phillip B. Gans ³ , and Alexander J. Wrobel ^{1†}
6 7 8	¹ Department of Earth and Environmental Geosciences, Colgate University, 13 Oak Drive, Hamilton, New York, 13346 USA.
9 10	² Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, Colorado 80523, USA.
11 12 13	³ Department of Earth Science, University of California, Santa Barbara, California, 93105, USA.
14	Key Points:
15 16	 Miocene tectonic exhumation at these core complexes was predated by a latest Cretaceous to early Paleocene extensional event.
17 18	 This earlier extension was driven by crustal heating and anatexis that triggered gravitational collapse of overthickened crust.
19 20 21 22 23	 Recognition of this earlier extension has important implications for models of core complex formation and western North America.
24	Corresponding author: Martin S. Wong (<u>mswong@colgate.edu</u>)
252627	*Current address: Department of Geology, Occidental College, 1600 Campus Road, Los Angeles, California, 90041, USA
28 29 30 31 32 33 34 35 36 37 38 39	†Current address: Department of Earth Science, University of California, Santa Barbara, California, 93015 USA

Abstract

40

Metamorphic core complexes in the western North American Cordillera are commonly 41 42 interpreted as the result of a single phase of large-magnitude extension during the middle to late Cenozoic. We present evidence that mylonitic shear zones in the Harcuvar and Buckskin-43 44 Rawhide core complexes in west-central Arizona also accommodated an earlier phase of extension during the Late Cretaceous to early Paleocene. Microstructural data indicate 45 substantial top-NE mylonitization occurred at amphibolite-facies, and ⁴⁰Ar/³⁹Ar 46 thermochronology documents post-tectonic footwall cooling to <500°C by the Paleocene to mid-47 Eocene. Amphibolite-facies mylonites are spatially associated with voluminous and variably 48 deformed footwall leucogranites that were emplaced from ca. 74-64 Ma, and a late kinematic ca. 49 63 Ma dike indicates this phase of mylonitization had waned by the early Paleocene. 50 Reconstruction of the footwall architecture indicates that this latest Cretaceous – early Paleocene 51 deformation occurred within a NE-dipping extensional shear zone. The leucogranites were likely 52 the result of crustal melting due to orogenic thickening, implying a model whereby crustal 53 heating triggered gravitational collapse of overthickened crust. Other tectonic processes, such as 54 the Laramide underplating of Orocopia Schist or mantle delamination, may have also contributed 55 to this episode of orogenic extension. Miocene large-magnitude extension was superimposed on 56 this older shear zone and had similar kinematics, suggesting that the location and geometry of 57 Miocene extension was strongly influenced by tectonic inheritance. We speculate that other 58 Cordilleran core complexes also experienced a more complex and polyphase extensional history 59 than previously recognized, but in many cases the evidence may be obscured by later Miocene 60 overprinting. 61

62

63

64

65

66

67

68

69

70

1 Introduction

Metamorphic core complexes in the western North American Cordillera represent sites of large-magnitude extension where mylonitic mid-crustal rocks are juxtaposed against brittlely-deformed upper crustal rocks along a gently-dipping normal (detachment) fault. Core complexes are typically interpreted as a fundamentally distinct mode of crustal extension (e.g. Wernicke, 1985; Davis and Reynolds, 1989; Buck, 1991) due to the high magnitudes and rates of slip, the inferred slip of the detachment fault at low angles, and the exhumation of mylonitic mid-crustal rocks, among other factors. Studies of core complexes have provided important insight into key

aspects of continental extension such as the initial geometry of detachment faults (e.g., John and Foster, 1993; Wong and Gans, 2008), the magnitude and rate of detachment fault slip (e.g., Foster and John, 1999; Prior et al., 2016), the mechanics of low-angle normal faults (e.g., Axen, 1992; Selverstone et al., 2012), the structural relationship between detachment faults and mylonites (e.g., Lister and Davis, 1989; Singleton and Mosher, 2012), the rheology of the middle crust (e.g. Hacker et al., 1992; Behr and Platt, 2011), and the role of lower crustal flow in extension (e.g., Gans, 1987; Block and Royden, 1990; McKenzie et al., 2000).

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Most models for Cordilleran core complexes interpret them as the product of a single phase of middle to late-Cenozoic extension, where footwall mylonites represent the mid-crustal roots of coeval detachment fault systems (e.g., Wernicke, 1981; Davis et al., 1986; Lister and Davis, 1989; Spencer and Reynolds, 1991). Although it is indisputable that many core complexes in the central and southern Basin and Range experienced a phase of mylonitization during mid-Cenozoic exhumation (e.g., Reynolds et al., 1986; Foster and John, 1999; Wells et al., 2000; Wong and Gans, 2008; Singleton and Mosher, 2012; Zuza et al., 2019; Gottardi et al. 2020), some workers have argued that core complex mylonitization locally predates mid-Cenozoic exhumation and instead records Late Cretaceous extension (John and Musaka, 1990; Applegate and Hodges, 1995; Wong and Gans, 2009; Beyene, 2011) or other crustal flow of unknown tectonic significance (Ducea et al., 2020). If significant footwall mylonitization in some core complexes predated mid-Cenozoic extension, this would raise significant questions about the role of ductile deformation in the formation of core complexes, the tectonic significance of this older deformation, and the potential role of reactivation of these older fabrics in controlling the nature and geometry of mid-Cenozoic extensional shear zones and detachment faults. However, overprinting during Cenozoic deformation at many core complexes has often made it difficult to assess the presence and tectonic significance of older footwall mylonitization.

Here we argue that the Harcuvar and Buckskin-Rawhide core complexes in west-central Arizona (Figure 1) record clear evidence of extensive Late Cretaceous to early Paleogene mylonitization that is a distinctly older event than the large-magnitude Miocene extensional event for which Cordilleran core complexes are most well known. Moreover, we believe this early mylonitization records a substantial Late Cretaceous extensional event that immediately post-dated crustal thickening and partial crustal melting. These conclusions are based on

103

104

105

106

107

108

Figure 1. Shaded relief map from Singleton et al. (2018) showing the locations of metamorphic core complexes in southeastern California and western and central Arizona. Mylonitic footwall locations are shown in red and the major detachment fault slip directions are shown by the arrows. The dotted line encompasses the Mesozoic Maria fold-and-thrust belt (after Spencer and Reynolds, 1990). Location names for the mylonite distribution and detachment slip direction: SM—South Mountains, WT—White Tank Mountains, HQ—Harquahala Mountains, HV—Harcuvar Mountains, BR—Buckskin-Rawhide Mountains , PM—Plomosa Mountains, WM—Whipple Mountains, CM—Chemehuevi Mountains, SCM—Sacramento Mountains, DM—Dead Mountains.

109

110

111

112

113

geologic mapping, microstructural and electron backscatter diffraction (EBSD) analyses, Ti-in-quartz thermometry, and ⁴⁰Ar/³⁹Ar and U-Pb geochronology. These results demonstrate a composite extensional origin for this belt of core complexes and indicate that single-phase models of core complex formation should be reexamined. Evidence for widespread Late

Cretaceous extension in Cordilleran core complexes also has important implications for understanding the geodynamic evolution of western North America.

2 Geologic background

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

The Harcuvar and Buckskin-Rawhide Mountains, along with the adjacent Whipple and Harquahala Mountains, form a belt of core complexes within the lower Colorado River extensional corridor (CREC) in eastern California and western Arizona (Figure 2). These core complexes are also located within or adjacent to the Maria fold-and-thrust belt, a zone of Cretaceous basement-involved crustal shortening that was dominantly S- to SW-vergent (e.g., Spencer and Reynolds, 1990). In several ranges across this region (e.g., the Harcuvar, Harquahala, Granite Wash, and Dome Rock Mountains) major Cretaceous thrust faults are cut by Late Cretaceous (ca. 86–70 Ma) granitoids, which in turn are heterogeneously strained (e.g. Rehrig and Reynolds, 1980; Richard, 1988; Laubach et al., 1989; Reynolds and Spencer, 1993; Boettcher et al., 2002). Cawood et al. (2022) interpreted that ductile thrusting in the southernmost part of the Maria fold-and-thrust belt occurred somewhat later at ca. 68-65 Ma. These results place important constraints on the timing of Cretaceous crustal shortening in the region. The total magnitude of crustal shortening across the belt is largely unconstrained, although Chapman et al. (2020) recently applied geochemical proxies to estimate that Late Cretaceous crustal thicknesses may have reached up to 57 ± 12 km in western and southern Arizona. At the end of Cretaceous shortening, accretionary wedge sediments were underplated beneath the Maria fold-and-thrust belt during low-angle subduction of the Farallon plate as the Pelona-Orocopia-Rand Schist (Haxel et al., 2014; Strickland et al. 2018), with schist emplacement occurring by ca. 70 Ma (Jacobson et al., 2017; Seymour et al., 2018).

While most research on the Maria fold-and-thrust belt has focused on contractional structures, growing evidence suggests that Late Cretaceous to early Paleogene NE-directed extension may have also occurred regionally, following the cessation of contraction. Laramide-age mylonitization associated with NE-directed extension has been recognized in several ranges in the CREC and adjacent areas, including the Dome Rock Mountains (Boettcher and Mosher, 1998), Little Maria Mountains (Ballard and Ballard, 1990), Big Maria Mountains (Flansburg et al., 2021), Iron Mountains (Wells et al., 2002), New York Mountains (Wells et al., 2005), and Granite Mountains (Salem, 2009). How widespread this event was and whether it also impacted

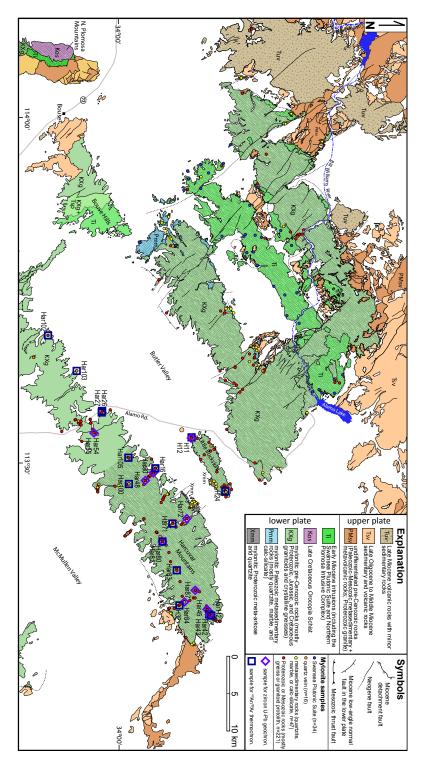


Figure 2. Simplified geologic map of the Buckskin-Rawhide and Harcuvar metamorphic core complexes (after Bryant, 1995; Spencer and Reynolds, 1989). The map also shows the location of samples for petrographic observations (small dots), U-Pb geochronology (diamonds) and $^{40}\mathrm{Ar}/^{39}\mathrm{Ar}$ thermochronology (squares).

core complexes within the CREC remains unclear, although John (1987) and John and Musaka (1990) suggest that most mylonitization in the footwall of the Chemehuevi detachment fault records top-to-the-NE-directed shearing during the Late Cretaceous (ca. 90–68 Ma).

The Harcuvar and Buckskin-Rawhide Mountains are dominated by variably mylonitized footwall rocks that include Proterozoic and Mesozoic crystalline gneisses, Late Cretaceous granitoids of the Tank Pass Plutonic Suite, Early Miocene granitoids of the Swansea Plutonic Suite, and minor pre-Cenozoic metasedimentary rocks (Bryant, 1995). The footwalls of these two core complexes are bound by one or more regional low-angle detachment faults that experienced tens of kilometers of top NE-directed extensional slip (e.g., Spencer and Reynolds, 1991; Singleton et al., 2014). The total slip across the detachment fault system in the Harcuvar Mountains is estimated to be ~45–50 km based on the correlation of distinct Jurassic clasts in an upper plate megabreccia to their likely footwall source and other lines of evidence (Reynolds and Spencer, 1985; Spencer and Reynolds, 1991; Prior et al., 2016). Extension may have begun in the late Oligocene based on the timing of some basin-fill deposits (e.g. Lucchitta and Suneson, 1993; 1996), but the main phase of detachment fault slip initiated at ca. 21 Ma and continued until ca. 12 Ma (e.g., Carter et al., 2004; Singleton et al., 2014; Prior et al., 2016, 2018).

Footwall fabrics in the Harcuvar and Buckskin-Rawhide Mountains are exposed for up to 35 km in the extension direction (Fig. 2) and are dominated by LS- or L>S-mylonitic tectonites with NE-SW-trending stretching lineations that trend parallel to the detachment fault slip direction. It is clear that significant lower-plate mylonitization occurred during mid-Cenozoic extension based on the presence of mylonitic fabrics in Early Miocene granitoids both locally (Bryant and Wooden, 2008; Singleton and Mosher, 2012) and within nearby core complexes such as the Whipple, Chemehuevi, and northern Plomosa Mountains (e.g., Anderson, 1988; LaForge et al., 2016; Gans and Gentry, 2016; Strickland et al., 2018). The similarity in the geometry and top-to-the-NE kinematics of mylonitic fabrics to the detachment faults further supports models that view these mylonites as the mid-crustal roots of mid-Cenozoic brittle detachment faulting (e.g., Richard et al., 1990; Spencer and Reynolds, 1991; Behr and Platt, 2011; Singleton and Mosher, 2012). This model has often led to the presumption that most or all lower-plate mylonitization of these core complexes is Miocene in age. However, other workers have argued that mylonites with similar fabric geometries and kinematics in the footwall of the Chemehuevi (John, 1987; John and Musaka, 1990), and Riverside (Lyle, 1982) detachment faults

are instead Mesozoic in age, which raises the possibility that at least some of the footwall fabrics in the Harcuvar and Buckskin-Rawhide ranges formed prior to mid-Cenozoic extension. Given this uncertainty, assessing the age and significance of footwall fabrics in the Harcuvar and Buckskin-Rawhide ranges is critical to understand the tectonic development of these core complexes.

3 Results

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

3.1 Footwall fabrics

Footwall rocks in the northeastern ~30–35 km of the Harcuvar and Buckskin-Rawhide Mountains are dominantly well foliated and lineated mylonites (L-S tectonites; Figure 3), although parts of the Early Miocene Swansea Plutonic Suite are characterized by L>S mylonitic fabrics suggestive of constrictional strain (Singleton and Mosher, 2012). Northeast of the mylonitic front, footwall rocks of all ages and lithologies are are variably mylonitic, but locally Late Cretaceous granitoids of the Tank Pass Plutonic Suite are weakly strained, and steeplydipping gneissic fabrics are exposed beneath metasedimentary mylonites in the southwestern Buckskin Mountains (Singleton et al., 2018). Footwall foliations are generally subhorizontal but dip gently northwest or southeast on the flanks of the ranges, broadly mimicking the corrugations in the bounding detachment fault. These corrugations define fold axes that plunge gently NE or SW, subparallel to the brittle slip direction (Singleton, 2015; Singleton et al., 2019). Lineations in mylonites are typically defined by quartz ribbons, streaks of mica, and/or aligned feldspar porphyroclasts with recrystallized tails. In most areas mylonitic lineations plunge gently NE-SW with a mean trend and plunge of 234°/03° in the Harcuvar Mountains, 038°/03° in the Little Buckskin Mountains, 225°/03° in the Ives Peak corrugation in the southern Buckskin Mountains, and 221°/13° in the Clara Peak and Planet Peak corrugations of the Buckskin-Rawhide Mountains (Figure 4).

3.2 Microstructural analysis and deformation conditions

We documented microstructures in >300 oriented petrographic thin sections from across the Buckskin-Rawhide, Little Buckskin, and Harcuvar Mountains (Fig. 2) to evaluate deformation conditions associated with footwall mylonitization (see Supplementary Table S1). Thin sections were cut perpendicular to the mylonitic foliation and parallel to the stretching lineation, and microstructural observations include mineralogy, kinematic indicators, and quartz

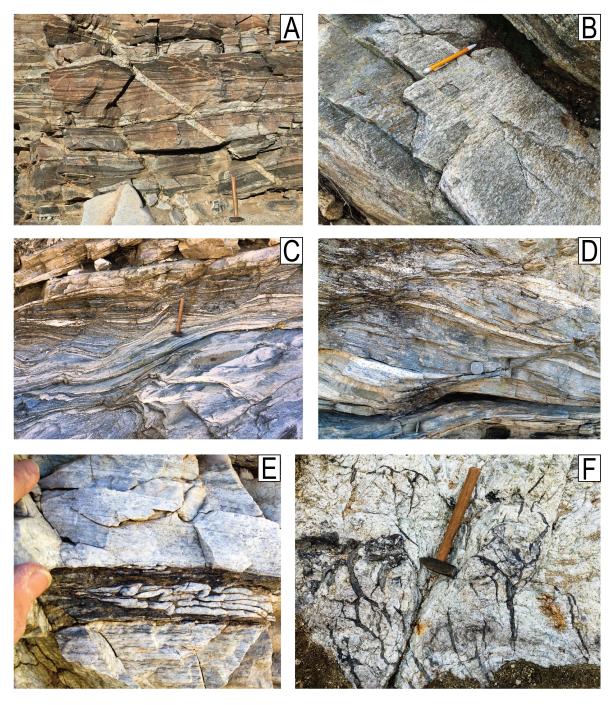


Figure 3. Field photographs from the footwall rocks in the Harcuvar-Buckskin Mountains. A) Gneissic fabric near the mylonitic front east of Cunningham Pass cut by a pegmatite dike, which is displaced by discrete biotite-rich shear zone. B) Leucogranite mylonite along the northwest flank of the Harcuvar Mountains near Burnt Well. Pencil parallels NE-SW trending stretching lineation. C) Top-NE (top-left) shear bands in mylonitic gneiss along the SE flank of the Harcuvar Mountains near Bullard Peak. D) Top-NE (top-left) shear bands in mylonitic gneiss from Miller Wash, eastern Harcuvar Mountains. E) Leucogranite ultramylonite with cm-scale NE-vergent folds (top-right) in the Little Buckskin Mountains. E) Pseudotachylyte (dark material) in leucogranite along a subdetachment fault near Burnt Well in the central Harcuvar Mountains. This fault separates greenschist-facies mylonites in Proterozoic metasedimentary rocks (above) from amphibolite-facies mylonites in Late Cretaceous leucogranite (below).

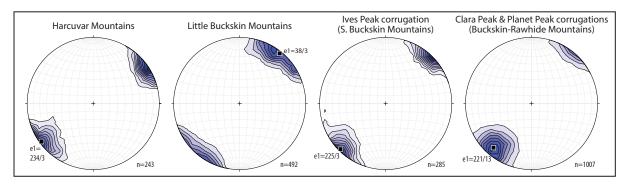


Figure 4. Contoured stereonet plots of mylonitic footwall lineations across different regions within the study area. The shallowly NE-SW plunging lineation direction is highly consistent across the study area.

and feldspar deformation/recrystallization mechanisms. We also estimated dynamically recrystallized quartz grain size for 141 thin sections of pre-Miocene rocks, which we compare to quartz grain sizes of Swansea Plutonic Suite mylonites previously analyzed by Singleton and Mosher (2012). Grain sizes were estimated by tracing ≥50 (average ~86) well-defined recrystallized grains from photomicrographs of relatively pure quartz domains and converting grain areas to an equivalent spherical diameter. For samples with variable grain sizes (typically associated with larger grains produced by grain boundary migration recrystallization) we strived to capture the full range of grain sizes, but mean grain size estimates in these samples have large standard deviations and are used primarily for relative comparison purposes (see Supplementary Figure S1).

Microstructures in footwall mylonites record a wide range of textures and interpreted deformation conditions. In nearly all quartzofeldspathic samples, quartz has undergone dynamic recrystallization and crystal-plastic flow, whereas feldspar records variable degrees of dynamic recrystallization and brittle fracturing. We organized samples into 4 categories based on characteristic quartz and feldspar microstructures that have been correlated with general deformation conditions (e.g., Passchier and Trouw, 2005), with category 1 representing the lowest temperature/highest stress conditions and category 4 representing the highest temperature/lowest stress conditions. Mylonites in all deformation categories are characterized by thinly-spaced foliation, penetrative stretching lineations, and grain-size reduction primarily via dynamic recrystallization.

Category 1 mylonites are characterized by quartz ribbons with incomplete recrystallization and <25 µm recrystallized grain sizes, commonly associated with small

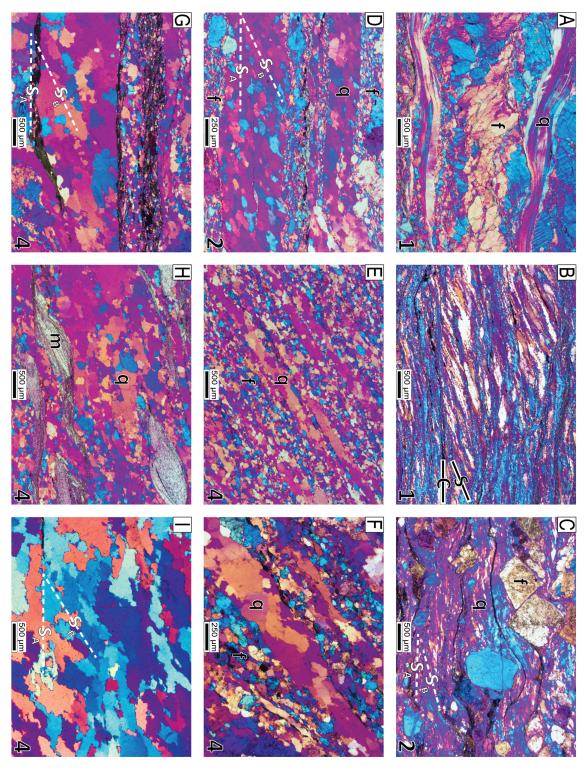


Figure 5. Photomicrographs of mylonites from the Buckskin-Rawhide and Harcuvar metamorphic core complexes. All photomicrographs are from X:Z thins sections in cross polarized light with the gypsum plate inserted, and the northeast side of the macroscopic lineation is on the right. Deformation conditions categories (1-4) are listed in the lower right (see text for details). A) Leucogranite from near the mylonitic front in the central Harcuvar Mountains (H3). Feldspar porphyroclasts (f) record brittle fracturing and cataclasis, whereas quartz ribbons (q) record dislocation creep with very minor BLG. B) Quartzite mylonite from the northwestern flank of the Harcuvar

manuscript submitted to Tectonics

Mountains near Burnt Well (15-JB3). Quartz records SGR+BLG; S-C fabric records top-NE shear; deformation category 1. C) Swansea Plutonic Suite in the central Buckskin Mountains (5-9). Feldspar (f) records brittle fracturing and minor BLG, whereas quartz records SGR and a grain shape foliation (S_B) that is oblique to the macroscopic foliation (S_A; top-NE shear). D) Leucogranite from the central Buckskin Mountains (4-636); feldspar is deformed by fracturing and BLG (f), whereas quartz is recrystallized primarily via SGR (q) with an oblique grain shape fabric (top-NE shear). E) Leucogranite from the eastern Buckskin Mountains (H20); nearly complete recrystallization of feldspar (f) primarily via SGR and quartz (q) via GBM. F) Leucogranite from the Little Buckskin Mountains (LB-154); feldspar records SGR; quartz records GBM. G) Leucogranite from the Little Buckskin Mountains (LB-190) with quartz GBM and an oblique grain shape fabric (top-NE shear). H) Leucogranite from the Little Buckskin Mountains with quartz GBM (q) and muscovite fish (m; top-NE shear). I) quartz vein from the Little Buckskin Mountains (LB-69); quartz records GBM and a grain shape fabric (S_B) that is oblique to the macroscopic foliation (S_A; top-NE shear).

subgrains and grain boundaries with irregular bulges or sutures (Figure 5), suggesting a combination of subgrain rotation and bulging recrystallization. Feldspar in these samples is dominated by brittle fracturing or cataclasis with minor dynamic recrystallization of $<10~\mu m$ grains rimming porphyroclasts. Chloritization is common, and fresh biotite is rare. All non-quartzofeldspathic lithologies, predominately calcite-rich metasedimentary mylonites, also fall within this category due to their fine grain size. Category 1 metasedimentary mylonites are common <100~m below the bounding detachment system and were locally sheared through the brittle-plastic transition (Singleton et al., 2018).

In category 2 mylonites, quartz exhibits straight grain boundaries and relatively uniform grain sizes of $\sim 30-70~\mu m$ that are similar to subgrains (Fig. 5), suggesting subgrain rotation recrystallization. Dynamic recrystallization of feldspar is more common than in category 1 samples, although porphyroclasts are still typically fractured. Feldspar subgrains and subgrain rotation recrystallization are rare, and overall chloritization is less abundant than in category 1 samples.

Category 4 mylonites are characterized by average quartz grain sizes between 80 and 250 µm with variable size distributions and irregular (amoeboid-like) grain boundaries (Fig. 5), suggesting a dominance of fast grain boundary migration recrystallization. Feldspar in these samples has undergone pervasive dynamic recrystallization into polygonal grains with undulatory extinction and subgrains, suggesting subgrain rotation recrystallization. Feldspar in category 4 granitoid ultramylonites is locally completely recrystallized, and chlorite is rare to absent. Category 3 mylonites have mixed features from category 2 and category 4 mylonites and

may either represent an intermediate between these two categories or a lower-temperature overprint of category 4 mylonites.

3.3 Kinematics

The majority of the mylonite samples record a clear microstructural sense of shear. Dynamically recrystallized quartz grain shape fabrics oblique to foliation and C' shear bands are the most abundant shear sense indicators, and S-C fabrics, mica fish, and asymmetric porphyroclasts are also common (Fig. 5). These kinematic indicators consistently indicate a top-NE sense of shear across the study area. Of the 250 oriented thin sections evaluated for shear sense, ~86% record top-NE shear, 13% have symmetric structures or an unclear sense of shear, and 1% record top-SW shear. These microstructural kinematics are consistent with dozens of field observations supporting a dominance of top-NE shear (Fig. 3), which applies to all footwall lithologies and mylonite categories. The clearest top-SW kinematic indicators are from discrete shear zones located near the mylonitic front, which matches observations near the mylonitic front in other Arizona core complexes (e.g., Reynolds and Lister, 1990; Singleton et al., 2019), where antithetic shears have been interpreted to accommodate arching of the footwall during late-stage mylonitization (Reynolds and Lister, 1990).

3.4 Quartz crystallographic preferred orientation analyses

Crystallographic orientation patterns were determined with electron backscatter diffraction (EBSD) at Colgate University using a JEOL JSM6360LV scanning electron microscope with an Oxford Nordlys EBSD detector and processed using the HKL Channel 5 software and the MTEX Matlab toolbox (Bachmann et al., 2010). Step size was variable based on sample grain size but ranged from 5–30 µm. Crystallographic axes in pole figures were reduced to show one point per grain using a misorientation of 10° as a grain boundary threshold.

EBSD analyses of dynamically recrystallized quartz in category 3-4 mylonites reveal a strong CPO with c-axis fabrics typically defining a clear Y-axis strain maxima or patterns intermediate between Y-axis maxima and single girdle patterns (Figure 6). These patterns are consistent with inferred deformation temperatures above 500°C (Law, 2014). Based on these patterns, prism <c> slip did not play a significant role as a slip system during deformation. C-axis and a-axis fabric asymmetries, where present, are consistent with the top-NE sense of shear inferred from petrographic observations. Category 1-2 mylonites also have a strongly developed

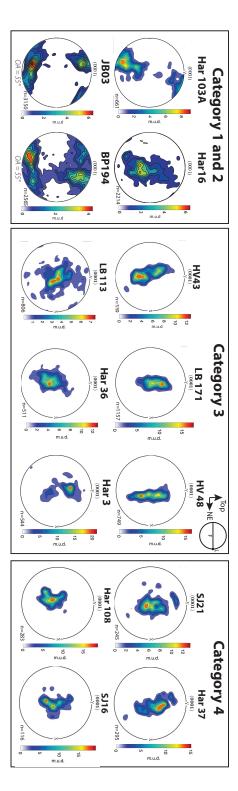


Figure 6. Crystallographic preferred orientation plots of quartz c-axes for representative mylonitic samples within different deformation categories. Sample orientations are shown perpendicular to foliation (F) and parallel to lineation (L) with top as up and NE to the right. Category 1-2 samples typically show cross girdle or single girdle c-axes patterns, while category 3-4 samples have c-axis fabrics typically defining a clear Y-axis strain maxima or patterns intermediate between Y-axis maxima and single girdle patterns. Sense of shear based on pattern asymmetry is top-NE where present.

CPO with distinctive c-axes patterns that typically form a cross-girdle or less commonly a single girdle pattern, which is consistent with dynamic recrystallization via BLG and SGR mechanisms at lower temperatures (Stipp et al., 2002b; Faleiros et al., 2010). Two of the category 1-2 mylonites yield c-axis cross-girdles with opening angles (OA) of \sim 55° (Fig. 6), which implies deformation temperatures of 425 \pm 50°C (Faleiros et al., 2016).

3.5 Lithologic and spatial patterns of deformation conditions

When viewed across the entire study area, mylonite samples from the Buckskin-Rawhide and Harcuvar core complexes are evenly distributed across the 4 deformation conditions categories, with category 4 samples (~28%) being slightly more common than the other categories (Figure 7). However, the deformation conditions of mylonitization are strongly correlated with lithology. Category 1 samples are dominantly (~80%) metasedimentary mylonites derived from Proterozoic to Paleozoic quartzite and marble, while category 2 samples are typically (~71%) Early Miocene Swansea Plutonic Suite mylonites. The vast majority of category 3 and 4 samples (~85%) are leucogranite mylonites that are derived from Late Cretaceous plutons.

The deformation categories of mylonitization also show strong spatial patterns. Category 1 mylonites are most common in metasedimentary rocks found along the flanks of the footwall corrugations just beneath the detachment fault (Figure 8, Singleton et al., 2018). Some category 1 mylonites are also located near the mylonitic front at the southwestern part of the footwall. Category 2 mylonites are most common in the central part of the Buckskin-Rawhide footwall, where Swansea Plutonic Suite mylonites are prevalent. Category 3 and 4 mylonites are typically located in the interior parts of the Harcuvar, Little Buckskin Mountains, and southern Buckskin Mountains footwall, which also correspond to where Late Cretaceous leucogranite is most common.

To determine how mylonitization conditions vary geometrically and structurally with respect to the detachment fault system, we evaluated structures and samples from several transects that cross the flanks of the footwall corrugations (Figure 9). These transects include the northwest flank of the Ives Peak corrugation near Lincoln Ranch (previously mapped by Singleton et al., 2014), the southeastern flank of the Little Buckskin Mountains corrugation (previously mapped by Singleton, 2011), and the northwest and southeast flanks of the Harcuvar

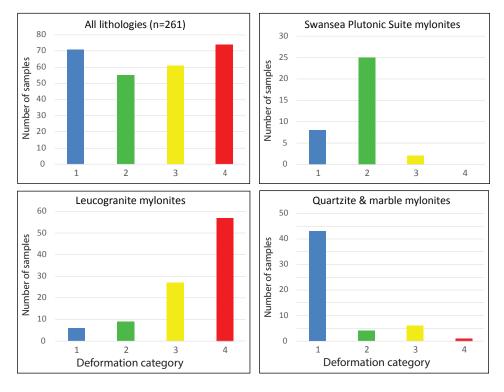


Figure 7. Histograms of the deformation categories (1-4) for mylonites within the study area, organized by lithology. While mylonites within the study area as a whole are equally spread across the deformation categories, there is a strong lithologic influence. Cretaceous leucogranite mylonites dominate the 3-4 deformation categories, Miocene Swansea plutonic suite mylonites are predominantly category 2, and metasedimentary mylonites are predominantly category 1.

Mountains corrugation (new mapping in this study). In each of these areas, category 1 mylonites are present just beneath the detachment system, while category 3-4 mylonites are present several hundred meters below the detachment system.

Along the northwest flank of the Ives Peak corrugation, a 50–100 m-thick section of marble, calc-silicate, and quartzite parallel the gently-NW-dipping detachment fault (Fig. 9).

These metasedimentary rocks consistently record top-NE sense of shear and category 1 deformation conditions, and the marble maintains coherent mylonitic fabrics up to ~0.4 m below the Buckskin detachment fault principal slip plane (Singleton et al., 2018). The metasedimentary mylonite zone overlies crystalline mylonites along a sheared contact. The crystalline mylonites consist primarily of orthogneiss with abundant Late Cretaceous leucogranite layers that also record top-NE-directed shear and with category 3-4 deformation characteristics. The contact corresponds to an abrupt change in quartz deformation from bulging and subgrain rotation recrystallization and ~14–25 µm mean grain sizes in the metasedimentary mylonites to grain

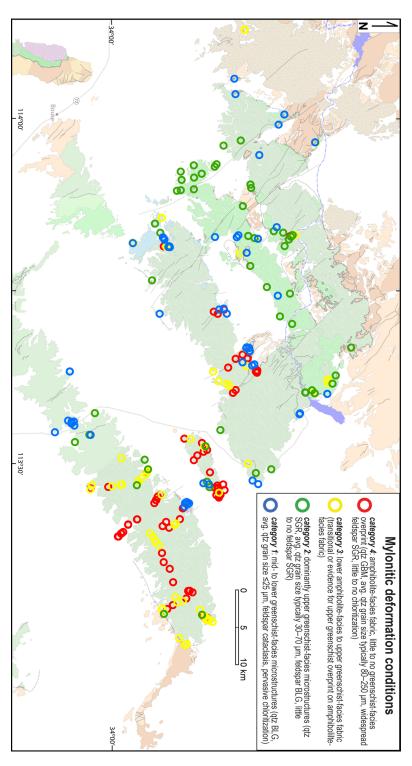


Figure 8. Map showing the spatial distribution of deformation categories across the study area. Category 1 mylonites are most common in metasedimentary rocks found along the flanks of the footwall corrugations just beneath the detachment fault and near the mylonitic front at the southwestern part of the footwall. Category 2 mylonites are common in the central part of the Buckskin-Rawhide footwall, where Swansea Plutonic Suite mylonites are prevalent. Category 3 and 4 mylonites are typically located in the interior parts of the Harcuvar, Little Buckskin Mountains, and southern Buckskin Mountains footwall where Late Cretaceous leucogranite is most common. See Fig. 2 for an explanation of geologic units.

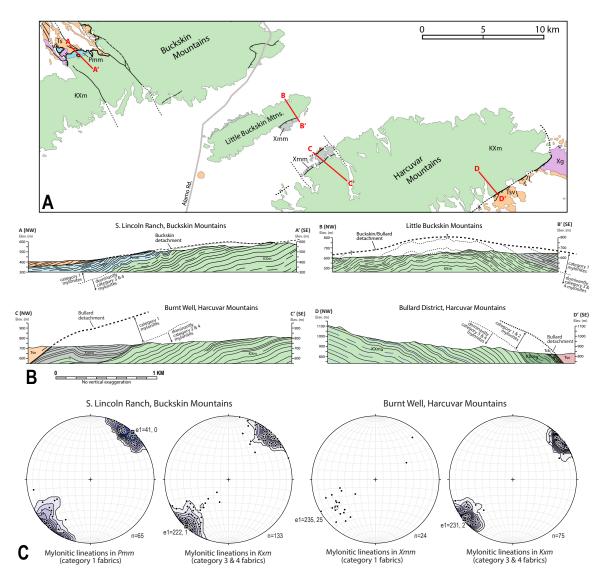


Figure 9. Geologic map (A) and detailed cross sections (B) in the South Lincoln Ranch, Buckskin Mountains (A-A'), Little Buckskin Mountains (B-B'), the Burnt Well locality (C-C') and the Bullard district (D-D') in the Harcuvar Mountains. The cross sections highlight that category 1-2 mylonites are typically located within several hundred meters below the detachment fault and commonly within metasedimentary units. Category 3-4 mylonites are located below this zone and are commonly developed in Cretaceous leucogranites and other crystalline basement rocks. Stereonet plots of lineations (C) highlight that lineation directions are indistinguishable within these different categories of mylonites.

boundary migration and subgrain rotation recrystallization and \sim 60–100 μm mean grain sizes in the crystalline mylonites.

Along the southeast flank of the Little Buckskin Mountains corrugation and northwest flank of the Harcuvar Mountains corrugation near Burnt Well, similar spatial patterns in mylonitization occur (Fig. 9). In these areas, pervasively chloritized mylonites derived from

manuscript submitted to Tectonics

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

Mesoproterozoic meta-arkose and quartzite are present at the top of the footwall. These category 1-2 mylonites consistently record top-NE shear subparallel to the slip direction of the bounding detachment fault. This zone of metasedimentary mylonites is up to ~250 m thick and is juxtaposed against crystalline mylonite along a brittle fault that parallels the overlying detachment fault. Along the northwest flank of the Harcuvar Mountains this brittle footwall fault preserves pseudotachylyte veins (Fig. 3), demonstrating that the fault slipped seismically. Crystalline mylonites below this fault are dominantly Late Cretaceous leucogranite that consistently record category 3-4 deformation. Quartz in the metasedimentary mylonites has undergone subgrain rotation and bulging recrystallization with mean grain sizes of 10–50 μm, whereas quartz in the structurally lower leucogranites primarily records grain boundary migration recrystallization and mean grain sizes of 75–300 µm. As with the Ives Peak corrugation, this transition is abrupt and corresponds to the lithologic change from metasedimentary to crystalline lithology. Similar patterns are also observed along the southeast flank of the Harcuvar Mountains corrugation near the Bullard mineral district, where SE-dipping mylonites primarily derived from leucogranite parallel the detachment fault (Fig. 9). Near the top of the lower plate these mylonites are chloritically altered and record quartz subgrain rotation recrystallization with ~30–50 μm mean grain sizes. Chlorite alteration decreases and quartz grain size increases towards deeper structural levels in the footwall, and ≥200–250 m below the detachment fault fabrics are dominated by quartz grain boundary migration recrystallization (mean grain size >100 μm) and feldspar subgrain rotation recrystallization.

Based on these transects, it is clear that category 1-2 mylonites are concentrated within a ≤250 meter-thick carapace at the top of the footwall, whereas category 3-4 mylonites dominate at deeper structural levels. We did not observe a structural base of the category 3-4 mylonites, and based on cross sections, these mylonitic fabrics are likely >1 km thick (Fig. 9). Despite the notable differences in mylonitic deformation conditions preserved in the footwall, fabric orientations within these different zones are remarkably consistent. Where a clear boundary is present between the different category fabrics near Lincoln Ranch and Burnt Well, there is no statistical difference in lineation trend between the different category fabrics (Fig. 9), and a top-NE sense of shear is consistent throughout.

3.6 Ti-in-quartz thermometry

While deformation mechanisms and CPO patterns can provide important constraints on deformation temperatures, these estimates can be influenced by strain rate and other factors (e.g., Law, 2014). TitaniQ thermobarometry, which relies on the temperature-dependent substitution of Ti⁴⁺ for Si⁴⁺ in the quartz unit cell, can provide more direct constraints on deformation conditions (Wark and Watson, 2006; Thomas et al., 2010). This approach has been applied to estimate the *P*–*T* conditions of deformation in quartz-rich rocks (e.g., Kohn and Northrup, 2009; Behr and Platt, 2011; Grujic et al., 2011; Kidder et al., 2013, 2018; Nachlas et al., 2014; Bestmann and Pennacchioni, 2015; Cross et al., 2015), and experiments by Nachlas et al. (2018) demonstrated that dynamic recrystallization of quartz re-equilibrated Ti concentrations to reflect pressure-temperature conditions of deformation.

We conducted Ti-in-qtz thermometry on a subset of samples (n=9) focused on category 4 mylonitic Late Cretaceous leucogranites and quartz veins in order to provide additional constraints on the mylonitization temperatures. We focused on category 4 mylonites because Ti re-equilibration in quartz is mostly likely to occur in mylonites that experienced grain boundary migration recrystallization (Gruijic et al., 2011). Ti concentrations were determined using a Cameca 6f secondary ion mass spectrometer (SIMS) at Arizona State University. Unknowns were calibrated against three Ti-doped synthetic silica glass samples with known Ti concentrations of 0 ppm, 100 ppm, and 500 ppm (Gallagher and Bromiley, 2013). The use of pure silica standards avoids the ~30% bias introduced by calibrating against the common nonmatrix matched standards such as the NIST 610, 612, and 614 glasses (Behr et al., 2010). During this analytical session, NIST 612 was analyzed and a NIST soda-lime vs. silica glass standards bias consistent with values reported by Behr et al. (2011) was confirmed. Reported error values only account for uncertainty in the Ti concentration measurements. Individual Ti spot analyses were averaged to calculate a single temperature estimate for each sample. We used the geothermobarometric calibration of Thomas et al. (2010) to convert Ti concentrations into temperatures.

Important unknowns in this calibration are the pressure and TiO₂ activity (a_{TiO2}). The minimum pressure to reach sufficient temperatures to produce extensive mylonitization of quartzofeldspathic rocks, assuming a reasonable 30°C/km geothermal gradient, is 3 kbar. However, the extensive grain boundary migration recrystallization in quartz (Stipp et al., 2002a;

457 Faleiros et al., 2010) and subgrain rotation recrystallization of feldspar (e.g., Fitz Gerald and Stunitz, 1993 and references therein) recorded by category 4 quartzofeldspathic mylonites 458 require amphibolite-facies conditions (>500°C), suggesting a pressure range of 4–6 kbar is more 459 appropriate for calculations on category 4 samples. This pressure range is reasonable given 460 preliminary thermobarometry from the Harcuvar Mountains, which indicates that Late 461 Cretaceous metamorphism occurred at 6–10 kbar pressures (Walsh et al., 2016), suggesting that 462 the footwall had been deeply buried. We calculate temperatures using a pressure range of 4–6 463 464 kbar (Table 1), with calculated temperatures shifting by ~15°C per kbar under these conditions. 465 The a_{TiO2} can be difficult to estimate, with most studies assuming values of 0.5-1.0, the general range given for most igneous to metapelitic rocks (e.g., Ghent and Stout, 1984). 466 467 However, Gruijic et al. (2011) demonstrated that these values systematically underestimated the temperatures of quartz deformation in the well-constrained Tonale shear zone and instead 468 suggested a_{TiO2} of 0.2–0.3 is more appropriate for quartz-dominated samples. Furthermore, 469 Thomas and Watson (2012) used melt inclusion compositions of the Bishop Tuff (Wallace et al., 470 471 1999) to calculate a_{TiO2} of ~0.23 using the MELTS program and a_{TiO2} of 0.15 using the Rhyolite— MELTS program, suggesting lower values may be more appropriate for felsic samples such as 472 the leucogranite mylonites in our study. The absence of rutile as an oxide mineral in these 473 samples also supports the use of a lower a_{TiO2} value. As such, we used $a_{TiO2} = 0.3$ in these 474 calculations for our granite and quartz vein samples. Assuming a higher Ti activity of 0.7 would 475 lower calculated temperatures by ~60°C. 476 For all analyzed category 3 and 4 samples, average Ti concentrations range from 0.5 – 477 13.5 ppm (mean = 6.7 ppm, Table 1) with a corresponding calculated temperature range of 377– 478 588°C (mean = 512°C) at 6 kbar or 345–546°C (mean =474°C) at 4 kbar (Figure 10). Notably, 7 479 of the 8 samples in these categories yielded calculated temperatures of >500°C within error at 6 480 kbar, with one anomalously low temperature of 377 ± 13 °C (from a quartz vein sample). The 481 range of calculated temperatures for category 3 and 4 samples did not appear to be controlled by 482 483 lithology. Although one quartz vein yielded the lowest calculated temperature, two other quartz veins yielded relatively high temperatures. All of the category 4 granitic samples yielded 484 temperatures >500°C within error at 6 kbar. The single category 2 granite sample yielded an 485 486 average Ti concentration of 5.9 ± 1.9 ppm with a calculated temperature of 520 ± 20 °C at 6 kbar $(482 \pm 10^{\circ}\text{C} \text{ at 4 kbar})$, similar to the category 3 and 4 mylonite samples. 487

Table 1. Ti-In-Quartz Analyses

Sample name	Description	Deformation category	# of analyzed spots	Average Ti (ppm) ± 1σ	Calculated temp. (°C) at 4 kbar*	Calculated temp. (°C) at 6 kbar*
JSH-36	Granitoid	2	7	5.9 ± 1.9	482 ± 10	520 ± 20
HV-48	Quartz vein	3	8	0.5 ± 0.2	345 ± 12	377 ± 13
HV-69	Granitoid	4	9	13.5 ± 2.3	546 ± 12	588 ± 13
15-JB-96	Granitoid	4	7	10.1 ± 1.4	523 ± 10	564 ± 11
LB-12X	Granitoid	4	7	6.6 ± 0.9	491 ± 9	531 ± 10
LB-197	Granitoid	4	7	2.6 ± 2.5	411 ± 56	447 ± 59
HAR38	Granitoid	4	6	4.8 ± 2.3	463 ± 35	501 ± 36
HV-34	Quartz vein	4	7	9.5 ± 0.4	518 ± 3	559 ± 4
EM-2-27	Quartz vein	4	7	5.9 ± 0.2	484 ± 3	522 ± 3
*Calculated tempe	eratures assume a	$a_{\text{TiO2}} = 0.3$				

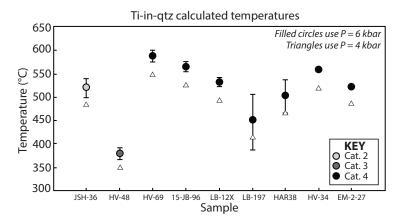


Figure 10. Calculated Ti-in-qtz temperatures for analyzed mylonites organized by deformation category. Filled circles assume pressure = 6 kbar and triangles = 4 kbar (a_{TiO2} = 0.3 in both cases). These results show that a significant majority of the samples yield calculated temperatures >500°C within error at 6 kbar pressure and >475°C at 4 kbar. Where no error bars are visible, the error is smaller than the symbol size.

3.7 40 Ar/39 Ar thermochronology

The microstructural, EBSD, and Ti-in-quartz results all suggest that significant portions of the Buckskin-Rawhide and Harcuvar core complexes footwall underwent mylonitization at relatively high temperatures (amphibolite grade). This raises the question of whether the high temperature mylonitization was part of Miocene extension or a distinctly earlier event. We conducted new ⁴⁰Ar/³⁹Ar analyses on hornblende and biotite (Figure 11) from across the study area to provide new insights into the high temperature thermal history of the footwall and constrain the timing of the high temperature mylonitization. ⁴⁰Ar/³⁹Ar analyses were conducted

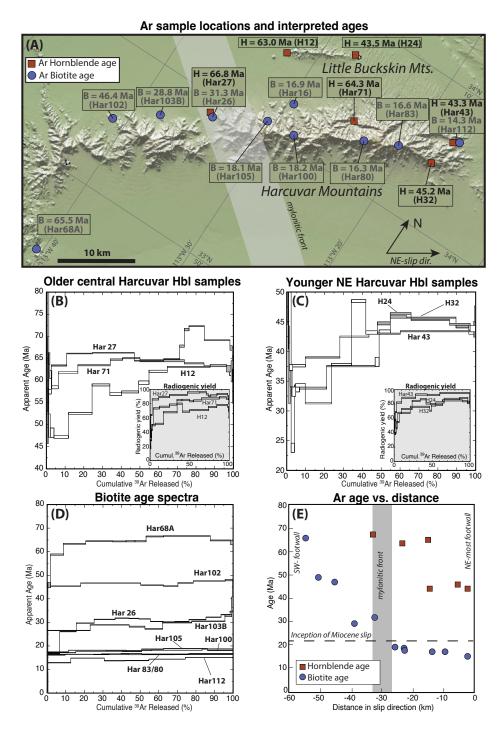


Figure 11. (A) Map of ⁴⁰Ar/³⁹Ar analyses and preferred ages of hornblende and biotite samples from the Harcuvar and Little Buckskin Mountains. (B) ⁴⁰Ar/³⁹Ar age spectra and radiogenic yields for older hornblende samples from the central footwall. Most age spectra show a climbing pattern with a flatter segment at moderate to high temperature steps. See text for additional details. (C) Age spectra for the younger hornblende samples from the northeastern footwall. These spectra also show a climbing pattern but flatten for the last half of the analyzed gas at high temperature steps. (D) ⁴⁰Ar/³⁹Ar age spectra for biotite samples from across the footwall. These spectra are flatter than the hornblende samples and yield readily interpretable ages, although show small variations in step ages. (E) Plot of interpreted hornblend and biotite ⁴⁰Ar/³⁹Ar age versus distance in the slip direction. Ages generally young in the hanging wall slip direction (NE). Hornblende ages are all significantly older than the age of Miocene

detachment faulting (ca. 21 Ma). Biotite ages to the southwest of the mylonitic front are also older than the age of detachment faulting but are younger northeast of the front. The flattening of biotite ages northeast of the front reflects rapid cooling and exhumation during Miocene detachment faulting.

at the ⁴⁰Ar/³⁹Ar geochronology laboratory at UC Santa Barbara. Specific information and more detailed data on the ⁴⁰Ar/³⁹Ar analyses can be found in Supplementary Table S2.

 40 Ar/ 39 Ar analyses conducted on metamorphic hornblende from the central and NE-central footwall yield the oldest interpreted 40 Ar/ 39 Ar hornblende ages (Fig. 11b). Har-27 from the central Harcuvar Mountains yields an age spectrum that is relatively flat for 60% of the spectrum (weighted mean age of 66.7 ± 0.1 Ma but no well-defined isochron) with slightly older apparent ages for the highest temperatures steps. Har-71 from the NE-central Harcuvar Range yields a slightly hump-shaped age spectrum with most step ages ranging from 58.5–65 Ma and a weighted mean age of 64.3 ± 0.1 Ma for the flattest part of the age spectrum (80% of final gas release). Alternatively, the sample yields a four-point isochron age of 60.7 ± 0.4 Ma (MSWD = 0.8) that comprises 57% of the gas release (40 Ar/ 36 Ar_{init} = 339 ± 4). Sample H-12 from the southwest end of the Little Buckskin range yields an age spectrum with a more pronounced age gradient that climbs from ca. 47–63 Ma with a flat segment at the highest temperature steps (comprising 35% of gas release with the highest radiogenic yields) with a weighted mean age of 63.1 ± 0.2 Ma. A four–point isochron yields a similar age of 66.4 ± 0.8 Ma with no well defined isochron.

Results from the northeastern-most footwall yield distinctly younger 40 Ar/ 39 Ar hornblende ages (Fig. 11c). Age spectra from these samples are similar in that they tend to climb from minimum ages of 24–37 Ma up to ages of 43–46 Ma for the first ~50% of gas release at low temperature and then flatten significantly for the second half of gas release at high temperature steps. Radiogenic yields follow a similar pattern for these samples. The flatter portion of the age spectrum for Har-43 yields a weighted mean age of 43.3 ± 0.1 Ma and a three-point isochron that comprises 40% of the gas yields a similar age of 43.4 ± 0.14 Ma (MSWD = 0.8, 40 Ar/ 36 Ar = 300.5 ± 10). The flatter portion of the H-32 age spectrum comprises 51% of the gas release and yields a weighted mean age of 45.2 ± 0.1 Ma. The flatter portion of the age spectra of H-24, from the northeasternmost Little Buckskin Mountains, produces a weighted mean age of 45.3 ± 0.1 Ma for the flat portion. No isochron could be reasonably fit to the H-32 or H-24 sample data. All of these spectra are best interpreted as reflecting varying degrees of argon loss or possibly very slow cooling of older (pre-45 Ma) hornblende.

While most of the \$^{40}\$Ar/\$^{39}\$Ar hornblende data do not yield age spectra with simple plateaus, we interpret the preferred ages reported here as geologically meaningful and reflecting the time of footwall cooling through hornblende \$^{40}\$Ar/\$^{39}\$Ar closure temperature of \$\sim 480-550^{\circ}\$C} (Harrison, 1981; McDougal and Harrison, 1988). Excess argon contamination can be a common issue with \$^{40}\$Ar/\$^{39}\$Ar analyses of metamorphic hornblende, but the standard hallmarks of significant excess argon issues, such as strongly U-shaped spectra or highly irregular step ages (e.g. McDougall and Harrison, 1999) are not evident in the data. The isochron plots also do not suggest significant excess argon issues where good fits were possible. The spatial trend of hornblende ages that young towards the structurally deeper northeastern footwall also support that these ages are geologically meaningful. Given the correlation between the shape of the age spectra and radiogenic yields, the oldest high temperature age steps likely record cooling through hornblende closure temperature during the Late Cretaceous to Paleocene with the younger low temperature steps documenting moderate argon loss during alteration, perhaps during Miocene deformation. Taken together, these results suggest that most of the footwall had cooled through \$\sim 480-550^{\circ}C\$ by ca. 65 Ma and the entire footwall by ca. 43 Ma.

New 40 Ar/ 39 Ar biotite age results also shed light on the thermal history of the Harcuvar footwall. Overall, the 40 Ar/ 39 Ar biotite age spectra are relatively flat and show little complexity, making them readily interpretable (Fig. 11d). The biotite ages show clear spatial trends that consistently young towards the northeast, with a few minor anomalies. Biotite ages range from a maximum of 65.5 Ma in the southwesternmost footwall and young significantly to ca. 31–28 Ma ages in the central footwall near the mylonitic front. Further northeast, there is a distinct break in the age vs. distance slope (Fig. 11e) and 40 Ar/ 39 Ar biotite ages decrease from ca. 18 Ma to a minimum of 14.3 Ma in the northeasternmost footwall. These results indicate that the footwall southwest of the mylonitic front had cooled below $325 \pm 30^{\circ}$ C (biotite closure temperature, McDougall and Harrison, 1999) by the start of Miocene extension at ca. 21 Ma but the footwall northeast of the mylonitic front was above this temperature at that time.

3.8 U-Pb geochronology

Significant portions of the mylonitic zone in the Harcuvar footwall occur in leucogranite. Given the variability of deformation in this unit and its extensive presence within the footwall, we conducted LA–ICP–MS U-Pb zircon geochronology on leucogranite units, leucogranite/pegmatite dikes and sills, and other granite units, in order to constrain the timing of

footwall magmatism and its relationship to deformation. U-Pb geochronology was conducted at the Laser Ablation Split Stream facility at the University of California, Santa Barbara. Analysis spots 20 μm in diameter were picked based on cathodoluminescence images of polished zircon mounts to avoid inherited cores and metamorphic overgrowths. For each sample, we report weighted mean U²³⁸/Pb²⁰⁶ ages of analyses with <5% discordance. Data analysis was conducted using the IsoplotR program (Vermeesch, 2018) and we allowed the program to reject outlier ages for weighted mean age calculations.

Geochronologic results indicate that a major pulse of magmatism occurred in the latest Cretaceous to early Paleocene, with most leucogranite units yielding ages from ca. 74–64 Ma (Figure 12, Table 2). These results are similar to but somewhat younger than the 80–78 Ma U-Pb date of the type locality of the Tank Pass Granite in the western Harcuvar Mountains (DeWitt and Reynolds, 1990). We infer these leucogranitic intrusions to all be part of the Late Cretaceous Tank Pass granite suite and these results document a more protracted phase of magmatism during this time period than previously recognized. The preponderance of latest Cretaceous U-Pb ages in our results still undersells the volumetric significance of the leucogranites, which make up substantial portions of the Harcuvar Mountains footwall as stocks and sills intruded into other footwall units. These Late Cretaceous leucogranites are variably deformed, typically as intensely strained category 4 mylonites. Leucogranite units as young as ca. 64 Ma (Har-81, Table 2) record significant mylonitization in northeastern footwall.

Minor magmatism continued into the Paleocene and early Eocene, primarily in the form of rare pegmatite dikes. Although minor volumetrically, these units provide important constraints on the timing of footwall fabrics. In several localities in the Harcuvar and Little Buckskin mountains, rare pegmatite and leucogranite dikes cut the mylonitic foliation at high angles (Figure 13). These dikes are weakly deformed, with the surrounding mylonitic foliation feathering weakly into their margins. Given these characteristics, we interpret these dikes as synkinematic intrusions that were emplaced towards the end of mylonitization. One such dike (Har-50, strike and dip of 220/88 NW) cuts category 3-4 granitic mylonites at a high angle along the northwest flank of the Harcuvar footwall. Zircon U-Pb results on this dike yielded nearly concordant dates with a weighted mean age of 63.0 ± 0.5 Ma (MSWD = 1.2, n=7, Fig. 13). In the Cunningham Pass region in the central Harcuvar footwall, completely undeformed pegmatitic dikes crosscut foliation within a non-mylonitic biotite-feldspar gneiss. U-Pb dates from one of

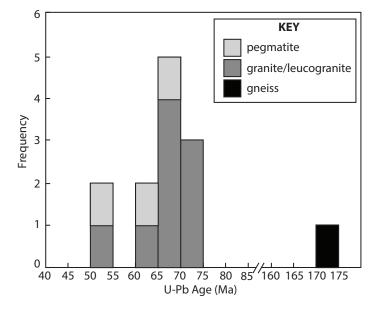


Figure 12. Summary histogram of U-Pb geochronology from the Harcuvar footwall. These analyses focused on the geochronology of the Tank Pass leucogranites, although some other granitic units and pegmatite dikes were also dated. The main pulse of magmatism in the Harcuvar footwall occurred from ca. 74-64 Ma, with minor magmatism (mainly pegmatite dikes) occurring until ca. 53 Ma. The Cretaceous leucogranites are a substantial volumetric unit and make up large portions of the Harcuvar footwall. Note the break in the age scale on the x-axis.

these dikes (Har-55) yield younger concordant ages that typically form zoned rims around inherited Jurassic cores, with the rim ages yielding a weighted mean age of 54.4 ± 0.7 Ma (MSWD = 1.2, n = 10).

4 Discussion

4.1 Temperature conditions of footwall mylonitization

The range of deformation styles evident from the microstructural data strongly suggest that footwall mylonites of the Harcuvar and Buckskin-Rawhide core complexes formed under a wide range of temperature conditions. At strain rates of ~10⁻¹² to 10⁻¹³/s⁻¹, quartz bulging recrystallization dominates in the lower greenschist-facies (~280–400°C; chlorite zone), whereas quartz subgrain rotation recrystallization dominates in the upper greenschist-facies (400–500°C), and grain boundary migration dominates in the amphibolite-facies (>500°C) (Stipp et al., 2002a; Faleiros et al., 2010). At slower strain rates of ~10⁻¹⁴/s⁻¹, the transition from quartz bulging recrystallization to subgrain rotation recrystallization likely occurs in the lower greenschist-facies (~350°C), whereas the transition from subgrain rotation to grain boundary migration

Table 2. U-Pb Geochronologic Results

Sample name	Description	Latitude*	Longitude	# of analyzed spots†	$\mathrm{U}^{238}/\mathrm{Pb}^{206}$ weighted mean age $\pm2\sigma$	MSWD
HAR-68A	unstrained leucogranite	33.7413	-113.6735	16	74.1 ± 0.7	4.0
HAR-72	mylonitic leucogranite	34.0822	-113.4194	သ	70.2 ± 3.9	5.0
HAR-87	mylonitic leucogranite	34.0924	-113.3160	13	70.0 ± 1.2	12
HAR-42	protomylonitic leucogranite sill	34.1085	-113.2807	21	69.9 ± 0.6	4.0
LB-H-11	ultramylonitic leucogranite	34.0878	-113.5360	3	69.8 ± 1.9	1.8
HAR-48	mylonitic leucogranite sill	34.0322	-113.4746	10	68.9 ± 0.7	2.4
HAR-45	mylonitic leucogranite	34.1068	-113.2874	14	68.3 ± 0.5	2.1
HAR-84	mylonitic pegmatite dike	34.0789	-113.2990	21	67.3 ± 0.6	1.9
HAR-81	mylonitic leucogranite	34.0529	-113.3863	22	63.7 ± 0.4	0.8
HAR-50	protomylonitic pegmatite dike	34.0420	-113.4856	6	63.0 ± 0.5	1.2
HAR-55	unstrained pegmatite dike	33.9705	-113.5438	10	54.4 ± 0.7	1.2
HAR-54	fine grain granite sill	33.9705	-113.5436	7	54.2 ± 0.8	0.9

^{*}Latitude and Longitude locations are given in the NAD27 datum. † Spot analyses that yielded ages with >5% discordance are not reported here.

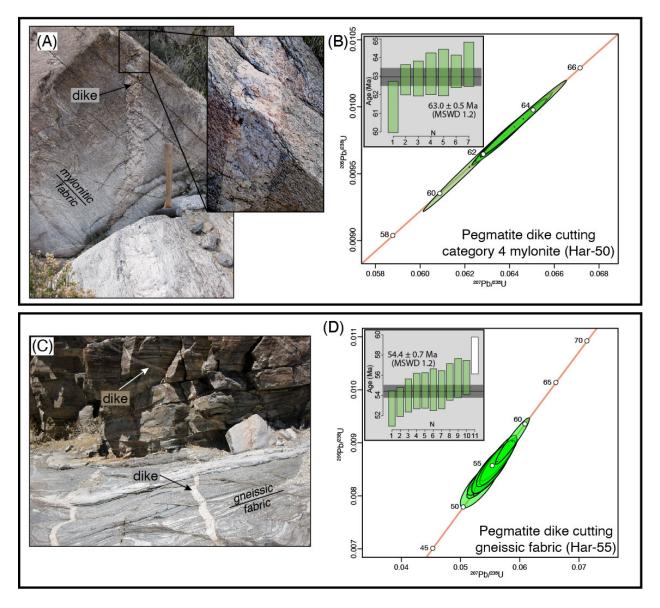


Figure 13. Images of cross-cutting pegmatite dikes and related U-Pb zircon geochronology. (A) Pegmatite dike (Har50) cross-cutting highly deformed category 4 mylonites at a high angle. Closeup view shows the straight but slightly feathered dike margins and a very weak fabric in the dike. (B) Concordia plot and weighted mean U-Pb ages $(63.0 \pm 0.5 \text{ Ma})$ of Har50 illustrating the concordant nature of the ages. (C) Pegmatite dikes (Har54) cutting gneissic fabrics in the central footwall. (D) Concordia plot and weighted mean U-Pb ages $(54.2 \pm 0.8 \text{ Ma})$ of the Har54 sample.

recrystallization likely occurs in the middle greenschist facies (~400°C) (Stipp et al., 2002b; Law, 2014).

The correlation between feldspar deformation mechanisms and temperature is complicated by several processes that may occur at a range of conditions, including chemically-driven alteration and breakdown, fracturing, diffusion creep, and solution-precipitation (e.g., Tullis and Yund, 1991; Fitz Gerald and Stunitz, 1993; Fukuda and Okudaira, 2013). Dislocation creep and subgrain rotation recrystallization typically become important in the amphibolite facies (Simpson, 1985; Gapais, 1989; Pryer, 1993; Fitz Gerald and Stunitz, 1993 and references therein; Kruse et al., 2001).

In the quartzofeldspathic category 4 mylonites in this study, the dominance of quartz grain boundary migration recrystallization and feldspar subgrain rotation recrystallization strongly suggest that deformation occurred in the amphibolite facies, likely >500°C. This temperature is consistent with the quartz CPO patterns, where the strong Y-axis strain maxima evident in most samples typically correlates with dominance of prism <a>slip and deformation temperatures >500°C (Law, 2014). The lack of evidence for prism <c>slip suggests that deformation temperatures were largely below ~600°C (Lister and Dornseipen, 1982; Mainprice et al., 1986; Okudaira et al., 1995; Stipp et al., 2002a). Although deformation mechanisms may be influenced by factors other than temperature, including water content and strain rate, the pervasive subgrain rotation recrystallization in feldspar and fast grain boundary migration in quartz observed in many of the category 3 and 4 samples likely requires temperatures >500° C, regardless of other variables. Moreover, estimates of strain rates during mylonitization along this belt of core complexes are relatively high (~10⁻¹¹ to 10⁻¹⁴ s⁻¹; Behr and Platt, 2011; Campbell-Stone and John, 2002), so it is unlikely that low strain rates under greenschist-facies conditions account for development of these microstructures.

The Ti-in-quartz results provide independent support that deformation of category 3 and 4 mylonites occurred in the amphibolite facies, with the vast majority of samples in these categories yielding calculated temperatures >500°C within the error of the analyses, assuming 6 kbar pressure (Fig. 10). At 4 kbar, 7 of the 9 samples still yield calculated temperatures above 475°C within error. An important question is whether the Ti concentrations were fully reset during mylonitization. Nachlas et al. (2014) demonstrated that Ti concentrations in quartz were

re-equilibrated during experimental dynamic recrystallization. In addition, Grujic et al. (2011) and Behr and Platt (2012) have applied these methods to well-constrained shear zones, demonstrating the utility of this approach in constraining mylonitization temperatures. A few of our results are somewhat more complex. For example, two of the category 3–4 samples yield calculated temperatures <500 °C and one category 2 sample yields a temperature above 500 °C (Fig. 10). These results are likely the product of uneven or partial re-equilibration during lower-temperature deformation. Grujic et al. (2011) noted that Ti diffusion at the greenschist facies may be too slow to fully reset the Ti system in quartz, and thus these temperatures may reflect significant Ti inheritance from the earlier high temperature mylonitization. This may especially be an issue when deformation is not accompanied by significant dynamic recrystallization (Nachlas et al., 2014). Aside from these minor complexities, the Ti-in-quartz results, when combined with the petrographic and EBSD data, strongly suggest that substantial portions of the mylonite zone were deformed under amphibolite-facies conditions (>500°C), especially in the Harcuvar, Little Buckskin, and southern Buckskin mountains (Fig. 8).

Our results also demonstrate that some mylonitization occurred at lower temperatures in the greenschist facies. The presence of quartz bulging recrystallization, the dominance of feldspar fracturing/cataclasis, significant chloritization and distinct CPO patterns of category 1 mylonites strongly suggest deformation in the middle to lower greenschist facies (e.g. Passchier and Trouw, 2005). Category 2 and 3 mylonites likely represent deformation in upper greenschist to lower amphibolite-facies conditions. In many areas, these samples may record an incomplete upper greenschist-facies overprint of amphibolite-facies (category 4) mylonitic fabrics.

Greenschist-facies mylonites appear to be more widespread in the Buckskin-Rawhide footwall and within the metasedimentary carapace located <250 m below the detachment fault across the entire footwall but are rare within the crystalline core of the Harcuvar footwall (Figs. 8 and 9).

Taken together, our results suggest that the mylonitic shear zone formed during both amphibolite and greenschist-facies conditions, and that there is a strong spatial control on the location of these distinct mylonite categories.

4.2 Timing of amphibolite vs. greenschist-facies mylonites

The presence of both greenschist and amphibolite-facies mylonites within the footwall raises important questions about the timing of footwall mylonitization and whether all of the

deformation was coeval with Miocene core complex development. Given that the ca. 22–21 Ma Swansea Plutonic Suite in the Buckskin-Rawhide core complex was deformed at middle to upper greenschist-facies conditions (Singleton and Mosher, 2012), it is clear that significant mylonitization occurred in parts of the footwall in concert with the Miocene initiation of detachment faulting. The highest footwall deformation temperatures during Miocene extension were likely where Swansea Plutonic Suite magmatism was concentrated in the central part of the Buckskin-Rawhide core complex (Fig. 2). Accordingly, we interpret the prevalence of (category 2) upper greenschist-facies fabrics in the Swansea Plutonic Suite in the Buckskin-Rawhide footwall (Fig. 8) to record peak mylonitization conditions during Miocene core complex development.

Further away from the Swansea intrusions, the footwall was likely cooler in the Miocene, although our new ⁴⁰Ar/³⁹Ar biotite results, combined with those of Scott et al. (1998), demonstrate that the mylonitic footwall was hotter than biotite Ar closure temperature (325 ± 30°C) at the inception of Miocene extension. As a result, it is likely that all greenschist-facies mylonites across the study area are Miocene in age. The dominance of category 1 (middle- to lower greenschist-facies) fabrics in metasedimentary mylonites (Fig. 8) suggests that these relatively weak rocks preferentially absorbed Miocene strain directly below the detachment system as the footwall was sheared through the brittle-plastic transition. Although metasedimentary mylonites only form a thin footwall carapace (<1 to 100 m-thick) and are volumetrically minor, they were likely present along 25–35% of the detachment system in the Buckskin-Rawhide core complex (Singleton et al., 2018), and thus played an important role in absorbing Miocene detachment-related strain. Category 1 fabrics that were not developed in metasedimentary mylonites are largely found near the southwestern end of the mylonitic footwall and reflect shallower Miocene structural levels near the mylonitic front.

It is less clear whether the amphibolite-facies mylonites identified in this study also formed during Miocene extension or during an earlier and distinct tectonic event. Given that the geometries (Fig. 9) and top-NE kinematics (Fig. 5) of the two types of mylonites are indistinguishable, the simplest interpretation would be that both fabrics formed as part of the same Miocene extensional shear zone that evolved from amphibolite to greenschist-facies temperatures. However, this simple model is not supported by our results. First, the \sim 65–43 Ma 40 Ar/ 39 Ar hornblende ages from the Harcuvar footwall suggest that all of the mylonitic footwall

manuscript submitted to Tectonics

had cooled below the amphibolite facies well before the Miocene (assuming a hornblende closure temperature of $525 \pm 40^{\circ}$ C; McDougall and Harrison, 1999). Although not all of the age spectra yield simple plateaus, the results are consistent with cooling through the closure temperature in the Paleocene-Eocene followed by variable Ar loss due to minor retrograde (Miocene?) alteration. The preservation of a hornblende age gradient in the slip direction (similar to the biotite data), with younger 40 Ar/ 39 Ar hornblende ages in the northeasternmost (structurally deepest) footwall (Fig. 11) also suggest that these data are geologically meaningful.

Previous work in the Buckskin-Rawhide footwall yielded similar 70–45 Ma ⁴⁰Ar/³⁹Ar hornblende ages (Richard et al., 1990; Scott, 1995; Fryxell in Bryant, 1995; Scott et al., 1998). Although Richard et al. (1990) reported a few ca. 29–26 Ma ⁴⁰Ar/³⁹Ar hornblende ages, these samples were located near the Early Miocene Swansea Plutonic Suite (Bryant, 1995) and likely experienced substantial argon loss during reheating. Thus, all available thermochronology suggests that, outside of local zones of Miocene reheating in the Buckskin-Rawhide footwall, the footwall had cooled below amphibolite-facies conditions no later than ca. 43 Ma and largely before ca. 65–60 Ma. These results strongly suggest that amphibolite-facies mylonites predate Miocene deformation and instead formed during a discrete event that predated the ca. 65–60 Ma ⁴⁰Ar/³⁹Ar hornblende cooling ages.

Our new U-Pb geochronologic results further refine the timing of this earlier phase of mylonitic deformation. The development of amphibolite-facies mylonitic fabrics in the Late Cretaceous Tank Pass leucogranite indicates that at least some of this deformation postdated the 74–64 Ma emplacement of this suite. The variably deformed nature of the Tank Pass leucogranite also suggests that this unit was intruded syn-tectonically and that various phases captured different degrees of deformation as it intruded the footwall. Finally, the weakly deformed ca. 63 Ma pegmatitic dike that cuts amphibolite-facies mylonites in the central Harcuvar footwall (Fig. 13) provides direct evidence that this phase of mylonitization was waning by the early Paleogene in that part of the footwall. The fact that some leucogranite units as young as ca. 64 Ma in the northeasternmost footwall record amphibolite-facies mylonitization suggests that some strain probably continued after ca. 64 Ma in the structurally deepest part of the footwall, likely aided by heating from intrusion of the leucogranites themselves. Taken together, the microstructural, thermochronologic and geochronologic results provide strong

evidence that amphibolite-facies mylonitization occurred during a discrete event in the latest Cretaceous to early Paleogene.

765766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

763

764

4.3 Evidence for Late Cretaceous extension

The presence of pre-Miocene mylonitic fabrics within the footwalls of these core complexes raises important questions about the kinematics and tectonic significance of this older phase of mylonitization. It is perhaps not surprising that mylonitic deformation occurred in midcrustal rocks in this region during the Late Cretaceous. During this time, the entire western margin of North America was experiencing subduction, and the Maria fold-and-thrust belt southwest of the study area experienced significant Cretaceous shortening (e.g. Hamilton 1982, 1987; Laubach et al. 1989; Spencer and Reynolds, 1990; Boettcher et al., 2002; Cawood et al., 2022). Within the study area, Cretaceous thrust faulting has been described in the Granite Wash Mountains (e.g. Laubach et al., 1989) and in the adjacent Harquahala Mountains (e.g., Richard, 1988). However, thrusting in these areas is interpreted as top-SW directed, whereas the kinematics of the amphibolite-facies mylonites in the Harcuvars are top-NE, which is the same as Miocene extension. In addition, shortening in the Maria fold-and-thrust belt was largely complete by ca. 80 Ma (e.g. Martin et al., 1982; Isachsen et al., 1999; Flansburg et al., 2021), whereas we interpret top-NE shearing to have continued until ca. 63 Ma. This suggests that amphibolite-facies mylonites record an earlier episode of top-NE extensional deformation during the latest Cretaceous. Other workers have also reported evidence for Late Cretaceous top-NE extension in the Maria fold-and-thrust belt and adjacent areas, including the Dome Rock Mountains (Boettcher and Mosher, 1998), Little Maria Mountains (Ballard and Ballard, 1990), Iron Mountains (Wells et al., 2002), and Granite Mountains (Salem, 2009), suggesting a significant and regional tectonic event. Taken together, these data suggest that amphibolite-facies mylonites in the Harcuvar and Rawhide-Buckskin core complexes accommodated top-NE extension during the latest Cretaceous.

Fundamental to this interpretation is the assumption that the footwall had a similar structural orientation during the latest Cretaceous as it did during top-NE directed Miocene extension. Thermochronologic data confirms that the exposed footwall dipped northeast in the Late Cretaceous. The 65.5 Ma 40 Ar/ 39 Ar biotite age from the southwestern Harcuvar footwall (Har68A, Fig. 11) suggests this part of the footwall cooled below $325 \pm 30^{\circ}$ C (biotite closure

temperature, McDougall and Harrison, 1999) by the latest Cretaceous. A similar 64.5 ± 5 Ma zircon (U-Th)/He age from a Proterozoic granitoid in the southwesternmost footwall of the Buckskin detachment fault (Singleton et al., 2014) suggests that this part of footwall had cooled below ~180–200°C by that time. In contrast, the central and NE-central footwall must have been much hotter in the latest Cretaceous, as ca. 67–63 Ma ⁴⁰Ar/³⁹Ar hornblende ages from this area (Fig. 11) indicate cooling through hornblende closure temperatures of 525 ± 40°C at that time. Finally, the northeasternmost footwall must have been even hotter than ~525°C in the latest Cretaceous, given the ca. 43–45 Ma ⁴⁰Ar/³⁹Ar hornblende ages in this area. Taken together, these data strongly indicate that the northeastern footwall was >200–350°C hotter and therefore structurally deeper than the southwest footwall during the latest Cretaceous. As a result, we conclude that latest Cretaceous top-NE-directed mylonitization in the study area records normal-sense shear and an episode of extensional deformation with the same kinematics as that of Miocene extension.

The recognition of two discrete extensional fabrics raises questions about the prevalence of latest Cretaceous versus Miocene mylonitization. In the Harcuvar footwall, only the greenschist-facies mylonites can plausibly have formed in the Miocene. While upper greenschist-facies mylonities locally overprint structurally deeper portions of the Harcuvar footwall (producing category 2 and 3 mylonites), pervasive greenschist-facies mylonitization is limited a relatively narrow zone of mylonites ≤250 m below the detachment fault (Figs. 8 and 9). In the Buckskin-Rawhide footwall, significant Miocene mylonitation is evident from deformation of the Miocene Swansea Plutonic Suite (Singleton et al., 2012) and widespread upper greenschist-facies fabrics (Fig. 8), which almost certainly reflects hotter footwall temperatures associated with plutonism. Amphibolite-facies fabrics are locally preserved in the southern Buckskin-Rawhide footwall, where Late Cretaceous leucogranite is common and Swansea Plutonic Suite intrusions are rare. Thus, it is likely that the Buckskin-Rawhide footwall also experienced significant Late Cretaceous mylonitization, although it is more difficult to evaluate the extent of this phase of deformation given significant Miocene overprinting.

Significant Late Cretaceous extension should have produced thermal, metamorphic, and other geologic signals that could provide additional evidence for these interpretations. Previous ⁴⁰Ar/³⁹Ar thermochronology from the Colorado River Extensional Corridor indicate widespread cooling in the Late Cretaceous to early Cenozoic (e.g., Knapp and Heizler, 1990; Foster et al.,

manuscript submitted to *Tectonics*

825	1990; Richard et al., 1990). While this cooling has been interpreted to record erosion (e.g.,
826	Knapp and Heizler, 1990) or refrigeration from flat slab subduction (e.g., Dumitru et al., 1991),
827	we suggest it may instead record regional extensional exhumation during the latest Cretaceous to
828	Paleogene. In addition, there is tantalizing thermobarometric evidence for significant tectonic
829	exhumation during this time period. For example, Anderson et al. (1988) interpreted that Late
830	Cretaceous granitoids in the lower plate of the Whipple Mountains core complex were emplaced
831	at ~30 km and were exhumed to <20 km depths prior to Oligo-Miocene detachment faulting.
832	This exhumation may record Laramide extensional unroofing. Similarly, Walsh et al. (2016)
833	reported preliminary thermobarometry and monazite geochronology on rare pelitic garnet \pm
834	kyanite schists from the Harcuvar footwall that suggests Late Cretaceous (76-70 Ma) garnet
835	growth during decompression from pressures as high at ~10 kbar to as low as ~4 kbar during that
836	time. These data suggest a major exhumational event of ~4-6 kbar occurred during the Late
837	Cretaceous. Finally, in the nearby northern Plomosa Mountains, the Late Cretaceous (~73 Ma)
838	Orocopia Schist was underplated as a subduction complex and subsequently exhumed to $\sim 3-5$
839	km depths prior to ~21 Ma (Strickland et al. 2018; Spencer et al., 2018), requiring major
840	exhumation before the inception of Miocene detachment faulting. Paleogene exhumation of the
841	Orocopia Schist in southern Arizona has been associated with extension (Jacobson et al., 2002,
842	2007; Oyarzabal et al., 1997).
843	Although there is currently a lack of evidence for normal faulting and extensional basin
844	formation in this region during the latest Cretaceous to Paleogene, there has been substantial
845	Miocene denudation, which may have removed much of the surficial geologic evidence of this
846	early phase of extension. It may also be difficult to distinguish older normal faults from Miocene
847	structures, especially given the possibility of reactivation. Alternatively, Hodges and Walker
848	(1992) presented a kinematic model whereby Late Cretaceous mid-crustal extension in the
849	Western U.S. Cordillera was decoupled from upper-crustal deformation. Regardless, existing
850	thermochronology and thermobarometry provide additional support for a significant
851	exhumational event in the latest Cretaceous.
852	In summary, we conclude that both the footwalls of the Harcuvar and Buckskin-Rawhide
853	core complexes experienced two discrete phases of top-NE extensional mylonitization: an earlier
854	Late Cretaceous to early Paleogene phase followed by overprinting during Miocene extension.
855	The earlier extensional fabrics are well preserved in the Harcuvar footwall where Miocene

fabrics are limited, whereas the earlier fabrics are more strongly overprinted in the Buckskin-Rawhide core complex where Miocene magmatism locally reheated the footwall, allowing for more pervasive Miocene mylonitization.

4.4 Implications for core complex formation

Cordilleran metamorphic core complexes have long been interpreted as unique and enigmatic features of crustal extension owing in large part to their low-angle fault geometry, juxtaposition of brittle and ductile features, and the large magnitude and high rate of extension inferred to be integral to their formation (see reviews by Lister and Davis, 1989; Wernicke, 1995; Whitney et al., 2013; Platt et al., 2015). Central to most core complex models is the interpretation that they represent the product of a single phase of Cenozoic extension, where footwall mylonites represent the mid-crustal roots of coeval detachment fault systems (e.g., Wernicke, 1981; Davis et al., 1986; Lister and Davis, 1989; Spencer and Reynolds, 1991).

This study demonstrates that the tectonic evolution of at least some core complexes may be more protracted than these prior models recognized. Our results suggest that the Harcuvar and Rawhide-Buckskin core complexes experienced two discrete phases of extension and footwall mylonitization separated by more than 40 Myr, indicating a protracted and polyphase tectonic evolution. If this conclusion is broadly correct, it raises fundamental questions about the nature of core complexes and the processes by which they form.

One controversial aspect of core complexes has been the low-angle geometry of the mylonitic fabrics and bounding detachment fault. The central issue is whether these normal faults initiated and slipped at their present shallow dips (e.g., Wernicke, 1981, 1985; Scott and Lister, 1992) or formed at steep initial dips and were rotated to shallower dips through time either by rotation on other normal faults (e.g., Proffett, 1977; Gans et al., 1985; Wong and Gans, 2008) or by isostatic rebound (rolling hinge) processes (Buck, 1988; Wernicke and Axen, 1988). The initiation of low-angle normal faults is at odds with classic rock mechanics (Anderson, 1951), and slip on low-angle normal faults appears to be rare in actively extending regions (e.g., Jackson, 1987; Jackson and White, 1989; *cf.* Abers, 1991; Boncio et al., 2000), so this question is fundamental to our understanding of how faults form and slip.

The recognition of a polyphase extensional history at the Harcuvar and Buckskin-Rawhide core complexes adds a new dimension to this long-standing debate. If extension in these core complexes began in the Late Cretaceous, then subsequent Miocene extensional structures were superimposed on earlier crustal fabrics, which may have important mechanical consequences. Our results indicate that the Late Cretaceous shear zone was reactivated during Miocene extension and this pre-existing weakness may have allowed the crust to fail in non-ideal orientations, including at shallower angles than would be predicted for intact crust. Such a reactivation scenario also provides a compelling explanation for the identical geometries of Late Cretaceous and Miocene footwall fabrics in that Miocene structures inherited their orientation from pre-existing weaknesses established by the Late Cretaceous shear zone. In addition, pre-existing shear zones in the middle crust may rotate stress fields to non-Andersonian orientations and allow extensional failure at lower dips (e.g., Wu and Lavier, 2016). Recognition of a polyphase extensional history at these core complexes also raises questions about other fundamental aspects of core complex development including understanding the contribution of earlier phases of extension to the total magnitude and rate of detachment fault slip.

4.5 Regional tectonic implications

The recognition of substantial Late Cretaceous extension within this part of the North American Cordillera raises significant questions about the tectonic evolution of the region. One important question is what drove syn-orogenic extension during the latest Cretaceous. Many workers have evoked gravitational collapse of the Cretaceous Sevier orogen either during or immediately following crustal thickening (e.g., Hodges and Walker, 1992), and our results are consistent with such a model. The spatial and temporal association of voluminous Late Cretaceous Tank Pass leucogranite with coeval extensional fabrics strongly suggests that the leucogranite played an important role in this tectonic event. The leucogranite is typically peraluminous with two micas ± garnet, suggesting it was derived from significant crustal melting (Miller and Bradfish, 1980; Lee et al., 1981; Farmer and DePaolo, 1983; Haxel et al., 1984; Miller and Barton, 1990; Patiño-Douce et al., 1990; Wright and Wooden, 1991, see review by Chapman et al., 2021). This is consistent with a cycle of crustal thickening producing localized crustal melting from heating and dehydration-derived fluids, which triggered crustal collapse of overthickened crust (Figure 14).

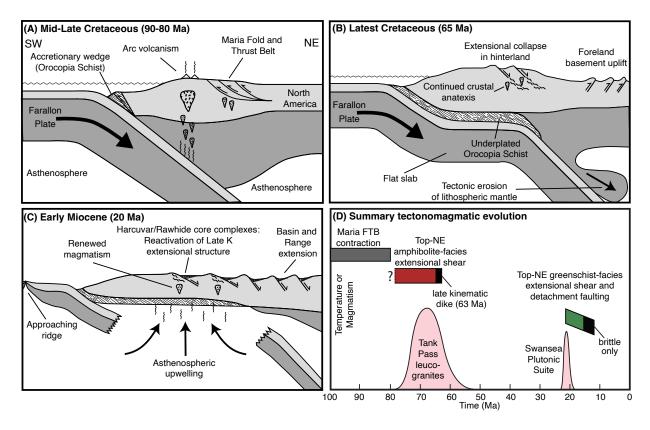


Figure 14. Schematic tectonic evolution of the Buckskin-Rawhide and Harcuvar core complexes in the context of the North American Cordillera. (A) South-vergent crustal shortening and thickening in the Maria fold and thrust belt was occurring during the mid-Late Cretaceous (ca. 90-80) as a result of the subduction of the Farallon plate beneath North America. Thickening generated significant crustal melting. The Pelona-Orocopia schist was forming within the accretionary wedge at that time. (B) During the latest Cretaceous (ca. 65 Ma) the overthickened crust was collapsing due to reheating, resulting in top-NE directed extension. Flat slab subduction of the Farallon underplated

collapsing due to reheating, resulting in top-NE directed extension. Flat slab subduction of the Farallon underplated the Pelona-Orocopia schist beneath the study area, possibly with the tectonic erosion of some of the North American lithospheric mantle. (C) In the Early Miocene (ca. 21-20 Ma), extension and magmatism resumed, perhaps due to the emergence of a slab window or gap and the resultant influx of heat. In the Rawhide-Buckskin and Harcuvar core

complexes, Miocene extension reactivated existing Late Cretaceous extensional structures whereas elsewhere, typical "Basin and Range" extension occurred. (D) Summary chart of the proposed tectonomagmatic evolution of

the region.

An important element of this model is the assumption that substantial crustal thickening occurred within the Maria fold-and-thrust belt during mid- to Late Cretaceous contraction. While there are a number of mapped thrust faults and other contractional features documented in the region, the magnitude of crustal shortening and thickening in the region during Sevier/Laramide time remains poorly known. However, Chapman et al. (2020) applied geochemical proxies to suggest that crustal thickness in southern United States Cordillera during the Laramide orogeny (ca. 80–40 Ma) was 57 ± 12 km. In addition, preliminary thermobarometry and monazite geochronology on rare pelitic garnet \pm kyanite schists from the Harcuvar Mountains suggests

that Late Cretaceous metamorphism occurred at 6–10 kbar pressures at ca. 76–70 Ma (Walsh et al., 2016). Although Spencer et al. (2018) argued that any crustal welt in the region may have been tectonically removed from the base of the crust as a result of Laramide emplacement of the Orocopia Schist (Jacobson et al., 2017; Seymour et al., 2018; Strickland et al., 2018) during low-angle subduction, it is unclear that schist emplacement requires the removal of a Cretaceous crustal welt. Given the strong temporal overlap between Tank Pass leucogranite emplacement and Late Cretaceous extension, combined with the recent evidence for substantial early Laramide-age crustal thickening in the region, our preferred tectonic model is that crustal thickening drove heating and local anatexis which triggered collapse of overthickened crust.

Other tectonic models are also viable and may have acted alone or in concert with an orogenic collapse model. For example, tectonic underplating of the Orocopia Schist during the Laramide may have triggered extension by emplacing rheologically weak schist in the middle to lower crust and/or by hydration weakening due to dehydration reactions (Strickland et al., 2018). Alternatively, synorogenic extension may have been triggered by mantle delamination via density-driven foundering, as has been suggested for the North American Cordillera as a whole (Wells and Hoisch, 2008). Mantle delamination would result in elevated geothermal gradients, partial melting, and rock uplift, which might drive extension. Finally, regional Late Cretaceous extension may have been driven by the subduction of thickened oceanic crust (conjugate of the Shatsky Rise) on the Farallon slab and its passage through this region (Saleeby, 2003; Chapman et al., 2010). This proposed aseismic ridge may have driven low-angle subduction during the Laramide orogeny in the Late Cretaceous to early Paleogene, and the trailing edge of the rise is modeled to have passed through the region at ca. 68 Ma (e.g., Liu et al., 2010).

Looking more broadly at the North American Cordillera as a whole, a number of studies have suggested that the Cordillera experienced significant extensional exhumation during the Late Cretaceous to early Cenozoic (e.g. Hodges and Walker, 1992; Applegate and Hodges, 1995; Wells and Hoisch, 2008), but such studies have often relied on thermobarometric data, and the structures that may have accomplished such exhumation are commonly unclear. This study is significant in that it identifies a structure that accommodated significant extension in the middle crust during the latest Cretaceous. However, this does not resolve the question of why such structures remain poorly identified throughout the Cordillera. We speculate that many other Cordilleran core complexes experienced a similar polyphase tectonic evolution with an older

period of extension, but tectonic inheritance and middle Cenozoic overprinting effects may make it difficult to recognize these older footwall fabrics. We anticipate that future studies applying new analytical tools will be able to test this hypothesis.

5 Conclusions

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

The mylonitic shear zones of the Harcuvar and Rawhide-Buckskin core complexes are the result of two distinct phases of crustal extension. Amphibolite-facies mylonitization had top-NE kinematics and occurred during the Late Cretaceous to early Paleogene. This deformation was spatially associated with voluminous ca. 74–64 Ma footwall leucogranites, which were emplaced syn-kinematically. A late kinematic ca. 63 Ma dike indicates this phase of mylonitization had largely waned by the early Paleogene. The leucogranites were likely the result of crustal melting due to orogenic thickening, implying a model whereby crustal heating from thickening and magmatism triggered gravitational collapse of overthickened crust, although the tectonic underplating of Orocopia Schist and/or mantle delamination may have also played a role in triggering orogenic collapse. Miocene footwall mylonitization occurred in the greenschist facies and is largely restricted to areas within and near the Early Miocene Swansea Plutonic Suite and narrow (<250 m-thick) zones immediately below the detachment fault. Miocene extension was superimposed on the latest Cretaceous to early Paleocene shear zone and had similar kinematics, suggesting that the location and geometry of Miocene extension was strongly influenced by tectonic inheritance. The tectonic development of these core complexes was more protracted and polyphase than previously recognized, suggesting that models of core complex development may need to be reevaluated.

990

991

992

993

994

995

996

Acknowledgments

This work was supported by the National Science Foundation grant number EAR-1321407 and by the Malcolm '54 and Sylvia Boyce Fund for Geology Research at Colgate University. We thank Colgate undergraduates Jacky Baughman and Austin Sun for assistance with some of the EBSD measurements and Sam Jackson for work on some of the U-Pb geochronology. Andrew Kylander-Clark provided assistance with the U-Pb geochronology at the

997	Laser Ablation Split Stream facility at the University of California, Santa Barbara and Rick
998	Hervig at Arizona State University provided assistance with the Ti-in-quartz analyses.
999	
1000	Open Research
1001	Additional figures and data on sample characterization, petrographic analyses, U-Pb and
1002	⁴⁰ Ar/ ³⁹ Ar geochronology are provided in the supplementary materials. Topographic maps were
1003	generated using the GeoMapApp available at https://www.geomapapp.org and using data from
1004	the U.S. Geological Survey's National Elevation Dataset available from
1005	https://apps.nationalmap.gov/downloader/. Stereonet plots were generated using Stereonet
1006	10.1.6, which is available at https://www.rickallmendinger.net/ . U-Pb geochronology figures
1007	were generated using IsoplotR (Vermeesch, 2018) which is available at
1008	http://www.isoplotr.com/isoplotr/home/index.html. Analysis of the crystallographic preferred
1009	orientation data was conducted using the MTEX toolbox (Bachmann et al., 2010), which is
1010	available at https://mtex-toolbox.github.io .
1011	
1012	References
1013	Abers, G. A. (1991). Possible seismogenic shallow-dipping normal faults in the Woodlark-
1014	D'Entrecasteaux extensional province, Papua New Guinea. Geology, 19(12), 1205-1208.
1015	Anderson, E.M. (1951). The dynamics of faulting and dyke formation, with applications to
1016	Britain, ed. 2., 183 pp., Oliver and Boyd, Edinburgh.
1017	Anderson, J.L. (1988). Core complexes of the Mojave-Sonoran Desert: Conditions of plutonism,
1018	mylonitization, and decompression. In Ernst, W.G. (Ed.), Metamorphism and crustal
1019	evolution of the western United States, Rubey (Vol. 7, pp. 503-525).
1020	Applegate, J. D. R., & Hodges, K. V. (1995). Mesozoic and Cenozoic extension recorded by
1021	metamorphic rocks in the Funeral Mountains, California. Geological Society of America
1022	Bulletin, 107(9), 1063-1076.

1023	Axen, G.J. (1992). Pore pressure, stress increase, and fault weakening in low-angle normal
1024	faulting. Journal of Geophysical Research, v. 97, p. 8979-8991.
1025	Bachmann, F., Hielscher, R., and Schaeben, H. (2010). Texture Analysis with MTEX - Free and
1026	Open Source Software Toolbox. Solid State Phenomena, v. 160, pp. 63-68.
1027	Ballard, S.N., and Ballard, P.D. (1990). Geology of the Little Maria Mountains, western end of
1028	the Maria tectonic belt, southeastern Mojave, California. Geological Society of America
1029	Abstracts with Programs, v. 22, p. A140.
1030	Behr, W.M., Platt, J.P. (2011). A naturally constrained stress profile through the middle crust in
1031	an extensional terrane. Earth and Planetary Science Letters, v. 303, p. 181-192.
1032	Behr, W. M., Thomas, J. B., & Hervig, R. L. (2011). Calibrating Ti concentrations in quartz for
1033	SIMS determinations using NIST silicate glasses and application to the TitaniQ
1034	geothermobarometer. American Mineralogist, 96(7), 1100-1106.
1035	Bestmann, M., & Pennacchioni, G. (2015). Ti distribution in quartz across a heterogeneous shear
1036	zone within a granodiorite: The effect of deformation mechanism and strain on Ti
1037	resetting. <i>Lithos</i> , 227, 37-56.
1038	Beyene, M. A. (2011). Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral
1039	Mountains core complex, Death Valley, Southeastern California (Doctoral dissertation).
1040	Retrived from Digital Scholarship@UNLV
1041	(https://digitalscholarship.unlv.edu/thesesdissertations/1386/). University of Nevada, Las
1042	Vegas.
1043	Block, L., and Royden, L.H. (1990). Core complex geometries and regional scale flow in the
1044	lower crust. Tectonics, v. 9, pp. 557-567.
1045	Boettcher, S.S., Mosher, S., and Tosdal, R.M. (2002). Structural and tectonic evolution of
1046	Mesozoic basement-involved fold nappes and thrust faults in the Dome Rock Mountains,
1047	Arizona. In Barth, A. (Ed.). Contributions to Crustal Evolution of the Southwestern United
1048	States, Geological Society of America Special Paper (Vol. 365, pp. 73-97).
1049	Boettcher, S.S., Mosher, S. (1998). Mid- to Late Cretaceous ductile deformation and thermal
1050	evolution of the crust in the northern Dome Rock Mountains, Arizona. Journal of
1051	Structural Geology, v. 20, pp. 745-764.
1052	Boncio, P., Brozzetti, F., & Lavecchia, G. (2000). Architecture and seismotectonics of a regional

low-angle normal fault zone in central Italy. Tectonics, 19(6), 1038-1055.

1054	Bryant, B. (1995). Geologic map, cross sections, isotopic dates, and mineral deposits of the
1055	Alamo Lake 30' x 60' Quadrangle, west-central Arizona. U.S. Geological Survey
1056	Miscellaneous Investigations Series, Map 1-2489, scale 1:100,000.
1057	Bryant, B., and Wooden, J.L. (2008). Geology of the northern part of the Harcuvar complex,
1058	west-central Arizona. U.S. Geological Survey Professional Paper 1752, 52 p.
1059	Buck, W. R. (1988). Flexural rotation of normal faults. Tectonics, 7(5), 959-973.
1060	Buck, W.R. (1991). Modes of continental lithospheric extension. Journal of Geophysical
1061	Research: Solid Earth, 96 (B12), pp.20161-20178.
1062	Campbell-Stone, E., & John, B. E. (2002). Temporal changes in deformation mode: From failure
1063	to flow in the Colorado River extensional corridor. International Geology Review, 44(6),
1064	512-527.
1065	Cawood, T.K., Moser, A., Borsook, A. and Rooney, A.D. (2022). New constraints on the timing
1066	and character of the Laramide Orogeny and associated gold mineralization in SE
1067	California, USA. Geological Society of America Bulletin. Advanced online publication.
1068	doi:10.1130/B36251.1
1069	Carter, T.J., Kohn, B.P., Foster, D.A., and Gleadow, A.J.W. (2004). How the Harcuvar
1070	Mountains metamorphic core complex became cool: Evidence from apatite (U-Th)/He
1071	thermochronometry. Geology, v. 32, pp. 985-988.
1072	Chapman, J.B., Greig, R. and Haxel, G.B. (2020). Geochemical evidence for an orogenic plateau
1073	in the southern US and northern Mexican Cordillera during the Laramide orogeny.
1074	Geology, v. 48(2), pp.164-168.
1075	Chapman, J. B., Runyon, S. E., Shields, J. E., Lawler, B. L., Pridmore, C. J., Scoggin, S. H., &
1076	Haxel, G. B. (2021). The North American Cordilleran Anatectic Belt. Earth-Science
1077	Reviews, 215, 103576.
1078	Chapman, A. D., Kidder, S., Saleeby, J. B., & Ducea, M. N. (2010). Role of extrusion of the
1079	Rand and Sierra de Salinas schists in Late Cretaceous extension and rotation of the
1080	southern Sierra Nevada and vicinity. Tectonics, 29(5). doi:10.1029/2009TC002597
1081	Cross, A. J., Kidder, S., & Prior, D. J. (2015). Using microstructures and TitaniQ
1082	thermobarometry of quartz sheared around garnet porphyroclasts to evaluate
1083	microstructural evolution and constrain an Alpine Fault Zone geotherm. Journal of

1084

Structural Geology, 75, 17-31.

1085	Davis, G.A., Lister, G.S., and Reynolds, S.J. (1986). Structural evolution of the Whipple and
1086	South Mountains shear zones, southwestern United States. Geology, v. 14, pp. 7-10.
1087	DeWitt, E., & Reynolds, S. J. (1990). Late Cretaceous plutonism and cooling in the Maria fold
1088	and thrust belt, west-central Arizona. In Geol. Soc. Am. Abstr. Programs (Vol. 22, No. 3,
1089	p. 18).
1090	Ducea, M.N., Triantafyllou, A. and Krcmaric, J. (2020). New timing and depth constraints for
1091	the Catalina metamorphic core complex, southeast Arizona. Tectonics, 39(8).
1092	doi:10.1029/2020TC006383
1093	Dumitru, T. A., Gans, P. B., Foster, D. A., & Miller, E. L. (1991). Refrigeration of the western
1094	Cordilleran lithosphere during Laramide shallow-angle subduction. Geology, 19(11),
1095	1145-1148.
1096	Farmer, G. L., & DePaolo, D. J. (1983). Origin of Mesozoic and Tertiary granite in the western
1097	United States and implications for Pre-Mesozoic crustal structure: 1. Nd and Sr isotopic
1098	studies in the geocline of the Northern Great Basin. Journal of Geophysical Research:
1099	Solid Earth, 88(B4), 3379-3401.
1100	Fukuda, J. I., & Okudaira, T. (2013). Grain-size-sensitive creep of plagioclase accompanied by
1101	solution-precipitation and mass transfer under mid-crustal conditions. Journal of
1102	Structural Geology, 51, 61-73.
1103	Faleiros, F.M., da Cruz Campanha, G.A., da Silveira Bello, R.M., Fuzikawa, K. (2010). Quartz
1104	recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a
1105	prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil).
1106	Tectonophysics, 485 (1–4), pp. 193–214.
1107	Faleiros, F.M., Moraes, R.D., Pavan, M., Campanha, G.A.D.C. (2016). A new empirical
1108	calibration of the quartz c-axis fabric opening-angle deformation thermometer.
1109	Tectonophysics, 671, 173–182.
1110	Gerald, J. F., & Stünitz, H. (1993). Deformation of granitoids at low metamorphic grade. I:
1111	Reactions and grain size reduction. <i>Tectonophysics</i> , 221(3-4), 269-297.
1112	Flansburg, M.E., Stockli, D.F., and Singleton, J. (2021). Multi-mineral U-Pb geo- and

thermochronology of Late Cretaceous-Paleocene deformation in the Maria fold-and-thrust

1114	belt (SW USA). Geological Society of America Abstracts with Programs, v. 51, no. 5, doi:
1115	10.1130/abs/2019AM-337873.
1116	Foster, D. A., Harrison, T. M., Miller, C. F., & Howard, K. A. (1990). The 40Ar/39Ar
1117	thermochronology of the eastern Mojave Desert, California, and adjacent western Arizona
1118	with implications for the evolution of metamorphic core complexes. Journal of
1119	Geophysical Research: Solid Earth, 95(B12), 20005-20024.
1120	Foster, D.A., and John, B.E. (1999). Quantifying tectonic exhumation in an extensional orogen
1121	with thermochronology: Examples from the southern Basin and Range province. In Lister,
1122	G.S., and Willett, S.D. (Eds.), Exhumation processes: Normal faulting, ductile flow and
1123	erosion, Geological Society of London Special Publication (Vol. 154, p. 343-364).
1124	Gallagher, C., & Bromiley, G. (2013). Ti in quartz standards. Retrieved
1125	from https://www.ed.ac.uk/geosciences/about/facilities/all/ionprobe/technical/standards/qu
1126	artz/composition
1127	Gans, P.B. (1987), An open-system, two-layer crustal stretching model for the eastern Great
1128	Basin. <i>Tectonics</i> , <i>6</i> (1), pp.1-12.
1129	Gans, P., Miller, E. L., McCarthy, J., & Ouldcott, M. L. (1985). Tertiary extensional faulting and
1130	evolving ductile-brittle transition zones in the northern Snake Range and vicinity: New
1131	insights from seismic data. Geology, 13(3), pp. 189-193.
1132	Gans, P.B., and Gentry, B.J. (2016). Dike emplacement, footwall rotation, and transition from
1133	magmatic to tectonic extension in the Whipple Mountains metamorphic core complex,
1134	southeastern California. <i>Tectonics</i> , v. 35, p. 2564–2608, doi:10.1002/2016TC004215.
1135	Gapais, D. (1989). Shear structures within deformed granites: mechanical and thermal
1136	indicators. Geology, 17(12), 1144-1147.
1137	Ghent, E. D., & Stout, M. Z. (1984). TiO2 activity in metamorphosed pelitic and basic rocks:
1138	principles and applications to metamorphism in southeastern Canadian
1139	Cordillera. Contributions to Mineralogy and Petrology, 86(3), 248-255.
1140	Gottardi, R., McAleer, R., Casale, G., Borel, M., Iriondo, A., & Jepson, G. (2020). Exhumation
1141	of the Coyote Mountains metamorphic core complex (Arizona): Implications for orogenic
1142	collapse of the southern North American Cordillera. Tectonics, 39(8), e2019TC006050.

1143	Grujic, D., M. Stipp, and J. L. Wooden (2011). Thermometry of quartz mylonites: Importance of
1144	dynamic recrystallization on Ti-in-quartz reequilibration. Geochemistry, Geophysics and
1145	Geosystems., v. 12, Q06012, doi:10.1029/2010GC003368
1146	Hacker, B.R., Yin, A., Christie, J.M., and Davis, G.A. (1992). Stress magnitude, strain rate, and
1147	rheology of extended middle continental crust inferred from quartz grain sizes in the
1148	Whipple Mountains, California. Tectonics, v. 11, p. 36-46.
1149	Hamilton, W. (1982). Structural evolution of the Big Maria Mountains, northeastern Riverside
1150	county, southeastern California. In Frost, E.G., and Martin, D.L., (Eds.), Mesozoic-
1151	Cenozoic tectonic evolution of the Colorado River region, California, Arizona, and
1152	Nevada. San Diego, Calif., Cordilleran Publishers, p. 1-27.
1153	Haxel, G. B., Tosdal, R. M., May, D. J., & Wright, J. E. (1984). Latest Cretaceous and early
1154	Tertiary orogenesis in south-central Arizona: Thrust faulting, regional metamorphism, and
1155	granitic plutonism. Geological Society of America Bulletin, 95(6), 631-653.
1156	Haxel, G.B., Jacobson, C.E., and Wittke, J.H. (2014). Mantle peridotite in newly discovered far-
1157	inland subduction complex, southwest Arizona: Initial report. International Geology
1158	Review, v. 57, pp. 871–892.
1159	Hodges, K. V., & Walker, J. D. (1992). Extension in the Cretaceous Sevier orogen, North
1160	American Cordillera. Geological Society of America Bulletin, 104(5), pp. 560-569.
1161	Isachsen, C. E., Gehrels, G. E., Riggs, N. R., Spencer, J. E., Ferguson, C. A., Skotnicki, S. J., &
1162	Richard, S. M. (1999). U-Pb geochronologic data from zircons from eleven granitic rocks
1163	in central and western Arizona. Arizona Geological Survey Open-file Report, n. 99-5.
1164	Jackson, J. A. (1987). Active normal faulting and crustal extension. Geological Society, London,
1165	Special Publications, 28(1), 3-17.
1166	Jackson, J. A., & White, N. J. (1989). Normal faulting in the upper continental crust:
1167	observations from regions of active extension. Journal of Structural Geology, 11(1-2), 15-
1168	36.
1169	Jacobson, C.E., Grove, M., Stamp, M.M., Vucic, A., Oyarzabal, F.R., Haxel, G.B., Tosdal, R.M.,
1170	and Sherrod, D.R. (2002). Exhumation history of the Orocopia Schist and related rocks in
1171	the Gavilan Hills area of southeasternmost California. In Barth, A. (Ed.), Contributions to
1172	Crustal Evolution of the Southwestern United States. Geological Society of America
1173	Special Papers, v. 365, p. 129-154, doi:10.1130/0-8137-2365-5.129

- Jacobson, C. E., Grove, M., Vucic, A., Pedrick, J. N., & Ebert, K. A. (2007). Exhumation of the
- Orocopia Schist and associated rocks of southeastern California: Relative roles of erosion,
- synsubduction tectonic denudation, and middle Cenozoic extension.
- Jacobson, C.E., Hourigan, J.K., Haxel, G.B., and Grove, M. (2017). Extreme latest Cretaceous
- low-angle subduction: Zircon ages from Orocopia Schist at Cemetery Ridge, southwest
- Arizona, USA. *Geology*, v. 45, p. 951–954, doi:10.1130/G39278.1
- John, B.E., and Musaka, S.B. (1990). Footwall rocks to the mid-Tertiary Chemehuevi
- detachment fault: A window into the middle crust in southern California. *Journal of*
- 1182 *Geophysical Research*, v. 95, p. 463-485.
- John, B.E. (1987). Geometry and evolution of a mid-crustal extensional fault system:
- 1184 Chemehuevi Mountains, southeastern California. In Coward, M.P., Dewey, J.F., and
- Hancock, P.L. (Eds.), Continental extensional tectonics, Geological Society of London
- 1186 *Special Publication* (Vol. 28, p. 313-335).
- John, B.E., and Foster, D.A. (1993) Structural and thermal constraints on the initiation of
- detachment faulting in the southern Basin and Range: the Chemehuevi Mountains case
- study. *Geological Society of America Bulletin*, v. 105, p. 1091-1108.
- Kidder, S., Avouac, J. P., & Chan, Y. C. (2013). Application of titanium-in-quartz
- thermobarometry to greenschist facies veins and recrystallized quartzites in the Hsüehshan
- range, Taiwan. *Solid Earth*, 4(1), 1-21.
- Kidder, S. B., Toy, V. G., Prior, D. J., Little, T. A., Khan, A., & MacRae, C. (2018). Constraints
- on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient
- from Ti-in-quartz thermobarometry. *Solid Earth*, *9*(5), 1123-1139.
- Knapp, J. H., & Heizler, M. T. (1990). Thermal history of crystalline nappes of the Maria fold
- and thrust belt, west central Arizona. Journal of Geophysical Research: Solid
- 1198 Earth, 95(B12), 20049-20073.
- Kohn, M. J., & Northrup, C. J. (2009). Taking mylonites' temperatures. *Geology*, 37(1), 47-50.
- Kruse, R., Stünitz, H., & Kunze, K. (2001). Dynamic recrystallization processes in plagioclase
- porphyroclasts. *Journal of Structural Geology*, 23(11), 1781-1802.
- LaForge, J., John, B. E., Grimes, C. B., Stunitz, H., & Heilbronner, R. (2016). Initiation of a
- Low-Angle Normal Fault Active Across the Upper Brittle-Plastic Transition, Chemehuevi

1204	Mountains, CA. American Geophysical Union Fall Meeting Abstracts (Vol. 2016, pp.
1205	T11E-03).
1206	Laubach, S.E., Reynolds, S.J., Spencer, J.E., and Marshak, S. (1989). Progressive deformation
1207	and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona,
1208	U.S.A. Journal of Structural Geology, v. 11, p. 735-749.
1209	Laubach, S. E., Reynolds, S. J., Spencer, J. E., & Marshak, S. (1989). Progressive deformation
1210	and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona,
1211	USA. Journal of Structural Geology, 11(6), 735-749.
1212	Law, R.D., (2014). Deformation thermometry based on quartz c-axis fabrics and recrystallization
1213	microstructures: A review. Journal of Structural Geology, v. 66, pp. 129-161.
1214	Lee, D. E., Kistler, R. W., Friedman, I., & Van Loenen, R. E. (1981). Two-mica granites of
1215	northeastern Nevada. Journal of Geophysical Research: Solid Earth, 86(B11), 10607-
1216	10616.
1217	Lister, G. S., & Davis, G. A. (1989). The origin of metamorphic core complexes and detachment
1218	faults formed during Tertiary continental extension in the northern Colorado River region,
1219	USA. Journal of Structural Geology, v. 11(1-2), pp. 65-94.
1220	Lister, G.S., and Davis, G.A. (1989). The origin of metamorphic core complexes and detachment
1221	faults formed during Tertiary continental extension in the northern Colorado River region,
1222	U.S.A. Journal of Structural Geology, v. 11, pp. 65-94.
1223	Lister, G. S., & Dornsiepen, U. F. (1982). Fabric transitions in the Saxony granulite
1224	terrain. Journal of Structural Geology, 4(1), 81-92.
1225	Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R. D., & Jackson, J. M. (2010). The role of
1226	oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 3(5), pp. 353-
1227	357.
1228	Lucchitta, I., and Suneson, N.H. (1993), Dips and extension. Geological Society of America
1229	Bulletin, v. 105, pp. 1346-1356.
1230	Lucchitta I., and Suneson, N.H. (1996), Timing and character of deformation along the margin of
1231	a metamorphic core complex, west-central Arizona. In Beratan, K.K (Ed.),
1232	Reconstructing the history of Basin and Range extension using sedimentology and

stratigraphy, Geological Society of America Special Paper (Vol. 303, p. 147-170).

1234	Lyle, J.H., III (1982). Interrelationships of late Mesozoic thrust faulting and mid-Tertiary
1235	detachment faulting in the Riverside Mountains, southeastern California. In Frost, E.G.,
1236	and Martin, D.L. (Eds.), Mesozoic-Cenozoic tectonic evolution of the Colorado River
1237	region, California, Arizona, and Nevada (, p. 470-491). Cordilleran Publishers, San
1238	Diego, CA.
1239	Mainprice, D., Bouchez, J. L., Blumenfeld, P., & Tubià, J. M. (1986). Dominant c slip in
1240	naturally deformed quartz: Implications for dramatic plastic softening at high
1241	temperature. Geology, 14(10), 819-822.
1242	Martin, D. L., Krummenacher, D., & Frost, E. G. (1982). K-Ar geochronologic record of
1243	Mesozoic and Tertiary tectonics of the Big Maria-Little Maria-Riverside Mountains
1244	terrane. In Frost, E.G., and Martin, D.L. (Eds.), Mesozoic-Cenozoic tectonic evolution of
1245	the Colorado River region, California, Arizona, and Nevada. Cordilleran Publishers, San
1246	Diego, CA, pp. 518-549.
1247	McDougall, I., & Harrison, T. M. (1999). Geochronology and Thermochronology by the
1248	⁴⁰ Ar/ ³⁹ Ar Method. Oxford University Press on Demand.
1249	McKenzie, D., Nimmo, F., Jackson, J.A., Gans, P.B., and Miller, E.L. (2000). Characteristics
1250	and consequences of flow in the lower crust. Journal of Geophysical Research, v. 105, p.
1251	11029-11046.
1252	Miller, C.F., and Barton, M.D. (1990). Phanerozoic plutonism in the Cordilleran Interior, U.S.A
1253	In Suzanne Mahlburg Kay, Carlos W. Rapela (Eds.), Plutonism from Antarctica to Alaska,
1254	Geological Society of America Special Papers, v. 241, pp. 213-231.
1255	Miller, C. F., & Bradfish, L. J. (1980). An inner Cordilleran belt of muscovite-bearing
1256	plutons. Geology, 8(9), 412-416.
1257	Miller, E.L., Dumitru, T.A., Brown, R.W. and Gans, P.B. (1999). Rapid Miocene slip on the
1258	Snake Range-Deep Creek range fault system, east-central Nevada. Geological Society of
1259	America Bulletin, v. 111(6), pp.886-905.
1260	Nachlas, W. O., Whitney, D. L., Teyssier, C., Bagley, B., & Mulch, A. (2014). Titanium
1261	concentration in quartz as a record of multiple deformation mechanisms in an extensional
1262	shear zone. Geochemistry, Geophysics, Geosystems, 15(4), 1374-1397.
1263	Nachlas, W. O., Thomas, J. B., & Hirth, G. (2018). TitaniQ deformed: Experimental deformation

of out-of-equilibrium quartz porphyroclasts. Journal of Structural Geology, 116, 207-222.

Okudaira, T., Takeshita, T., Hara, I., & Ando, J. I. (1995). A new estimate of the conditions for 1265 transition from basal < a> to prism [c] slip in naturally deformed 1266 quartz. *Tectonophysics*, 250(1-3), 31-46. 1267 Oyarzabal, F. R., Jacobson, C. E., & Haxel, G. B. (1997). Extensional reactivation of the 1268 Chocolate Mountains subduction thrust in the Gavilan Hills of southeastern 1269 California. *Tectonics*, 16(4), 650-661. 1270 Passchier, C. W., & Trouw, R. A. (2005). Microtectonics. Springer Science & Business Media. 1271 Patino-Douce, A. E., Humphreys, E. D., and Johnston, A. D. (1990). Anatexis and 1272 metamorphism in tectonically thickened continental crust exemplified by the Sevier 1273 Hinterland, western North America. Earth and Planetary Science Letters, v. 97, p. 290– 1274 315. 1275 1276 Prior, M.G., Stockli, D.F., and Singleton, J.S. (2016). Miocene slip history of the Eagle Eye detachment fault, Harquahala Mountains metamorphic core complex, west-central 1277 Arizona. Tectonics, v. 35, pp. 1913–1924. 1278 Prior, M.G, Singleton, J.S., and Stockli, D.F. (2018). Late-stage slip history of the Buckskin-1279 1280 Rawhide detachment fault and temporal evolution of the Lincoln Ranch supradetachment basin: New constraints from the middle Miocene Sandtrap Conglomerate. Geological 1281 1282 Society of America Bulletin, v. 130, pp. 1747–1760. Proffett, J. M. (1977). Cenozoic geology of the Yerington district, Nevada, and implications for 1283 1284 the nature and origin of Basin and Range faulting. Geological Society of America Bulletin, 88(2), 247-266. 1285 Pryer, L. L. (1993). Microstructures in feldspars from a major crustal thrust zone: the Grenville 1286 Front, Ontario, Canada. Journal of structural Geology, 15(1), 21-36. 1287 1288 Rehrig, W.A., and Reynolds, S.J. (1980). Geologic and geochronologic reconnaissance of a 1289 northwest-trending zone of metamorphic core complexes in southern and western Arizona. 1290 In Crittenden, M.L., Coney, P.J., and Davis, G.H (Eds.), Cordilleran Metamorphic Core Complexes, Geological Society of America Memoir (Vol. 153, pp. 131-157). 1291 Reynolds, S. J., & Lister, G. S. (1990). Folding of mylonitic zones in Cordilleran metamorphic 1292 1293 core complexes: Evidence from near the mylonitic front. Geology, 18(3), 216-219.

Reynolds, S. J., and J. E. Spencer (1985). Evidence for large-scale transport on the Bullard

detachment fault, west-central Arizona. Geology, v.13, pp. 353–356.

1294

1296	Reynolds, S.J., Shafiqullah, M., Damon, P.E. and DeWitt, E. (1986). Early Miocene
1297	mylonitization and detachment faulting, South Mountains, central Arizona. Geology, v.
1298	14, pp.283-286.
1299	Reynolds, S.J., and Spencer, J.E. (1993). Geologic Map of the western Harcuvar Mountains, La
1300	Paz County, west-central Arizona. Arizona Geological Survey Open-File Report 93-3,
1301	scale: 1:24,000.
1302	Richard, S. M. (1988). Bedrock geology of the Harquahala Mountains, west-central Arizona:
1303	Mesozoic shear zones, cooling, and Tertiary unroofing (Doctoral dissertation). Santa
1304	Barbara, CA: University of California, Santa Barbara.
1305	Richard, S.M., Fryxell, J.E., and Sutter, J.F. (1990). Tertiary structure and thermal history of the
1306	Harquahala and Buckskin Mountains, west central Arizona: Implications for denudation
1307	by a major detachment fault system. Journal of Geophysical Research, v. 95, no. B12, pp.
1308	19973-19987.
1309	Saleeby, J. (2003). Segmentation of the Laramide slab—Evidence from the southern Sierra
1310	Nevada region. Geological Society of America Bulletin, 115(6), 655-668.
1311	Salem, A.C., (2009). Mesozoic tectonics of the Maria Fold and Thrust Belt and McCoy Basin,
1312	southeastern California: An examination of polyphase deformation and synorogenic
1313	response (Doctoral dissertation). Alburquerque, NM: University of New Mexico.
1314	Scott, R. J. (1995). The geological development of the Buckskin-Rawhide metamorphic core
1315	complex, west-central Arizona (Doctoral dissertation, Monash University).
1316	Scott, R. J., & Lister, G. S. (1992). Detachment faults: Evidence for a low-angle
1317	origin. Geology, 20(9), 833-836.
1318	Scott, R. J., Foster, D. A., & Lister, G. S. (1998). Tectonic implications of rapid cooling of lower
1319	plate rocks from the Buckskin-Rawhide metamorphic core complex, west-central
1320	Arizona. Geological Society of America Bulletin, 110(5), 588-614.
1321	Selverstone, J., Axen, G.J., and Luther, A. (2012). Fault localization controlled by fluid
1322	infiltration into mylonites: Formation and strength of low-angle normal faults in the mid-
1323	crustal brittle-plastic transition. Journal of Geophysical Research, v. 117,
1324	doi:10.1029/2012JB009171
1325	Seymour, N.M., Strickland, E.D., Singleton, J.S., Stockli, D.F., and Wong, M.S. (2018).

Laramide subduction and metamorphism of the Orocopia Schist, northern Plomosa

1327	Mountains, west-central Arizona: Insights from zircon U-Pb geochronology. <i>Geology</i> ,
1328	v.46, p. 847–850.
1329	Simpson, C. (1985). Deformation of granitic rocks across the brittle-ductile transition. Journal of
1330	structural geology, 7(5), 503-511.
1331	Singleton, J.S. (2011). Geologic map and cross sections of the Little Buckskin Mountains, La
1332	Paz County, west-central Arizona. Arizona Geological Survey Contributed Map CM-11-B
1333	scale 1:12,000.
1334	Singleton, J.S., Mosher, S. (2012). Mylonitization in the lower plate of the Buckskin-Rawhide
1335	detachment fault, west-central Arizona: Implications for the geometric evolution of
1336	metamorphic core complex. Journal of Structural Geology, v. 39, pp. 180-198.
1337	Singleton, J.S., Stockli, D.F., Gans, P.B., and Prior, M.G. (2014). Timing, rate, and magnitude of
1338	slip on the Buckskin-Rawhide detachment fault, west-central Arizona. Tectonics, v. 33,
1339	pp. 1596–1615. doi:10.1002/2013TC003517
1340	Singleton, J.S., (2015). The transition from large-magnitude extension to distributed dextral
1341	faulting in the Buckskin-Rawhide metamorphic core complex, west-central Arizona.
1342	Tectonics, v. 34, pp. 1685-1708. doi:10.1002/2014TC003786
1343	Singleton, J.S., Wong, M.S., and Johnston, S.M. (2018). The role of calcite-rich
1344	metasedimentary mylonites in localizing detachment fault strain and influencing the
1345	structural evolution of the Buckskin-Rawhide metamorphic core complex, west-central
1346	Arizona. Lithosphere, v. 10, pp. 172–193.
1347	Singleton, J.S., Seymour, N.M., Reynolds, S.J., Vomocil, T., and Wong, M.S. (2019).
1348	Distributed Neogene faulting across the western to central Arizona metamorphic core
1349	complex belt: Synextensional constriction and superposition of the Pacific-North America
1350	plate boundary on the southern Basin and Range. Geosphere, v. 15, p. 1409-1435,
1351	doi:10.1130/GES02036.1
1352	Spencer, J.E., and Reynolds, S.J. (1990). Relationship between Mesozoic and Cenozoic tectonic
1353	features in west-central Arizona and adjacent southeastern California. Journal of
1354	Geophysical Research, v. 95, p. 539-555.
1355	Spencer, J.E., and Reynolds, S.J. (1991). Tectonics of mid-Tertiary extension along a transect
1356	through west central Arizona, <i>Tectonics</i> , v. 10, pp. 1204-1221.

1357	
1358	Spencer, J. E., Singleton, J. S., Strickland, E., Reynolds, S. J., Love, D., Foster, D. A., &
1359	Johnson, R. (2018). Geodynamics of Cenozoic extension along a transect across the
1360	Colorado River extensional corridor, southwestern USA. Lithosphere, v. 10(6), pp. 743-
1361	759.
1362	Stipp, M., Stunitz, H., Heilbronner, R., Schmid, S.M. (2002a). The eastern Tonale fault zone: a
1363	'natural laboratory' for crystal plastic deformation of quartz over a temperature range from
1364	250 to 700°C. Journal of Structural Geology, v. 24, p. 1861-1884.
1365	Stipp, M., Stünitz, H., Heilbronner, R. and Schmid, S.M., (2002b). Dynamic recrystallization of
1366	quartz: correlation between natural and experimental conditions. Geological Society,
1367	London, Special Publications, v. 200(1), pp. 171-190.
1368	Strickland, E.D., Singleton, J.S., Haxel, G.B. (2018). Orocopia Schist in the northern Plomosa
1369	Mountains, west-central Arizona: A Laramide subduction complex exhumed in a Miocene
1370	metamorphic core complex. Lithosphere, v. 10, p. 723-742.
1371	Thomas, J. B., Bruce Watson, E., Spear, F. S., Shemella, P. T., Nayak, S. K., & Lanzirotti, A.
1372	(2010). TitaniQ under pressure: the effect of pressure and temperature on the solubility of
1373	Ti in quartz. Contributions to Mineralogy and Petrology, 160(5), 743-759.
1374	Thomas, J. B., & Bruce Watson, E. (2012). Application of the Ti-in-quartz thermobarometer to
1375	rutile-free systems. Reply to: a comment on: 'TitaniQ under pressure: the effect of pressure
1376	and temperature on the solubility of Ti in quartz' by Thomas et al. Contributions to
1377	Mineralogy and Petrology, 164(2), 369-374.
1378	Tullis, J., & Yund, R. A. (1991). Diffusion creep in feldspar aggregates: experimental
1379	evidence. Journal of Structural Geology, 13(9), 987-1000.
1380	Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience
1381	Frontiers, v. 9, doi:10.1016/j.gsf.2018.04.001
1382	Wallace, P. J., Anderson Jr, A. T., & Davis, A. M. (1999). Gradients in H2O, CO2, and exsolved
1383	gas in a large-volume silicic magma system: Interpreting the record preserved in melt
1384	inclusions from the Bishop Tuff. Journal of Geophysical Research: Solid Earth, 104(B9),
1385	20097-20122.

1386	Walsh, E.O., Wong, M.S., Singleton, J.S., Wrobel, A.J., Weiss, T., and Christensen, K. (2016).
1387	Evidence for polyphase exhumation of the Harcuvar metamorphic core complex, western
1388	Arizona. Geological Society of America Abstracts with Programs, v. 48 (7),
1389	doi:10.1130/abs/2016AM-287659
1390	Wark, D. A., & Watson, E. B. (2006). TitaniQ: a titanium-in-quartz
1391	geothermometer. Contributions to Mineralogy and Petrology, 152(6), 743-754.
1392	Wells, M.L., Snee, L.W., and Blythe, A.E. (2000). Dating of major normal fault systems using
1393	thermochronology: An example from the Raft River detachment, Basin and Range,
1394	western United States. Journal of Geophysical Research, v. 105, p. 16,303-16,327.
1395	Wells, M.L., Spell, T.L., and Grove, M. (2002). Late Cretaceous intrusion and extensional
1396	exhumation of the Cadiz Valley batholith, Iron Mountains, southeastern California.
1397	Geological Society of America Abstracts with Programs, v. 34, no. 6, p. 178.
1398	Wells, M.L., Beyene, M.A., Spell, T.L., Kula, J.L., Miller, D.M., and Zanetti, K.A. (2005). The
1399	Pinto shear zone; a Laramide synconvergent extensional shear zone in the Mojave Desert
1400	region of southwestern United States. Journal of Structural Geology, v. 27, p. 1697-1720.
1401	Wells, M. L., & Hoisch, T. D. (2008). The role of mantle delamination in widespread Late
1402	Cretaceous extension and magmatism in the Cordilleran orogen, western United States.
1403	Geological Society of America Bulletin, 120(5-6), 515-530.
1404	Wernicke, B.P. (1981). Low angle normal faults in the Basin and Range province: Nappe
1405	tectonics in an extending orogen. Nature, v. 291, pp. 645-648.
1406	Wernicke, B. (1985). Uniform-sense normal simple shear of the continental
1407	lithosphere. Canadian Journal of Earth Sciences, v. 22(1), pp. 108-125.
1408	Wernicke, B., & Axen, G. J. (1988). On the role of isostasy in the evolution of normal fault
1409	systems. Geology, 16(9), 848-851.
1410	Wong, M.S., and Gans, P.B. (2008). Geologic, structural, and thermochronologic constraints on
1411	the tectonic evolution of the Sierra Mazatán core complex, Sonora, Mexico: New insights
1412	into metamorphic core complex formation. Tectonics, v. 27, TC4013,
1413	doi:10.1029/2007TC002173.
1414	Wong, M.S., and Gans, P.B. (2009). Late Cretaceous-early Tertiary extension in the central

Mojave metamorphic core complex: Implications for core complex formation and the

Laramide orogeny. Geological Society of America Abstracts with Programs, v. 41, p. 588.

1415

manuscript submitted to Tectonics

1417	Wright, J. E., & Wooden, J. L. (1991). New Sr, Nd, and Pb isotopic data from plutons in the
1418	northern Great Basin: Implications for crustal structure and granite petrogenesis in the
1419	hinterland of the Sevier thrust belt. Geology, 19(5), 457-460.
1420	Wu, G., & Lavier, L. L. (2016). The effects of lower crustal strength and preexisting midcrustal
1421	shear zones on the formation of continental core complexes and low-angle normal
1422	faults. Tectonics, 35(9), 2195-2214.
1423	Zuza, A. V., Cao, W., Hinz, N. H., DesOrmeau, J. W., Odlum, M. L., & Stockli, D. F. (2019).
1424	Footwall rotation in a regional detachment fault system: Evidence for horizontal-axis
1425	rotational flow in the Miocene Searchlight pluton, NV. Tectonics, 38, 2506-2539.
1426	doi:10.1029/2019TC005513

Tectonics

Supporting Information for

Late Cretaceous-early Paleogene extensional ancestry of the Harcuvar and Buckskin-Rawhide metamorphic core complexes, western Arizona

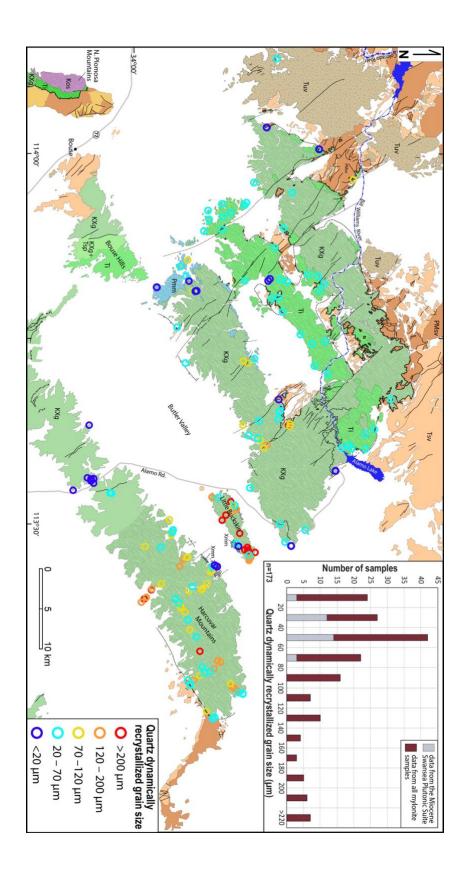
Martin S. Wong¹, John S. Singleton², Nikki M. Seymour^{2*}, Phillip B. Gans³, and Alexander J. Wrobel^{1†}

¹Department of Earth and Environmental Geosciences, Colgate University, 13 Oak Drive, Hamilton, New York, 13346 USA.

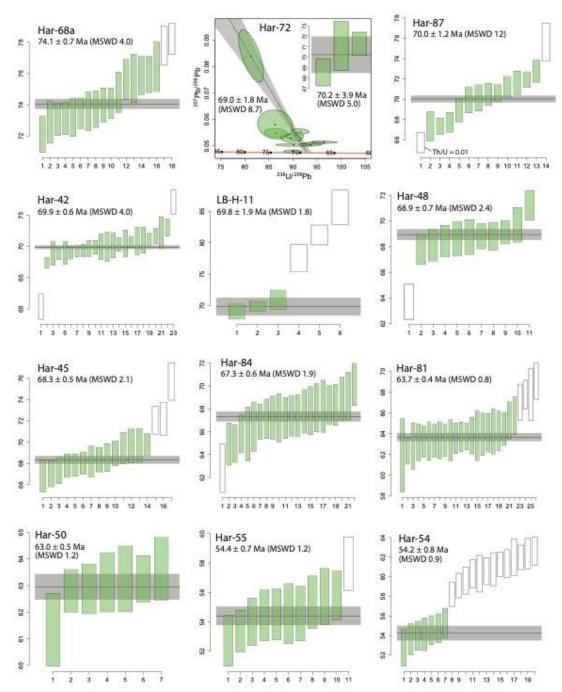
Contents of this file

Figures S1 to S2 Table S2

Additional Supporting Information (Files uploaded separately)


Table S1

Introduction


The supporting information includes detailed information about the sample locations and their structural and deformation characteristics (Table S1), grain size analysis (Figure S1), ⁴⁰Ar/³⁹Ar analyses (Table S2), and U-Pb geochronology (Figure S2).

² Department of Geosciences, Colorado State University, 1482 Campus Delivery, Fort Collins, Colorado 80523, USA.

³Department of Earth Science, University of California, Santa Barbara, California, 93105, USA

Figure S1. Map and associated histogram (upper-right insert) of measured average grain size for dynamically recrystallized quartz in mylonitic samples.

Figure S2. U-Pb geochronologic results showing the U^{238}/Pb^{206} spot ages for each dated sample and the calculated weighted mean age (horizontal gray bar). Spot analyses that yielded ages with >5% discordance are not shown here. The inverse concordia plot and lower intercept age for Har-72 is shown due to the higher fraction of discordant ages in that sample. Ages included in the weighted mean age calculation are

filled green. Plots were generated using IsoplotR program (Vermeesch, 2018) and we allowed the program to reject outlier ages for weighted mean age calculations.

Table S1. Additional information on sample locations, kinematics, microstructures, deformation category and grain size (file attached separately).

Table S2. ⁴⁰Ar/³⁹Ar geochronologic analyses

⁴⁰Ar/³⁹Ar analytical details

All ⁴⁰Ar/³⁹Ar analyses were conducted at the ⁴⁰Ar/³⁹Ar geochronology laboratory at UC Santa Barbara. Samples were step-heated in a Staudecher-type furnace and analyzed on a Nier source MAP 216 mass spectrometer. Samples were irradiated at the Oregon State University research reactor in the CLICIT facility and J-values were monitored using Taylor Creek Rhyolite sanidine using an assumed age of 27.92 Ma.

Hornblende data:

Sample	SB66	-59 Har-71	hbl	J=0.004148	30					
<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
700	14	1.6e-14	58.7182	5.5e-5	1.2997	0.1413	0.38	0.00251	0.289	122.7 ± 3.9
780	14	1.6e-14	42.3941	1.4e-3	1.3428	0.1127	0.36	0.00593	0.214	66.8 ± 2.8
850	14	2.1e-14	43.3787	4.3e-4	2.1768	0.1213	0.23	0.01026	0.174	55.6 ± 2.6
910	14	2.8e-14	30.9949	4.2e-4	3.9596	0.0750	0.12	0.01826	0.285	64.9 ± 1.3
950	14	2.3e-14	19.4007	1.4e-3	5.0907	0.0375	0.096	0.02885	0.429	61.3 ± 0.9
990	14	6.2e-14	16.0089	1.0e-3	4.3187	0.0273	0.11	0.06369	0.496	58.4 ± 0.4
1030	14	1.9e-13	16.3035	3.3e-4	3.9042	0.0268	0.13	0.16836	0.515	61.8 ± 0.2
1060	14	2.5e-13	12.7139	0.0e+0	3.6392	0.0138	0.13	0.34136	0.678	63.4 ± 0.2
1090	14	8.1e-14	11.0249	0.0e+0	3.6760	0.0075	0.13	0.40762	0.798	64.7 ± 0.2
1120	14	1.3e-13	12.9022	0.0e+0	3.7004	0.0137	0.13	0.50038	0.686	65.0 ± 0.2
1150	14	3.3e-13	12.3657	3.4e-4	3.6465	0.0122	0.13	0.73762	0.709	64.4 ± 0.1
1150	14	1.4e-13	11.5555	0.0e+0	3.6738	0.0097	0.13	0.84268	0.752	63.8 ± 0.2
1180	14	1.7e-13	11.0256	0.0e+0	3.6180	0.0082	0.14	0.97875	0.779	63.2 ± 0.2
1210	14	1.3e-14	11.1569	4.6e-4	4.2519	0.0093	0.12	0.98908	0.754	61.8 ± 0.7
1300	14	1.5e-14	12.0825	0.0e+0	5.6733	0.0123	0.086	1.00000	0.699	62.1 ± 0.7

Total fusion age, TFA= 63.65 ± 0.13 Ma (including J)

 $[\]sum$ 39Ar is cumulative, 40Ar* = rad fraction.

Sample:	SB66	-62	JS-H-12 hbl		J=0.0041358					
<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	<u>37/39</u>	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
700	14	1.3e-14	43.7451	0.0e+0	3.8877	0.0710	0.13	0.00647	0.521	162.4 ± 2.9
780	14	1.2e-14	43.1053	2.4e-3	1.7443	0.0822	0.28	0.01270	0.436	135.1 ± 3.1
850	14	7.6e-15	20.7441	1.0e-3	2.2319	0.0473	0.22	0.02063	0.326	49.8 ± 2.6
920	14	1.2e-14	13.1212	9.2e-4	5.1216	0.0223	0.096	0.04005	0.498	48.1 ± 1.0
970	14	3.2e-14	8.7524	1.9e-3	5.0953	0.0079	0.096	0.11840	0.732	47.2 ± 0.3
1000	14	5.5e-14	9.4668	1.7e-3	5.0213	0.0079	0.098	0.24437	0.754	52.5 ± 0.2
1030	14	4.5e-14	10.2254	1.2e-3	4.8338	0.0074	0.10	0.33949	0.786	59.0 ± 0.3

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

1050	14	2.7e-14	9.1387	1.5e-3	4.8144	0.0047	0.10	0.40281	0.848	56.9 ± 0.3
1070	14	4.1e-14	9.1804	1.2e-3	4.7671	0.0046	0.10	0.49920	0.851	57.4 ± 0.2
1100	14	2.2e-14	9.7373	9.0e-4	5.0140	0.0055	0.098	0.54880	0.832	59.5 ± 0.4
1120	14	4.5e-14	10.0400	1.8e-3	4.9329	0.0053	0.099	0.64620	0.843	62.0 ± 0.3
1140	14	1.0e-13	9.8635	1.2e-3	4.7843	0.0043	0.10	0.87559	0.872	63.0 ± 0.2
1160	14	3.9e-14	9.7253	1.2e-3	4.7942	0.0037	0.10	0.96256	0.888	63.3 ± 0.3
1190	14	1.2e-14	9.8423	2.5e-3	5.1334	0.0044	0.095	0.98817	0.868	62.6 ± 0.7
1230	14	3.7e-15	10.9731	5.4e-3	7.3783	0.0085	0.066	0.99552	0.771	62.0 ± 2.3
1300	14	2.7e-15	13.2248	4.3e-3	10.4957	0.0177	0.047	1.00000	0.604	58.6 ± 3.8

Total fusion age, TFA= 59.59 ± 0.14 Ma (including J)

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

Sample:	SB66	-74	Har-27 h	bl J	J=0.0040847					
<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
780	14	2.8e-14	51.9054	0.0e+0	1.0894	0.0791	0.45	0.00519	0.550	198.9 ± 1.6
850	14	8.6e-15	19.9746	1.3e-3	1.4579	0.0455	0.34	0.00931	0.327	47.5 ± 1.8
920	14	2.1e-14	12.3770	9.6e-4	2.9308	0.0151	0.17	0.02594	0.639	57.4 ± 0.5
970	14	8.8e-14	10.1942	5.3e-4	3.1407	0.0049	0.16	0.10852	0.859	63.4 ± 0.2
1000	14	1.5e-13	10.2480	4.3e-4	3.1060	0.0038	0.16	0.24506	0.891	66.1 ± 0.2
1030	14	2.3e-13	9.9482	6.4e-4	3.1141	0.0027	0.16	0.46998	0.920	66.2 ± 0.1
1050	14	1.5e-13	9.3120	7.1e-4	3.1190	0.0014	0.16	0.62750	0.956	64.4 ± 0.1
1070	14	8.3e-14	9.3429	2.9e-4	3.1284	0.0013	0.16	0.71243	0.959	64.9 ± 0.2
1100	14	2.6e-14	10.1003	3.5e-4	3.3362	0.0025	0.15	0.73716	0.928	67.7 ± 0.3
1120	14	2.9e-14	10.9114	9.9e-4	3.7016	0.0034	0.13	0.76270	0.907	71.5 ± 0.3
1140	14	9.3e-14	10.9450	4.4e-4	3.3816	0.0032	0.14	0.84456	0.914	72.3 ± 0.2
1160	14	1.5e-13	10.2330	4.3e-4	3.1380	0.0023	0.16	0.98137	0.934	69.1 ± 0.2
1190	14	1.3e-14	10.2909	5.5e-4	3.2500	0.0033	0.15	0.99371	0.905	67.3 ± 0.5
1300	14	6.8e-15	10.3211	2.6e-3	3.9992	0.0047	0.12	1.00000	0.864	64.6 ± 0.9

Total fusion age, TFA= 67.13 ± 0.14 Ma (including J)

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Sample	SB66	-66	JS-H-24 l	hbl J	=0.004114	1				
<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	37/39	36/39	K/Ca	\sum 39Ar	40Ar*	Age (Ma)
780	14	1.4e-14	29.3337	0.0e+0	1.0423	0.0419	0.47	0.01050	0.578	121.6 ± 1.6
850	14	3.7e-15	11.8976	0.0e+0	1.8673	0.0250	0.26	0.01761	0.380	33.3 ± 2.0
920	14	5.3e-15	12.0297	0.0e+0	6.8682	0.0244	0.071	0.02758	0.400	35.3 ± 1.3
970	14	7.2e-15	8.2807	1.3e-4	7.2366	0.0128	0.068	0.04743	0.545	33.2 ± 0.8
1000	14	1.5e-14	6.9012	8.2e-4	5.8825	0.0076	0.083	0.09774	0.676	34.3 ± 0.3
1030	14	3.6e-14	5.8219	4.2e-4	5.6819	0.0053	0.086	0.23644	0.730	31.3 ± 0.1
1050	14	2.9e-14	6.1050	1.4e-4	5.2720	0.0033	0.093	0.34326	0.843	37.8 ± 0.2
1070	14	2.5e-14	7.6320	2.5e-4	5.1047	0.0034	0.096	0.41900	0.867	48.4 ± 0.2
1100	14	1.9e-14	7.2805	5.7e-5	5.3079	0.0047	0.092	0.47936	0.808	43.1 ± 0.3
1120	14	2.3e-14	7.6280	1.8e-7	5.4532	0.0052	0.090	0.54782	0.799	44.7 ± 0.3
1140	14	3.7e-14	7.6985	2.9e-4	5.3580	0.0046	0.091	0.65834	0.822	46.4 ± 0.2
1160	14	6.3e-14	7.0909	5.2e-4	5.2298	0.0031	0.094	0.86163	0.871	45.3 ± 0.1
1190	14	3.3e-14	6.8820	4.5e-4	5.2251	0.0027	0.094	0.97078	0.883	44.5 ± 0.2
1300	14	9.3e-15	7.2023	0.0e+0	5.6205	0.0042	0.087	1.00000	0.829	43.8 ± 0.5

Total fusion age, TFA= 42.45 ± 0.11 Ma (including J)

t = dwell time in minutes.

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 $[\]sum$ 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
800	14	1.4e-14	15.131	0.0e+0	1.3731	0.0215	0.36	0.02348	0.580	63.9 ± 0.8
880	14	4.7e-15	6.9724	0.0e+0	2.6303	0.0127	0.19	0.04063	0.463	23.8 ± 0.8
950	14	8.9e-15	8.3698	2.1e-3	8.1244	0.0128	0.060	0.06770	0.549	33.7 ± 0.6
990	14	3.9e-14	6.8105	2.3e-3	7.1755	0.0075	0.068	0.21184	0.676	33.8 ± 0.2
1030	14	6.8e-14	6.7225	1.7e-3	6.0340	0.0055	0.081	0.46862	0.760	37.5 ± 0.1
1060	14	6.2e-15	7.3869	2.2e-3	5.8005	0.0074	0.084	0.48984	0.705	38.2 ± 0.8
1100	14	1.8e-14	7.5828	6.5e-4	5.5737	0.0056	0.088	0.54891	0.780	43.3 ± 0.3
1130	14	2.7e-14	7.9456	2.5e-3	5.6789	0.0057	0.086	0.63610	0.787	45.8 ± 0.2
1160	14	7.5e-14	7.3301	2.0e-3	5.3863	0.0037	0.091	0.89607	0.851	45.7 ± 0.1
1190	14	1.9e-14	7.1893	1.5e-3	5.4388	0.0039	0.090	0.96385	0.839	44.2 ± 0.2
1300	14	1.0e-14	7.2636	2.0e-3	5.8460	0.0046	0.084	1.00000	0.813	43.2 ± 0.4

Total fusion age, TFA= 41.11 ± 0.10 Ma (including J)

 $[\]sum$ 39Ar is cumulative, 40Ar* = rad fraction.

Sample:	Sample: SB64=162		HAR-43	Hbl	J=0.00374	67				
<u>T</u>	<u>t</u>	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
700	14	1.5e-14	300.099	1.5e-2	3.5066	0.2696	0.14	0.00096	0.735	1086.1 ± 12.9
800	14	1.2e-14	110.978	5.0e-3	1.6420	0.0724	0.30	0.00291	0.807	522.0 ± 4.1
860	14	3.5e-15	36.3059	0.0e+0	1.5014	0.0416	0.33	0.00471	0.661	155.4 ± 3.4
900	14	1.7e-15	20.4857	2.4e-3	2.7863	0.0364	0.18	0.00624	0.475	64.5 ± 4.1
940	14	1.3e-15	16.3865	1.2e-3	2.0255	0.0309	0.24	0.00769	0.442	48.3 ± 3.8
980	14	1.5e-15	13.2861	2.5e-3	2.7871	0.0229	0.18	0.00977	0.490	43.4 ± 3.0
1020	14	2.6e-15	11.2722	2.7e-3	3.3195	0.0164	0.15	0.01413	0.569	42.8 ± 1.5
1060	14	7.6e-15	8.1162	1.5e-3	4.3069	0.0086	0.11	0.03167	0.687	37.3 ± 0.5
1100	14	2.5e-14	6.8449	1.5e-3	3.9192	0.0041	0.13	0.09921	0.821	37.6 ± 0.2
1140	14	6.4e-14	6.5762	1.6e-3	3.8082	0.0025	0.13	0.28112	0.887	39.0 ± 0.1
1180	14	5.6e-14	6.8135	1.4e-3	3.6539	0.0015	0.13	0.43519	0.933	42.5 ± 0.1
1230	14	6.2e-14	6.9478	1.4e-3	3.6987	0.0017	0.13	0.60107	0.927	43.0 ± 0.1
1290	14	1.4e-13	6.8175	1.1e-3	3.6563	0.0011	0.13	0.98981	0.954	43.4 ± 0.1
1350	14	2.2e-15	7.8790	4.4e-3	4.5909	0.0045	0.11	0.99504	0.831	43.7 ± 1.3
1450	14	2.4e-15	9.1902	0.0e + 0	6.0951	0.0076	0.08	1.00000	0.755	46.3 ± 1.4

Total fusion age, TFA= 44.58 ± 0.09 Ma (including J)

Biotite data:

Sample: SB64-166			Har-68A	Bio J:	=0.0037117					
<u>T</u>	<u>t</u>	<u>40(mol)</u>	<u>40/39</u>	38/39	<u>37/39</u>	36/39	K/Ca	<u>∑ 39Ar</u>	<u>40Ar*</u>	Age (Ma)
650	14	2.3e-15	34.8697	1.3e-2	1.1011	0.1164	0.44	0.00345	0.014	3.1 ± 5.5
730	14	3.9e-15	14.2670	1.8e-3	0.2372	0.0247	2.1	0.01788	0.488	46.0 ± 1.1
800	14	1.4e-14	10.7635	0.0e + 0	0.0663	0.0061	7.4	0.08695	0.832	59.0 ± 0.3
850	14	2.4e-14	10.3321	0.0e + 0	0.0239	0.0023	21	0.20710	0.936	63.6 ± 0.2
900	14	2.8e-14	10.1879	0.0e + 0	0.0165	0.0012	30	0.35203	0.966	64.7 ± 0.2
950	14	1.4e-14	10.3452	0.0e + 0	0.0440	0.0018	11	0.42355	0.949	64.6 ± 0.2
1000	14	9.6e-15	10.5074	0.0e + 0	0.1300	0.0023	3.8	0.47169	0.936	64.7 ± 0.3
1050	14	1.2e-14	10.6228	0.0e+0	0.3523	0.0027	1.4	0.53167	0.926	64.7 ± 0.3
1100	14	1.9e-14	10.7732	0.0e+0	0.6253	0.0021	0.78	0.62581	0.942	66.7 ± 0.2
1150	14	5.0e-14	10.5889	4.5e-4	1.1273	0.0014	0.43	0.87717	0.961	66.9 ± 0.2

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

Weighted mean plateau age, WMPA= 43.30 ± 0.10 Ma (including J)

Inverse isochron age = 43.72 ± 0.46 Ma. (MSWD =3.91; 40Ar/36Ar= 244.9 ± 52.4)

Steps used: 1230, 1290, 1350, $(12-14/15 \text{ or } 56\% \sum 39\text{Ar})$

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 $[\]sum$ 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

1210	14	2.1e-14	10.3976	0.0e+0	0.4510	0.0017	1.1	0.98636	0.951	65.0 ± 0.2
1270	14	3.0e-15	11.5861	0.0e + 0	1.7218	0.0062	0.28	1.00000	0.841	64.1 ± 0.9

Total fusion age, TFA= 64.46 ± 0.12 Ma (including J)

Ratios are corrected for blanks, decay, and interference.

Sample: Har-102 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
680	12	3.4e-14	8.7666	0.0e+0	0.0087	0.0029	56	0.18009	0.901	45.4 ± 0.1
760	12	5.8e-14	8.4019	0.0e+0	0.0080	0.0009	61	0.50251	0.967	46.7 ± 0.1
840	12	2.2e-14	8.3841	0.0e+0	0.0276	0.0014	18	0.62535	0.950	45.8 ± 0.2
920	12	1.4e-14	8.5047	0.0e+0	0.0202	0.0021	24	0.70295	0.928	45.4 ± 0.2
1000	12	1.5e-14	8.6231	0.0e+0	0.0004	0.0016	1096	0.78492	0.944	46.7 ± 0.2
1080	12	3.2e-14	8.5979	0.0e+0	0.0082	0.0011	60	0.95661	0.963	47.6 ± 0.2
1160	12	7.7e-15	8.9832	0.0e+0	0.0140	0.0021	35	0.99673	0.930	48.0 ± 0.3
1250	12	9.5e-16	13.5178	6.0e-4	0.3267	0.0218	1.5	1.00000	0.524	40.8 ± 4.2

Total fusion age, TFA= 46.43 ± 0.12 Ma (including J)

Ratios are corrected for blanks, decay, and interference.

Sample: SB61-42 Har-26 bio J=0.0033127

Sampic		42 IIai 20	210	0.00551	<u> </u>					
<u>T</u>	<u>t</u>	40(mol)	40/39	<u>38/39</u>	<u>37/39</u>	<u>36/39</u>	K/Ca	\sum 39Ar	<u>40Ar*</u>	Age (Ma)
600	12	6.3e-14	6.7382	1.1e-4	0.0300	0.0132	16	0.06727	0.419	16.8 ± 0.1
660	12	7.3e-14	5.9000	0.0e+0	0.0125	0.0051	39	0.15622	0.746	26.1 ± 0.1
700	12	7.9e-14	5.8996	0.0e+0	0.0085	0.0030	58	0.25250	0.850	29.7 ± 0.1
740	12	9.2e-14	5.8820	0.0e+0	0.0074	0.0020	67	0.36515	0.898	31.3 ± 0.1
780	12	6.2e-14	5.9260	0.0e+0	0.0076	0.0019	65	0.44012	0.905	31.8 ± 0.1
830	12	4.5e-14	6.1454	0.0e+0	0.0106	0.0027	46	0.49303	0.872	31.7 ± 0.1
890	12	5.3e-14	6.1861	0.0e+0	0.0155	0.0030	32	0.55542	0.859	31.5 ± 0.1
950	12	6.0e-14	6.3510	0.0e+0	0.0218	0.0041	23	0.62373	0.808	30.4 ± 0.1
980	12	5.4e-14	6.0664	0.0e+0	0.0126	0.0033	39	0.68740	0.841	30.2 ± 0.1
1010	12	6.1e-14	5.8608	0.0e+0	0.0109	0.0025	45	0.76289	0.876	30.4 ± 0.1
1040	12	7.4e-14	5.8336	0.0e+0	0.0112	0.0019	44	0.85406	0.903	31.2 ± 0.1
1070	12	6.7e-14	5.9455	0.0e+0	0.0241	0.0017	20	0.93505	0.915	32.2 ± 0.1
1120	12	4.1e-14	6.0486	0.0e+0	0.1076	0.0014	4.6	0.98391	0.931	33.3 ± 0.1
1200	12	1.4e-14	6.4271	0.0e+0	0.3173	0.0020	1.5	1.00000	0.909	34.6 ± 0.2

Total fusion age, TFA= 29.81 ± 0.08 Ma (including J)

Ratios are corrected for blanks, decay, and interference.

Sample: Har-103B bio J=0.0032260

Sumpre.	11441	TOOD DIO	0 0.00022	100						
T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
680	12	2.2e-14	6.3773	0.0e+0	0.0179	0.0060	27	0.23117	0.721	26.6 ± 0.1
760	12	1.9e-14	6.0537	0.0e+0	0.0041	0.0035	119	0.44072	0.828	28.9 ± 0.1
840	12	8.5e-15	6.5682	0.0e+0	0.0559	0.0057	8.8	0.52583	0.744	28.2 ± 0.2
920	12	9.5e-15	6.6485	0.0e+0	0.0790	0.0065	6.2	0.62037	0.709	27.2 ± 0.2
1000	12	1.6e-14	6.7791	0.0e+0	0.1196	0.0054	4.1	0.77627	0.763	29.9 ± 0.2
1080	12	1.7e-14	6.3157	0.0e+0	0.0833	0.0035	5.9	0.95559	0.836	30.5 ± 0.1
1160	12	4.0e-15	7.2640	0.0e + 0	0.1619	0.0053	3.0	0.99219	0.785	32.9 ± 0.5
1250	12	1.3e-15	10.8130	0.0e+0	0.3789	0.0140	1.3	1.00000	0.618	38.5 ± 2.3

Total fusion age, TFA= 28.81 ± 0.09 Ma (including J)

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

 $[\]sum$ 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

 $[\]sum$ 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

 $[\]sum$ 39Ar is cumulative, 40Ar* = rad fraction.

t = dwell time in minutes.

⁴⁰⁽mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Sample: Har-105 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
670	12	1.9e-14	4.1147	0.0e+0	0.0209	0.0039	23	0.15363	0.719	17.1 ± 0.1
750	12	2.5e-14	3.3895	0.0e + 0	0.0166	0.0011	30	0.40256	0.905	17.8 ± 0.1
870	12	1.2e-14	3.7599	0.0e+0	0.0397	0.0024	12	0.50826	0.813	17.7 ± 0.1
980	12	1.5e-14	4.3154	0.0e+0	0.2169	0.0037	2.3	0.62525	0.746	18.6 ± 0.1
1070	12	2.6e-14	3.7496	0.0e + 0	0.1045	0.0016	4.7	0.86262	0.870	18.9 ± 0.1
1250	12	1.4e-14	3.5134	0.0e + 0	0.0947	0.0013	5.2	1.00000	0.887	18.0 ± 0.1

Total fusion age, TFA= 18.07 ± 0.05 Ma (including J)

t = dwell time in minutes.

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, $40Ar^* = \text{rad fraction}$.

Sample: Har-100 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
670	12	2.3e-14	4.7319	0.0e+0	0.0274	0.0058	18	0.11427	0.636	17.4 ± 0.1
750	12	3.2e-14	3.7562	0.0e+0	0.0138	0.0021	35	0.31565	0.837	18.2 ± 0.1
870	12	2.1e-14	4.6033	0.0e+0	0.0262	0.0050	19	0.42531	0.681	18.1 ± 0.1
980	12	2.4e-14	4.1623	0.0e + 0	0.0387	0.0036	13	0.56149	0.747	18.0 ± 0.1
1070	12	4.1e-14	3.5849	0.0e + 0	0.0130	0.0015	38	0.83305	0.876	18.2 ± 0.1
1250	12	2.5e-14	3.5839	0.0e + 0	0.0470	0.0012	10	1.00000	0.902	18.7 ± 0.1

Total fusion age, TFA= 18.16 ± 0.05 Ma (including J)

t = dwell time in minutes.

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Sample: Har-83 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
670	12	1.4e-14	3.3529	0.0e+0	0.0284	0.0018	17	0.10312	0.845	16.4 ± 0.1
750	12	2.4e-14	3.0318	0.0e+0	0.0262	0.0006	19	0.29205	0.939	16.5 ± 0.1
870	12	1.4e-14	3.1126	0.0e+0	0.0400	0.0008	12	0.39776	0.920	16.6 ± 0.1
980	12	1.5e-14	3.2091	0.0e+0	0.1083	0.0010	4.5	0.50854	0.906	16.8 ± 0.1
1070	12	3.2e-14	3.0083	0.0e+0	0.0239	0.0005	21	0.76121	0.949	16.5 ± 0.1
1250	12	3.0e-14	3.0365	0.0e+0	0.0616	0.0005	8.0	1.00000	0.953	16.8 ± 0.1

Total fusion age, TFA= 16.61 ± 0.05 Ma (including J)

t = dwell time in minutes.

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Sample: Har-80 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39A r	40Ar*	Age (Ma)
670	12	2.0e-14	3.8073	0.0e+0	0.0236	0.0035	21	0.09607	0.732	16.1 ± 0.1
750	12	2.6e-14	3.1483	0.0e+0	0.0240	0.0011	20	0.24886	0.901	16.4 ± 0.1
870	12	1.6e-14	3.4269	0.0e+0	0.0724	0.0020	6.8	0.33341	0.824	16.4 ± 0.1
980	12	1.9e-14	3.3805	0.0e+0	0.1641	0.0018	3.0	0.43713	0.841	16.5 ± 0.1
1070	12	4.2e-14	3.1169	0.0e+0	0.0139	0.0010	35	0.68581	0.901	16.3 ± 0.1
1250	12	5.3e-14	3.0694	0.0e+0	0.0368	0.0008	13	1.00000	0.919	16.3 ± 0.0

Total fusion age, TFA= 16.33 ± 0.04 Ma (including J)

t = dwell time in minutes.

40(mol) = moles corrected for blank and reactor-produced 40.

Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Sample: Har-112 bio J=0.0032260

T	t	40(mol)	40/39	38/39	37/39	36/39	K/Ca	∑ 39Ar	40Ar*	Age (Ma)
670	12	2.6e-14	5.5718	0.0e+0	0.0231	0.0113	21	0.12688	0.398	12.9 ± 0.1
750	12	2.7e-14	4.0702	0.0e+0	0.0214	0.0051	23	0.30703	0.629	14.8 ± 0.1
870	12	2.7e-14	6.6346	0.0e+0	0.0561	0.0144	8.7	0.41718	0.357	13.7 ± 0.1
980	12	2.6e-14	5.6117	0.0e+0	0.1449	0.0109	3.4	0.54662	0.425	13.8 ± 0.1
1070	12	2.8e-14	3.9728	0.0e+0	0.0609	0.0050	8.0	0.74265	0.625	14.4 ± 0.1
1250	12	3.1e-14	3.3070	0.0e+0	0.0707	0.0023	6.9	1.00000	0.791	15.2 ± 0.1

Total fusion age, TFA= 14.33 ± 0.05 Ma (including J)

Weighted mean plateau age, WMPA= 14.72 ± 0.05 Ma (including J) Inverse isochron age = 15.34 ± 0.21 Ma. (MSWD =15.49; 40Ar/36Ar= 273.6 ± 5.5) Steps used: 750, 870, 980, 1070, 1250, (2–6/6 or 87% \sum 39Ar t = dwell time in minutes.

40(mol) = moles corrected for blank and reactor-produced 40. Ratios are corrected for blanks, decay, and interference.

 \sum 39Ar is cumulative, 40Ar* = rad fraction.

Table S1. Sample locations, kinematics, microstructures, deformation category and grain size

Harcuvar samples Quartz grain size analyses

	7103					Q.u.u. 12)	grain size					
	<u>UTM</u>	<u>UTM</u>					median	geometric				Def. conditions
<u>Sample</u>	Easting	Northing	Sample description	Sense of shear	Qtz recrystalliz.	# grains	diameter	mean (µ)	stdev	Feldspar deformation	additional microstructures, comments	category**
	(m)*	<u>(m)</u>					(μ)	-				
Har-1	290605	3777739	granite mylonite	top-NE	SGR, GBM	69	64.8	58.9	33.8	BLG, SGR	minor epi, ~3% biotite, no chlorite, obl qtz GSPO, subtle C' s.b.	3
											ultramylonite; wide range of quartz grain sizes (probably from SGR	
Har-2	290605	3777739	quartzo-feldspathic ultramylonite	top-NE	SGR+GBM	57	65.5	61.2	45.9	BLG, SGR	overprint of GBM)	3
											subtle top-NE sense of shear from feldspar sigma-clasts; sample	
Har-3	290596	3777809	2-mica granite mylonite/protomylonite	top-NE	GBM+SGR					SGR, fracturing	forqtz EBSD	3
											wide range of qtz grain sizes, qtz prism <a> slip inferred to be	
									22.4		dominant, subtle biot-lined C' s.b. & obl qtz GSPO, pervasive feldspar	
Har-4	290445	3777259	mylonitic quartzo-feldspathic gneiss	top-NE	SGR+GBM	63	64.8	62	32.1	SGR	rexstallization	3
Har-6	290286	3776882	amphibolite mylonite	top-NE	SGR+GBM					SGR+BLG	syn-kin hbl along C' shears	3
Har-8	289814	3776685	moderately-strained granite	unclear	GBM	63	154.1	162.8	164.6	SGR	~1% biot, ~1% chl after biot	4
Har-9	289814	3776685	biotite-quartz amphibolite	top-NE	minor SGR+GBM					minor SGR	C' shear bands with some feldspar BLG, synkin biot	3
Har-11	289733	3776473	weakly-strained granite sill	top-NE	GBM	53	126.7	125.8	93.1	SGR, myrm	subtle C' s.b., ~5% biot with no chlorite	4
Har-13	288960	3776088	weakly-strained granite	top-NE	GBM, SGR	59	70.3	75.2	40.5	SGR+BLG	top-NE C' s.b. with biotite and feldspar BLG, ~5% biot, minor chl	3
Har-16	269983	3769636	granite mylonite	top-NE	SGR	51	57.7	60.8	33	fracturing, BLG	synkin epi+biot, C' s.b. with biot & feldspar BLG, subtle obl qtz GSPO	2
											C' s.b., qtz obl GSPO, abundant titanite with asym biotite tails,	
Har-17	270283	3769527	high-strain granite mylonite	top-NE	SGR	53	38.9	35.9	17.7	BLG+SGR	abundant feldspar rexstalliz.	3
Har-17a	270283	3769527	high-strain granite mylonite	top-NE	SGR	50	41.1	42.8	16.6	SGR+BLG	S-C fabric, obl qtz GSPO, ~15% fine-grained biot	3
Har-19	270541	3769405	high-strain granite mylonite	coaxial	SGR+GBM	54	89.8	91.9	47.9	SGR+BLG, minor fracturing	conjugate shear bands - no bulk asymmetry	3
			0 0 ,							, , , , , , , , , , , ,		
Har-22	250306	3747693	quartz vein with slicks	top-NE	SGR						spectacular obl qtz GSPO, muscovite-fish, C-planes lined by muscovite	2
Har-28	262289	3762730	muscovite schist	top-NE	SGR						muscovite fish & biotite-lined C' s.b., localy qtz obl GSPO	2
											pervasive feldspar recrystallization, subtle obl qtz GSPO, <3% fine-	
Har-36	273422	3771354	granite mylonite	top-NE	SGR+GBM	58	101.7	96.1	43.9	SGR, BLG, minor fracturing	grained biot	3 or 4
Har-37	273409	3771284	low-strain granite	top-NE	GBM+SGR	202	96.5	100	63	SGR	sericitized feldspar, synkin epi & titanite, subtle qtz obl GSPO	4
Har-38	273668	3770836	granite sill	top-NE	GBM	101	172.1	172.4	114.9	SGR	ultramylonite, abundant epi and associated titanite	4
Har-40	274121	3770603	moderately-strained granite	top-NE?	GBM	101	272.2	272	11	SGR	pervasive feldspar recrystallization, subtle C' s.b. and sigma clasts	4
nar-40	2/4121	3//0603	moderately-strained granite	top-ive r	GBIVI					SGR	obl GSPO in recrystallized feldspar, <2% biot with some chl after biot,	4
Har-41	274524	3770359	weakly-strained granite	top-NE	GBM	77	149.4	151.1	79.2	SGR	sericititization of feldspar common	4
		3776345	, ,			,,	143.4	131.1	73.2		C-planes & C' s.b. with BLG recrystalliz., ~10% biot+chl, obl qtz GSPO	2
SJ-1	289626	3776345	granite mylonite	top-NE	SGR					BLG		2
			high-strain gneiss with narrow band of lower-								quartz SGR is incomplete, subtle obl GSPO in qtz & feldspar, ~10%	
SJ-5	271171	3768698	T deformation w/060 lineation	top-NE	SGR, GBM?					BLG+SGR	biot+chl	3
SJ-6	271529	3768297	granite mylonite	top-NE	GBM, SGR					SGR	subtle obl qtz GSPO, ~5% biot+chl	4
											C' s.b., subtle obl qtz GSPO, abundant epi, chl, some garnet; GS	
SJ-7	271529	3768297	quartzo-feldspathic mylonite	top-NE	SGR+GBM					SGR+BLG	overprint on amphib fabric	3
											subtle C' s.b., local qtz obl GSPO, discontinuous qtz lenses,	
SJ-8	272069	3768086	granite protomylonite w/ N-S lineation	top-N	SGR+GBM	59	61	59.7	29.6	minor BLG	incomplete quartz SGR	2
SJ-16	276758	3773713	granite mylonite with shear bands	top-NE	GBM+SGR	53	97.8	96.3	29.8	SGR	C' s.b. with biot, local qtz obl GSPO, ~10% biot, no chl	4
SJ-17	277331	3773162	granite protomylonite	top-NE	SGR, GBM	54	79.6	78	34.9	SGR+BLG	incomplete qtz SGR, C' s.b., ~10% biot, no chl	3
SJ-18	277524	3772973	granite with high-strain shear zone	coaxial	SGR+GBM	73	82.7	79.7	33	SGR+BLG	~10% biot, minor chl; symmetric conjugate shear bands	3
											(thin section is too thick, hard to see microstructures clearly), C' s.b.,	
											local obl qtz GSPO, pervasive feldspar rxstalliz., some large qtz grains	
SJ-19	277867	3772247	low-strain granite	top-NE	GBM, SGR					SGR	lack SGR overprint	4
SJ-21	277084	3771866	granite ultramylonite	top-NE	GBM+SGR	61	67	63.6	25.6	SGR	~10% biot, no chl, abundant felds par SGR, C' s.b. and obl biot laths	4
											crudely developed S-C-C' fabric, qtz ribbons with relatively little	
7-H1	264697	3757318	protomylonitic 2-mica granite	top-NE	BLG II	60	10.1	10.3	4.4	fracturing	recrystallization	1
											S-C-C' fabric, obl qtz GSPO, ~8% muscov+biot (locally chloritized),	
H-3	263593	3759560	leucogranite S-C-C' mylonite	top-SW	BLG II	75	8.7	8.6	2.5	cataclasis, no recrystalliz.	feldspar sericitization	1
										chem	top-NE asym folds, obl qtz GSPO, fractured epi porphyroclasts (~5%),	
H-5	263197	3759125	granite mylonite	top-NE	SGR, BLG	55	7.9	8	2.1	breakdown+BLG+cataclasis	~20% fine-grained white mica	1
			ÿ ,		, -						NOT mylonitic; coarse-grained, interlocking quartz, feldspar, biotite,	
H-6	263131	3759212	granite with gneissic fabric								epidote, local zones of quartz subgrain development & BLG	
			5 5								gneissic fabric with brittle overprint of feldspar, white mica	
H-7C	263351	3759584	gneiss								development from feldspar, qtz blobs/pods show BLG II	
			<u> </u>							fracturing, some chemical	S-C-C' fabric, qtz obl GSPO, some qtz p.clasts and ribbons without	
H-7D	263351	3759584	mylonitic gneiss	top-NE	SGR+BLG	77	13.8	13.7	4.5	breakdown	recryst., ~12% muscov (compared to ~5% in nonmylon protolith)	1
I,5	203331	3,33304	my formule grielos	tob-IAE	JONIBLO	l ''	15.0	23.7		Dicakuowii	quartz & feldspar obl GSPO, abundant synkin epi & biot, C' s.b., some	1
H-8	263340	3759897	quartzo-feldspathic mylonite	top-NE	SGR, BLG	209	11	10.6	4.5	fracturing & cataclasis, BLG	ribboned qtz porphyroclasts lacking pervasive recrystallization	1
I	203340	3,33031	quarte relaspatific mylorite	top-INL	Jon, DLG	1 200	11	20.0				1

H-10	263877	3759932	quartzo-feldspathic mylonite	top-NE	BLG+SGR	227	6.9	6.8	3.9	cataclasis, chem breakdown (no BLG)	obl qtz GSPO, some qtz porphyroclasts; qtz ribbons without recrystalliz common, brittle-ductile C' s.b.	1
H-22	266087	3759957	shear band cutting gneissic fabric	top-NE	SGR					fracturing, chemical breakdown	abundant fine-grained epi & biot/muscov matrix, rounded feldspar porphyroclasts likely derived from fracturing, local S-C fabric ~3% biot, subtle qtz obl GSPO, 1 C' s.b., some very large qtz grains	2
H-33	288225	3772485	leucogranite mylonite	top-NE	GBM, minor SGR	65	89.6	90.3	51.3	SGR+BLG, myrmek.	lacking SGR	4
н-34	289373	3771258	meta-arkose? mylonite	top-NE	SGR	58	31.3	32.1	9.3	pervasive SGR?	~10% f-grained chl, ~5% opaques, ~5% f-gr epi, ~40% qtz, ~40% grungy feldspar - mixed with qtz, obl qtz GSPO	2
H-35	289303	3771314	granitoid ultramylonite	top-NE	SGR, GBM	104	46.2	45.7	22.1	pervasive feldspar SGR	~5% f-gr epi, ~5-10% mica (mostly chl after biot)	3
н-36	292673	3773185	granitoid (?) ultramylonite (meta-arkose?)	top-NE	SGR+GBM	51	107.6	102.8	38.6	SGR?	grungy feldspar - difficult to evaluate def mechanisms, particularly given potential metased protolith, all mica is chl, subtle qtz obl GSPO	3
										static recrystalliz., BLG along shear bands, myrmek., Qtz	~20% hbl, ~10% qtz, obl qtz GSPO, minor feldspar recrystalliz overprinting static recrystallz.; amphib-facies protomylonite with	
H-37A	290084	3776991	shear band cutting amphibolite	top-NE	SGR, GBM					SGR along high-strain zones	upper GS-facies shear bands	3
Н-37В	290084	3776991	leucogranite mylonite w/ hbl-rich layers	unclear	GBM	110	143.3	140.6	91.5	SGR, myrmek.	weakly-developed mylon fabric	4
H-37C	290084	3776991	amphibolite with NE-trending lin	top-NE	minor GBM					static?, myrmek, minor BLG SGR? recrystallized grains	hbl aligned along subtle C' s.b.	4
H-38	289802	3776569	leucogranite mylonite/ultramylon	top-NE	GBM	60	134.4	143.7	74.3	mixed with qtz & myrmek.	obl qtz GSPO feldspar SGR dominant, C's.b., obl qtz GSPO, incomplete qtz SGR	4
н-39	290314	3777223	leucogranite mylonite	top-NE	GBM+SGR	81	57.4	58.1	31.3	SGR, BLG, myrmek.	overprint of GBM (some very large qtz grains) S-C-C' fabric, ~30% mica (mostly muscov, some chl+biot),mica fish, ~60% qtz, feldspar (?) porphyroclasts altered to cryptocrystalline	3
H-40	293448	3774209	musc-chl mylonitic schist	top-NE	SGR+GBM	62	55.4	53.5	23.8		grunge (not on matrix)	3
11.42	202610	2772049	guadra faldanathia ultra mulanita	ton NE	SCD CDM	84	44.4	43.1	14.7	s c n	pervasive feldpsar SGR, locally altered to cryptocrystalline grunge & f- grained sericite, ~10% biot+chl+white mica, qtz SGR is fairly pervasive, but locally some large quartz grains from GBM, obl qtz GSPO	3
H-42	293610	3773948	quartzo-feldspathic ultramylonite pegmatite protomylonite, cuts high-strain	top-NE	SGR, GBM					SGR		
Har-50a	270543	3769406	mylon fabric	unclear	GBM+SGR	119	131.7	133.9	44.5	SGR, myrmek.	feldspar SGR along porphyroclast margins	4
HV-32	278861	3765380	biotite granitoid mylonite high-strain felsic ultramylonite within platy	top-NE	GBM. SGR					SGR + BLG, myrmek	C' s.b. common, ~40% of biot is chloritized	3 or 4
HV-33	278866	3765459.2	bio-rich mylonite	top-NE	GBM, SGR	80	129.7	120.6	59.2	SGR	ob qtz GSPO, complete feldspar SGR, partial chloritization of biot	4
HV-34	278466	3765839.7	mylonitic milky quartz vein	top-NE	GBM	73	201.5	210.4	164.3		minor muscov defines macroscopic fol, ob qtz GSPO very little chloritization of biot, biot-lined C's.b., pervasive feldspar	4
HV-35	278473	3765818.1	granite ultramylonite	top-NE	GBM					SGR, myrmek	rexstalliz - mixed with quartz biot-lined C' s.b., ~25% of biot is chloritized, relatively minor feldspar	4
HV-36	278275	3766103.6	granitoid protomylonite, locally gneissic	top-NE	GBM, SGR	85	172.4	176.6	65	SGR+BLG	rexstalliz.	4
HV-37	277321	3766777.4	quartz-rich portion of leucogranite mylonite	top-NE	GBM	115	209.3	210.2	129.3		minor biot with trace chl, obl qtz GSPO	4
HV-38B	277313	3766779.2	kyanite schist			221	141	131.3	71			4
HV-40	276626	3767985.3	mylonitic granitoid gneiss	top-NE	GBM, SGR	60	100.4	95.5	47.3	minor BLG	~15% biot (no chl), ~5% epi p.clasts, qtz SGR heterogeneously distribued (locally absent, locally dominant), obl qtz GSPO, very little feldspar rxstalliz (perhaps b/c abundant biot takes up much strain)	3
				•							~20% biot (minor chlo)+hbl, ~5% epi, pervasive feldspar SGR, subIte	
HV-41	276639	3767995.7	ultramylonitic granitoid gneiss	top-NE	GBM	56	104.1	104.9	37.3	SGR	alignment of biot & hbl along C' bands	4
HV-41B HV-43A	276639 280228	3767995.7 3770867	gneiss/protomylonite mylonitic milky quartz vein	unclear top-NE	GBM SGR+GBM	64	94.7	88.9	40.9	minor SGR	minor chloritiz of biot, epi common (associated with biot) obl qtz GSPO	4 3
107.46	270525	2760670 6	lougographic and louis	ton NE	CCD CDM	60	65.2	62.8	37.2	CODERIC	pervasive feldspar rxstalliz, well-defined obl qtz GSPO, C' s.b., biot+muscov - no chl	3
HV-46 HV-48	278535	3769679.6	leucogranite mylonite	top-NE	SGR+GBM	97	64.9	64.2	37.2 27.3	SGR+BLG		3
HV-48 HV-49	279055 279551	3770091.1 3770349.5	mylonitic milky quartz vein leucogranite mylonite	top-NE top-NE	SGR, GBM SGR+GBM	118	93.6	97.4	27.3 34	SGR+BLG	qtz SGR overprints GBM, qtz obl GSPI, some epi-rich layers obl qtz GSPO, pervasive feldspar rexstalliz, ~1% muscovite	3
				•							obl qtz GSPO, pervasive feldspar rexstalliz, ~3% biot+muscov - no chl,	
HV-50/Har-81		3770388.4	leucogranite mylonite	top-NE	SGR+GBM	85	82.1	83.9	37.6	SGR, BLG	some subtle C' s.b. (same location as Har-81) ~90% feldspar rxstalliz., locally qtz GBM dominant with minor SGR, obl qtz GSPO, ~3-5% biot with no chl, qtz mixed with rxstallized	3
HV-51	281222	3771206.2	leucogranite ultramylonite	top-NE	GBM+SGR	58	43.7	45.1	22.7	SGR	feldspar weakly-developed mylon fabric, ~5% hbl (concentrated in layers),	4
HV-52/Har-82	282456	3771404	layered protomylonitic gneiss	top-NE	GBM+SGR	71	76.4	80.7	31	BLG, myrmek	$subtleC's.b., tracebiot\&nochl(samelocationasHar-82)\\ oblqtzGSPO,nochloritizationofbiot,locallyqtzSGRisdominant,a$	4
HV-53	283365	3772186.6	leucogranite mylonite	top-NE	GBM+SGR	60	67.6	65.5	28.5	SGR+BLG, myrmek	$few \ C' \ s.b.$ $some \ C' \ s.b., ~50\% \ of \ biot \ is \ chloritized, \ myrmek \ development \ very$	4
HV-54	285169	3772593.6	layered leucogranite protomylonite	top-NE	GBM	97	217.4	215	121.9	myrmek, SGR	common along feldspar p.clasts	4

I						I					obl qtz GSPO, some subtle C' s.b., pervasive feldspar rxstalliz, no	
HV-56	287128	3772830.9	leucogranite ultramylonite	top-NE	SGR, GBM	58	51.9	52.5	23.7	SGR, BLG	chloritization of biot	3
HV-57	207002	2772000 0		4 NE	CDM CCD	108	62.4	63.4	36.6		some qtz SGR overprint of GBM, obl qtz GSPO, macroscopic fol defined by zones of aligned feldpsar (not recrystallized)	3
HV-57	287903	3773098.8	mylonitic milky quartz vein	top-NE	GBM, SGR	108	62.4	63.4	30.0		biot-lined C' s.b. common, obl qtz GSPO, ~30% of biot is chloritized,	3
HV-60	287696	3773839.5	biotite granitoid mylonite/protomylonite	top-NE	SGR+GBM	79	66.3	65.8	38.7	BLG	locally qtz SGR is dominant	3
HV-62	287390	3774301.5	layered leucogranite mylonite	unclear	GBM, SGR	59	195.9	197.4	78.1	SGR, BLG	minor chloritiz of biot, qtz SGR locally not important	4
											very long, single layer quartz grains present, little to no qtz SGR,	
HV-67	286588	3775148.6	leucogranite mylonite	unclear	GBM	84	128.3	122.7	95.3	SGR	feldspar myrmekite common, ~1% biot with trace chl some very large qtz grains present, ~5% biot - no chl, some subtle biot-	4
HV-69	286374	3774779.2	leucogranite mylonite	top-NE	GBM	92	131.8	138.5	101.9	SGR, myrmek	lined C's.b.	4
											biot-lined C's.b., feldspar SGR grains are relatively large, ~5-7% biot	•
HV-71	286383	3774572.7	massive leucogranite mylonite	top-NE	GBM					SGR, myrmek	with trace chl	4
HAR73	278467	3765840	leucogranite ultramylonite	unclear	GBM					SGR	~5% biot with no chl, pervasive feldspar rxstalliz., qtz does not form distinct continuous layers	4
TIAK/3	270407	3703040	biotite-rich mylonite with shallowly-dipping	unciear	ODIVI					July	distinct continuous layers	7
			foliation (anomalous orientation compared								~15% biot with almost no chl, grungy feldspar, locally large irregular	
HAR90, 90a	272480	3761864	to other steep shear zones here)	unclear	SGR, GBM					SGR+BLG?, chem breakdown	qtz grains lack SGR, anhedral titanite common (associated with epi),	3
											relatively large, fractured epi porphyroclasts common, no	
HAR91	272339	3761907	10-20 cm thick mylonite zone	unclear	GBM, SGR					SGR, BLG, some myrmek	chloritization of biot, some subtle indicators of top-NE shear (obl qtz & feldspar) but overall poorly developed shear indicators	4
HAKSI	2/2333	3/0190/	10-20 cm thick mylonite zone	unciear	GBIVI, 3GK					3dk, bld, some mynnek	nonmylonitic, fresh coarse-grained biot+muscov; odd myrmek	4
			muscovite-garnet schist with variable								intergrowth btw biot & qtz (?) in one spot; garnet has inclusion of	
HAR92b	272298	3761918	amounts of biotite								rounded biot, one small grain of kyanite noted	
HAR95	271971	3762001	quartz vein in amphibolite-rich gneiss							ah a sata at has a tada sa a sata a a	nonmylonitic, huge qtz grains with some GBM & SGR	
HAR96	271871	3762096	biotite augen gneiss (weakly mylonitic)	unclear	GBM+SGR					chemical breakdown, minor SGR?	~10% biot, ~50% of biot is chloritized, grungy feldspar is pervasively sericitized, discontinous qtz does not form clear layers	3
HARSO	2/10/1	3702030	blottle augen griess (weakly mylonitic)	unciear	GBW13GK					JUN:	4-5 cm shear zone; shear bands abundant, obl qtz GSPO, rxstallized	3
											feldspar mixed with fine-grained biot, large epi/allanite porphyroclasts	
HAR97	272196	3764254	discrete mylonitic shear zone in gneiss	top-NE	GBM+SGR					SGR, BLG?	common, no chloritization of biot	4
											S-C-C' fabric, grungy feldspar - minor SGR+BLG?, locally pervasive small qtz subgrain development, other qtz-rich areas characterized by	
HAR98	272123	3764740	mylonitic muscovite schist	top-NE	GBM+SGR						very large & irregular grains	3
											relatively large Fe-rich (green pleochroic) epi common, obl qtz GSPO,	
HAR99	271976	3765905	mulanitia nagmatita	top-NE	GBM+SGR					SGR+BLG, fracturing	C' s.b. sigma-type clasts, partial chloritization of biot, muscov is commonly sheared	3
HARSS	2/15/0	3703903	mylonitic pegmatite	top-INE	GBIVITSGN					3GN+BLG, Hacturing	large feldspar along margin of vein is not recrystallized, epi veinlet	3
											along top margin, subtle obl qtz GSPO suggests dextral (orientation	
1140404	274040	2766405			CDM CCD	93	105.8	101.2	37.9		unclear), qtz SGR polygonization in some areas (but GBM is dominant)	3
HAR101	271919	3766105	quartz vein, parallel to gneissic foliation		GBM, SGR	93	105.8	101.2	37.9		qtz ribbons mostly lacking recrystallization, pervasive feldspar	3
										cataclasis, fracturing, chem	fracturing/crushing, evidence for mixed qtz slip, ~2% epidote, biot is	
HAR103	256633	3759523	mylonitic biotite-feldspar-rich gneiss	top-NE	BLG+SGR					breakdown	not chloritized, C' s.b.	1
HAR103A	256633	3759523	mylonitic quartz vein		BLG+SGR							
										fracturing, local cataclasis &	ribboned quartz grains mostly lacking recrystallization, evidence for qtz basal slip based on inferred CPO, local obl qtz GSPO & white mica-	
HAR103B	256633	3759523	protomylonitic pegmatite		BLG+SGR	87	15.1	15.3	3.6	chemical breakdown	lined shear band (dextral)	1
											subtle indicators of dextral shear (e.g. shear bands, fractured feldspar	_
HAR104	268690	3769217	mylonitic tank pass	top-SW?	SGR	87	71	71.8	24.8	BLG, fracturing	porphyroclasts), pervasive fracturing of feldspar	2
HAR106	268419	3766125	thin quartz vein associated with pegmatite with NE-trending lineation	top-NE	GBM+SGR					minor BLG+SGR, fracturing	partial chloritization of biot, obl qtz GSPO	3
HAR110	274132	3770583	protomylonitic pegmatite	top-NE	GBM					SGR	some subtle C' s.b. & sigma-type clasts, minor chloritization of biot	4
1			strained leucogranite with NW-trending								<u> </u>	
HAR114	254628	3753807	lineation		annealed					static		
	25.455	275206:									relatively coarse-grained muscovite lacking shear bands,	
HAR116	254664	3753861	muscovite schist (not mylonitic)		static/annealed						static/annealed qtz rextalliz, minor GBM spectacular S-C-C' fabric, qtz basal slip inferred to be common,	
											muscovite is fine-grained & sheared, some ribboned qtz lacking	
										_	recrystalliz, some feldspar porphyroclasts appear to be	
15-JB-03	274669	3775001	quartzite mylonite	top-NE	SGR+BLG	53	16.7	16.5	5.3	fracturing	disaggretagated by fracturing	1
											minor feldspar porphyroclasts are fractured, obl qtz GSPO, fol locally rotated along brittle-ductile shear bands, transposition of synkin qtz	
15-JB-15	274504	3774714	quartzite mylonite	top-NE	BLG	60	10.1	10	3.8		veinlets, very fine grained sheared white mica common	1
											pervasive cataclastic overprint, brittle top-NE shears, some zones of	
15-JB-25	275129	3774361	meta-arkose mylonite/cataclasite	top-NE	BLG						qtz BLG, clasts showing SGR+BLG, very fine grained mica abundant - locally aligned // to fol	1
15 75 25	2,3123	3774301	ca arkose mylomic/catalasite	top NE	DEG	ı				Į	,	- 1

15-JB-26	275172	3774314	leucogranite mylonite	top-NE	GBM, SGR	55	77.9	79.6	37.6	SGR, GBM	abundant feldspar rxstalliz., locally qtz SGR not important, partial chloritization of biot, subtle obl qtz GSPO, sigma clasts	4
15-JB-27	275177	3774311	leucogranite mylonite with pseudotachylyte								pseudotachylyte & cataclastic overprint on predominantly amphibolite-facies mylonitic fabric	
15-JB-30	275322	3774145	leucogranite mylonite	top-NE	GBM, minor SGR	72	111.1	107.7	56.1	SGR, myrmek	obl qtz GSPO, subtle C' shear bands, partial chloritization of biot (~25%)	4
15-JB-53	277628	3771387	leucogranite mylonite	top-NE	GBM, minor SGR	58	69.5	74.82	44.1	SGR	C' s.b., abundant feldspar SGR, little to no chloritization of biot, some very large qtz grains unaffected by SGR	4
15-JB-86	288745	3770968	leucogranite mylonite	top-NE	SGR	56	51.3	49.1	21	SGR	obl qtz GSPO, C' s.b. with fine-grained chl, pervasive feldspar SGR, all mica is chlorite, ~10% epidote	3
15-JB-89	288657	3771072	leucogranite mylonite	top-NE	SGR+GBM	60	132.8	126.8	46.8	SGR	obl qtz GSPO, pervasive feldspar SGR, musc+biot with trace chl qtz GBM dominant, locally SGR overprint, ~50% of biot is chloritized,	3
15-JB-96	288727	3771714	leucogranite mylonite	top-NE	GBM, SGR	60	125	120.2	54	SGR, myrmek, BLG	some subtle C' s.b, relatively little feldspar rxstalliz.	4
15-JS-67	265165	3761922	granitoid mylonite zone	top-NE	SGR	52	47.7	45.7	20.2	BLG, fracturing	S-C-C' fabric, obl qtz GSPO, muscov + sheared chloritized biot heterogenous recrystallization - SGR in some areas, other areas characterized by patchy extinction & relative large subgrains, sutured grain boundarys from BLG (very small bulges), subtle obl qtz GSPO	2
15-JS-70	265191	3762079	mylonitic quartz vein (low strain)	top-NE (?)	SGR, BLG	55	43.4	42.6	19.8		(but fol is not well defined) obl qtz GSPO, C' s.b. in biot-rich areas, ~25% fine-grained biot, minor qtz BLG overprint of SGR, pure-qtz layers are very thin, epi common	1 or 2
16-3-BW2	274647	3774589	biot-rich meta-arkose mylonite	top-NE	SGR, BLG	51	37.7	39.4	15.5	SGR?	but no chlorite	1
											rounded detrital feldspar grains are brittely deformed, little evidence for rxstalliz, discountinuous qtz pods; biot, actinolite/hbl, epi all	
16-3-BW3	274738	3774871	meta-arkose mylonite	unclear	SGR+BLG					fracturing	common; weak foliation development due to abundant rigid feldspar	1

^{*} UTM locations given in NAD27 Datum

^{**}categories for deformation conditions

^{1:} mid- to lower GS facies microstructures

 $^{2:} pervasive \ upper\ GS\ microstructures, little\ to\ no\ evidence\ of\ amphibolite-facies\ deformation$

^{3:} lower amphibolite facies to upper GS (transitional or evidence for upper GS overprint on amphibolite-facies deformation)

^{4:} amphibolite-facies fabric. little to no evidence for GS overprint

Little Buckskin samples

Ouartz	grain	Size	ana	VSES

Tittle Ducksi	in samples	,				Quartz	grain size a	ilalyses				
	<u>UTM</u>	<u>UTM</u>					<u>median</u>	geometric	stde			Def.
<u>Sample</u>	Easting	Northin	Sample description	Sense of shear	Qtz recrystalliz.	# grains	<u>diameter</u>	mean (µ)	v	Feldspar deformation	additional microstructures, comments	conditions
	<u>(m)*</u>	g (m)					(μ)		_			category**
LB-H-11	266015		leucogranite ultramylonite	top-NE	GBM	102	144	135	64	SGR	obl mica laths, pervasive feldspar SGR (no BLG or fracturing)	4
LB-11-113	266084		leucogranite mylonite	top-N	SGR + GBM	75	60	58	30	SGR	>80% feldspar recrystalliz., synkin biot (some chl) & titanite fish, subtle C' s.b.	3
LB-9-293	266654		leucogranite mylonite	unclear	GBM	61	250	272	185	SGR, minor fracturing, no BLG	qtz prism <a>, 1% mica (chloritized biot, minor muscov)	4
LB-11-171			mylonitic quartz vein	top-NNE	GBM, SGR	249	76	73	48		inferred prism <a> dominant, some grains suggest basal slip	3
LB-11-173	267107	3777404	meta-arkose mylonite	app. top-NE	SGR	59	44	45	18.5	minor BLG, SGR?	~20% fine-grained biotite, qtz obl GSPO, biotite-lined C' s.b., 5-10% epi	2
										SGR, mnor kinking and fracturing,		
LB-7-197	268302	3776275	leucogranite ultramylonite	top-NE	GBM	62	216	205	103	not BLG	prism <a> qtz slip, subtle qtz obl GSPO, abundant feldspar SGR	4
											~4% biot (~50% chloritized), some very large qtz grains (1-layer wide grains),	
LB-7-154	267831	3777126	leucogranite ultramylonite	top-NE?	GBM	60	189	186	104	SGR	pervasive feldspar rexstallization	4
											abundant feldspar SGR, large prism <a> qtz grains, subtle qtz obl GSPO, ~2%	
LB-7-126	267600	3777596	leucogranite mylonite	unclear	GBM	76	142	139	88	SGR, no BLG	biotite, trace muscovite	4
											S-C-C' fabric, abundant feldspar SGR, ~5% biot with some chl, no muscov.,	
LB-7-190	268923	3775793	leucogranite mylonite	top-NE	GBM	61	281	256	150	SGR	smeared out biot along C-planes	4
HAR108	270606	3777903	mylonitic tank pass	top-NE	GBM	73	200	200	64	SGR	obl qtz GSPO, pervasive feldspar rxstalliz, ~3% biot (~50% chloritized)	4
											~50% calcite, rounded detrital quartz & feldspar, quartz mixed with calcite, calcite	
LB-11-3	272041	3776984	calc. quartzite mylonite	top-NE	SGR+BLG						obl GSPO	1
LB-10-231	271870	3777483	meta-arkose mylonite	app. top-NE	SGR	50	50	51	21		synkinematic epidote + chlorite, obl qtz GSPO, subtle C's.b.	2
LB-10-232	272220	3777737	quartzite	app. top-NE	SGR, BLG	133	11	12	3		obl qtz GSPO, ~10% epi, <5% chl	1
											obl qtz GSPO, grungy feldspar locally altered to epi & Fe-poor chl, ~5-10% epi,	
LB-11-9	272583	3777778	meta-arkose	unoriented	SGR	59	34	33	13	BLG, chemical breakdown	synkin chl+epi vein is buckled (cool!)	2
LB-7-106	272397	3778843	leucogranite mylonite	top-NE	GBM	69	212	223	106	SGR, myrkem, no BLG	>50% feldspar SGR, prism <a> qtz slip, subtle obl qtz GSPO, <4% biot, no muscov	4
LB-7-116	272672	3778505	leucogranite? ultramylonite	unclear	GBM	97	355	358	213	static recrystalliz, SGR	qtz prism <a> domimant, >70% feldpsar recrystalliz., <2% biot, no muscov.	4
											nearly complete SGR of feldsar, qtz obl GSPO, subtle C' s.b. with recrystallized	
LB-7-81	272268	3779625	leucogranite ultramylonite	top-NE	GBM					SGR	muscov	4
											recrystallized quartz grains up to ~3 mm wide, subtle S-C fabric, <5% mica (biot,	
LB-7-71	272716	3778930	leucogranite mylonite	top-NE	GBM	53	233	237	168	SGR (no BLG)	chloritized biot, trace muscov)	4
LB-7-69	272794	3778879	mylonitic quartz vein	top-NE	GBM	219	271	274	163		prism <a> slip dominant, trace mica & feldspar define fol, qtz obl GSPO	4
LB-7-77	272674	3779197	amphibolite	unclear								
LB-H-23	273171	3778877	hbl amphibolite	unclear	GBM					static recrystalliz.	weakly mylonitic; synkin hbl	4
LB-H-24	273239	3778979	hbl amphibolite									
LB-H-25	273354	3779049	mylonitic quartz vein	top-NE	SGR, GBM	204	44	44	27		SGR overprint on GBM, oblique quartz GSPO	3
											oblique preferred orientation of biotite, qtz layers typically 1 grain wide,	
LB-7-21	273665	3778681	leucogranite(?) ultramylonite	top-NE	GBM					SGR	pervasive feldspar rxstalliz	4
I			•								<5% mica (biot with some muscov), abundant feldspar SGR but large	
LB-7-12	273034	3779791	leucogranite mylonite	unclear	GBM	54	287	276	133	SGR, minor BLG	porphyroclasts still present	4
LB-7-28	273632	3779232	mylonitic quartz vein	top-NE	GBM	268	183	187	109		irregular quartz grains >100 μm wide, obl GSPO	4
LB-H-26	273792	3779078	leucogranite mylonite	top-NE	GBM	81	196	197	106	SGR	S-C-C' fabric, pervasive feldspar SGR, ~3% biot, 5-10% muscov, mica fish	4
LB-7-3	274007	3779010	leucogranite mylonite	top-NE	GBM	95	155	156	114	SGR	S-C fabric visible at outcrop scale, ~3% biot, trace muscov.	4

^{*} UTM locations given in NAD27 Datum

^{**}categories for deformation conditions

^{1:} mid- to lower GS facies microstructures

^{2:} pervasive upper GS microstructures, little to no evidence of amphibolite-facies deformation

^{3:} lower amphibolite facies to upper GS (transitional or evidence for upper GS overprint on amphibolilte-facies deformation)

^{4:} amphibolite-facies fabric. little to no evidence for GS overprint

Buckskin - Rawhide samples Quartz grain size analyses median geometri UTM UTM Def. conditions Sample description Sense of shear Qtz recrystalliz. Feldspar deformation additional microstructures, comments Sample Easting Northing # grains c mean stdev diameter category** (m)* 764620 (u) (<u>u</u>) (m) 3783440 3-231 quartzo-feldspathic mylonite (meta-SGR, GBM fracturing, BLG, SGR obl qtz GSPO, C's.b. 3 top-NE 764686 3783496 SGR, GBM BLG, SGR? obl qtz GSPO, C' s.b. cleavage 3-230 meta-arkose mylonite top-NE 59 61 2 56.4 25.3 3 3-214 773260 3782512 quartzo-feldspathic mylonite (granitic) top-NE SGR, minor BLG 70 16.3 15.8 5.9 fracturing & catacl., BLG, fl. perthite obl atz GSPO, C's.b. 1 subtle S-C fabric, dark brown mica common, some calcite 773260 3782512 porphroclasts - postmylonitic replacement? marble mylonite top-NE 3-214a 1 cataclastic carbonate just below beautiful S-C fabric (brittle-ductile?), some synkin chlorite 224357 3788294 detachment top-NE defining S-C fabric in one area, grungy fine-grained calcite matrix 3-137 layered bio-hbl quartzo-feldspathic 5-161 232780 3774982 mylonite top-NE SGR obl qtz GSPO, local SC fabric, C' s.b. 2 5-190 231139 3776805 meta-arkose mylonite top-NE SGR 63 36.8 37.7 14 BLG, SGR, fracturing, myrmek. obl qtz GSPO, C's.b. 2 237161 3771422 aplite mylonite SGR 60 44 3 43.2 20.2 obl qtz GSPO, some qtz porphyroclasts 1-110 top-NE 2 8-4 236366 3772317 calcareous meta-arkose mylonite top-NE GBM, SGR obl atz GSPO, C's.b. 3 obl qtz GSPO, qtz grain pinning by mica, muscovite fish, qtz c-8-5 236400 3772355 quartzite (arenite) top-NE GBM. SGR 61 93 93.3 54.9 axis opening angle suggsts T~400 C 3 1-52 229759 3779611 porphyritic granite mylonite top-NE SGR 75 42.7 38.6 25 fracturing, BLG obl qtz GSPO, qtz ribbons, C' s.b. 2 SGR+BLG 60 8.38 3789161 top-NE 29 fracturing, minor BLG, SGR? obl qtz GSPO, qtz ribbons, C' s.b. 3-143 775834 meta-arkose mylonite 8 37 1 2-34 232263 3784327 porphyritic granite mylonite top-NE SGR fracturing & local catacl., BLG obl qtz GSPO, C' s.b. 2 4-339 239547 3785134 porphyritic granite mylonite top-NE SGR+BLG fracturing & catacl., BLG obl qtz GSPO, C' s.b., qtz ribbons 1 local obl calcite GSPO & SC fabric, finely-recrystallized calcite 9-257 238062 3787678 top-NE SGR grain size, minor qtz-rich clasts show SGR+BLG 1 or 2 epi+cpx marble mylonite 238826 3788528 granite mylonite w/ muscov.+garnet SGR fracturing & catacl., BLG, fl. perthite obl qtz GSPO, C' s.b., mica fish 9-206 top-NE 60 36 1 39 1 20.5 2 pervasive SGR, minor BLG, SGR+GBM 4-188 239295 3789483 granite mylonite w/ muscov.+garnet (YZ-cut) myrmek. NE-trending isoclinal fold, syn-folding biot. 4 4-175 238597 3790352 amphibolite gneiss (60% hbl, 40% plag) (no quartz) static recrystallization NE-trending hbl lineation, granoblastic texture SGR+GBM 2-8 239394 3789562 hbl-rich qtz dioritic mylonitized gneiss top-NE fracturing, minor BLG obl qtz GSPO, qtz ribbons, C' s.b., synmylon. hbl 2 SGR+GBM 239178 3789780 quartzo-feldspathic gneiss/mylonite top-NE fracturing, minor SGR & BLG obl qtz GSPO, qtz ribbons, C' s.b. 1-91 2 4-636 239755 3789272 granite mylonite w/ muscov.+garnet top-NE SGR 61 56.5 56.6 24.4 fracturing & catacl., BLG, fl. perthite obl qtz & BLG feldspar GSPO, C' s.b., mica fish 2 quartzo-feldspathic gneiss, weakly 1-90 239168 3790129 mylonitic top-NE GBM+SGR minor BLG, fracturing obl qtz GSPO, minor qtz recrystalliz.., C' s.b. 3 10-161 254522 3783645 quartzite (silty arenite) mylonite top-NE SGR+BLG obl qtz GSPO, C' s.b., synmylon. qtz veins, muscovite fish 1 260260 3790913 meta-arkose mylonite top-NE SGR fracturing, BLG, SGR? obliatz GSPO 1-122 2 SGR 5-57 254416 3797210 meta-arkose mylonite top-NE 61 34.5 34.8 12.9 BLG, SGR, fracturing, myrmek. obl qtz GSPO, C' s.b., minor calcite layers with epidote 2 1-117 260080 3791941 porphyritic granite mylonite top-NE SGR+GBM fracturing, SGR, BLG obl qtz GSPO, C's.b. 3 5-29 258611 3794024 meta-arkose mylonite top-NE SGR, GBM BLG, SGR, fracturing, myrmek. obl qtz GSPO 3 5-24 259073 3793973 porphyritic granite mylonite top-NE SGR, GBM SGR, BLG, fracturing, myrmek. obl qtz GSPO, C' s.b., local SC fabric 3 259180 3794588 porphyritic granite mylonite top-NE SGR fracturing & local catacl., BLG obl qtz GSPO, qtz ribbons dominant, C's.b., 5-35 2 qtz zones are small, discontinuous; ~15% mica (mostly biot, locally chloritized), feldspar has undergone relatively little 12-BS-2 270858 3784030 meta-arkose (?) mylonite dextral SGR fracturing deformation, subtle shear bands 2 C's.b. and subtle obl gtz GSPO, ~15% biot with minor chl, 12-BS-3 269561 3783005 biotite granite mylonite top-NF SGR 60 50.7 48.1 18 BLG+SGR pervasive feldpsar recrystallization 3 pervasive feldpsar SGR and sericitization, most biot is chloritized, 12-BS-5 257145 3778675 leucogranite mylonite top-NE SGR+GBM 134 79.5 79.8 24.2 SGR obl qtz GSPO 3 incomplete qtz SGR - several large ribbons lacking 12-97 249224 3771726 leucogranite mylonite top-NE SGR, BLG 60 36.7 35.3 17.3 fracturing, minor BLG recrystallization, no chloritization of biot, subtle C's.b 1 244735 3770826 quartzofeldspathic granitic mylonite SGR, minor BLG 69 fracturing, BLG C's.b., incomplete qtz recrystallization, most biot not chloritized 12-131 top-NE 35.5 35.3 15.2 2 abundant tremolite, zones of pure quartz are rare, minor calcite, 12-142 239696 3768483 calcareous quartzite mylonite top-NE SGR+GBM very subtle qtz obl GSPO 3 obl calcite GSPO, relatively coarse-grained calcite, minor zones **12-146** 239642 3768342 of atz show GBM+local SGR marble mylonite top-NE

LR-4-2012	254557	2702627	colon ropus qua divita mulanita	undoor	SGR+BLG						mostly recrystallized calcite, minor pods of qtz are partially	1
LR-4-2012	254557	3/6303/	calcareous quartzite mylonite	unclear	3GK+BLG						recrystallized, tremolite & cpx p. clasts qtz locally mixed with feldspar, incomplete qtz SGR, \sim 15%	1
H-1	270409	3786105	musequite heaving laugegrapite (2)	ton NE	SCD CDM	109	53.5	F1 1	10.4	mostly undeformed, minor	muscov (throughgoing) - takes up much strain, <1% biot with	2
H-16	255530	3783297	muscovite-bearing leucogranite (?) amphibolite	top-NE top-NE	SGR, GBM	109	55.5	51.1	19.4	subgrain development	minor chl, S-C' fabric, muscov fish	2
			·	·								
	255526	2702202			6014.660	460		57.0	27.5	con I	biot locally chloritized, subtle biot-lined C' s.b., very little feldspar	
H-17	255526	3783303	leucogranite mylonite	top-NE	GBM, SGR	168	55.6	57.2	37.5	SGR, myrmek	fracturing, some very large qtz grains untouched by SGR pervasive feldspar SGR, subtle qtz obl GSPO, biot-lined C' s.b.,	4
H-18	255483	3783339	leucogranite mylonite	top-NE	GBM+SGR	133	60.3	57.1	30.1	SGR	minor chloritization of biot, some large qtz grains lacking SGR	4
											pervasive feldspar SGR, recrystallized qtz mixed with feldspar,	
H-19	25552	3781732	granitoid mylonite	top-NE	GBM, SGR					SGR	subtle obl biot & GSPO, ~13% biot (no chl), mix of feldspar & qtz probably inhibits GBM grain size	4
H-19	233323	3/01/32	granitoid mylonite	top-INE	dbivi, 3dk					Jun	~3% biot - commonly chloritized, pervasive feldspar SGR, some	4
H-20	256666	3780698	leucogranite ultramylonite	top-NE	GBM, SGR	202	52.7	55.9	34.2	SGR	large qtz grains lacking SGR oveprint	4
											not really mylonitic, ~25% hbl, ~5-10% biot - mostly chloritized,	
H-21	256741	3780690	amphibolite		GBM					SGR	~5% qtz pods with some GBM, ~50+% plag with some zones of SGR	
	250741	3700030	umpriibolite		GBIVI					3011	330	
BP-179	240238	3772517	biotite gneiss	unclear	GBM, some SGR					minor subgrain development & SGR	gneissic fabric, ~12% bio, ~12% epi	4
5. 175	240230	3772317	bloate gifeiss	uncicui	abivi, some sak					minor subgrain development & son	fol // barite (+/- calcite) veins common, subtle obl qtz GSPO,	7
										SGR+BLG, fracturing, chemical	some subtle C' s.b., ~50% of biot is chloritized, pervasive	
BP-181A BP-181B	240290 240290	3772850 3772850	biotite gneiss protomylonite quartzite mylonite	top-NE top-NE	GBM, SGR GBM, SGR	60	82.6	82	51.8	breakdown	sericitization of feldspar, relatively minor feldpsar rxstalliz obl qtz GSPO, ~10% f-grained muscovite, qtz grains commonly	3
5. 2025	2 10230	3772030	quartette mylomite	top ne	obiii, s dix					BLG & chemical	osique osi o, levi giantea mascorite, que gianto commoni,	J
										breakdown/sericitiz, minor	C's.b., ~10% mica (mostly biot with some chl), subtle qtz obl	
BP-187B	240337	3773120	biotite quartzo-feldspathic mylonite	top-NE	SGR+GBM	129	81	80	31	fracturing	GSPO	3
BP-189	240335	3773137	marble mylonite								obl calcite GSPO, locally micaceous (colorless, low birefr white mica, low-Fe chl?), finely-recrystallized calcite	1
			·									
BP-190		3773139	quartzite mylonite	top-NE	BLG, SGR	108	18.6	18.6	4.3		~7% white mica, C' s.b., qtz basal slip interpreted to be dominant	1 1
BP-192	240319	3773174	micaceous-calcareous phyllite mylonite	(unoriented)	minor BLG minor subgrain							1
BP-193	240322	3773187	marble mylonite	top-NE	development						~5% rounded/subgr qtz grains, subtle calcite obl GSPO	1
											qtz ribbons with BLG along margins, ~5-10% white mica, C' s.b.,	
BP-194 BP-195		3773195 3773202	quartzite mylonite quartzite/meta-arkose mylonite	top-NE (unoriented)	BLG BLG	125	7.8	7.8	2.1		mica fish, late kinematic veins (qtz, barite, calcite, chl) subtle qtz obl GSPO, ~5% white mica	1
DI-155	240323	3773202	quartzite/meta-arkose mylomite	(unonenteu)	minor qtz subgrains						Subtle qtz obi GSFO, 570 Willte Hillea	1
BP-199	240240	3773228	marble mylonite	top-NE	& BLG, fracturing						obl calcite GSPO, ~5% biot+muscov, ~5% qtz detritus	1
DD 301	240256	2772252	marble mulanita	ton NF							subtle obl fol defined by white mica (~3%, minor chl),	1
BP-201	240256	3773253	marble mylonite	top-NE							rounded/subr barite (synmylon?) subtle obl GSPO, up to 5% mica (biot & white mica), zones of qtz	1
BP-202	240286	3773276	marble mylonite	top-NE							silt	1
	240222	2777	11	,							synkin calcite & barite veins, ~5% biot concentrated in layers	
BP-204A	240362	3773332	marble mylonite	top-NE							(minor chl), obl calcite GSPO	1
											isoclinal micro folds with fol // axial traces are common, small	
BP-13-1		3773236	calcareous quartzite mylonite	unclear	SGR						recrystallized grain size for SGR	1
BP-13-4	2402/5	3773286	calcareous quartzite mylonite	unclear	BLG					fracturing, sweeping extinction,	cataclastic overprint of calc qtzite, very fine qtz grain size	1
										grain boundary sliding?, minor		
										subgrain development; grain size		
BD 63	240262	2772244	anlika mulauta	ton NE	DI C	160	6.7	c ¬	2.1	analysis on quartz veinlet that cuts	~7% mica (mostly muscov, minor chl & biot), obl qtz GSPO,	1
BP-C2	240263	3773211	aplite mylonite	top-NE	BLG	160	6.7	6.7	2.1	foliation at high angle	synkin barite+quartz veins ~10% mica (mostly muscv, minor chl, biot), obl qtz GSPO,	1
											disaggregated & chloritized gamet (1), postmylonitic calcite	
7C2	238410	3772110	aplite mylonite	top-NE	SGR, BLG	52	29.6	29.6	10.3	minor SGR; grain boundary sliding?	veins	2
												•

BK-8	226896	3793235	granodiorite protomylonite	top-NE	GBM, SGR	60	106.1	106.1	62	SGR, BLG	feldspar BLG primarily restricted to shear bands, biot almost completely chloritized, subtle obl qtz GSPO	
DK-0	220030	3733233	granoulonte protomylonite	top-IVL	GBIVI, 3GIV	00	100.1	100.1	02	JON, BEO	completely unontized, subtle obliqiz dario	
BK-14	228358	3785605	leucogranite protomylonite mylonite	top-NE	SGR, BLG	58	23.3	25.2	15.5	fracturing, BLG	incomplete qtz SGR, complete chloritization of mica, subtle C' s.b.	
BK-18	258817	3780490	leucogranite ultramylonite	top-NE	SGR, GBM	65	53.1	51.2	19.4	SGR, BLG	subtle C' s.b. & obl qtz GSPO, minor chl of biot	
										SGR+BLG, some fracturing of	some very large qtz grains lacking SGR, other areas are	
BK-19	259105	3780808	leucogranite mylonite	top-NE	GBM, SGR	84	85.8	92.6	62.9	p.clasts	dominated by SGR, most biot is chloritized, subtle obl qtz GSPO	
BK-20	259698	3781619	leucogranite ultramylonite	unclear	GBM	66	192	199.3	126.8	SGR, static recrystalliz?	minor chloritization of biot	
BK-22	260056	3781258	leucogranite mylonite/protomylon	unclear	GBM	80	94.4	93.8	42.7	SGR+BLG, myrmek.	~5% hbl, partial chloritization of biot, subtle obl qtz GSPO,	
											~15% mica (biot with ~50% chloritiz), C' s.b., sericitiz of feldspar	
											common, grungy recrystallized feldspar commonly mixed with	
BK-24	258455	3779373	granitoid mylonite	top-NE	SGR, GBM	57	41.2	42.3	24.4	SGR	quartz	
AL-25	263034	3790138	marble mylonite	unclear							~10% tremolite, finely-recrystallized calcite	
			•								very fine-grained recrystallized calcite with subtle obl GSPO;	
AL-26	263029	3790148	marble mylonite	top-NE							unstrained round detrital quartz grains	
			•								~15% fine-grained biot, ~35% rounded rigid feldspar p.clasts, qtz	
AL-30	263159	3790076	granitoid mylonite	top-NE	SGR+ BLG	82	10.9	12.6	10.4	fracturing+BLG	obl GSPO	
			g ,						-	5		
											small epi/zoisite porphyroclasts common, some rounded qtz	
EM-1	254120	3783198	marble mylonite	top-NE							porphyroclasts with minor SGR, subtle calcite obl GSPO	
EM-3		3783217	calcareous metarkose mylonite	unclear	SGR, some BLG	101	24.6	24.2	7.3		some calcite C' s.b.	
EM-4		3783213	quartzite mylonite	top-NE	BLG+SGR	175	14.1	14.1	4.6		obl qtz GSPO	
											epi, cpx, and unstrained qtz porphyroclasts, only a few qtz-rich	
EM-5	254036	3783237	siliceous marble mylonite	top-NE							domains: show BLG+SGR with subtle obl GSPO	
EM-6		3783241	marble mylonite	top-NE							tremolite p.clasts common, obl alignment of tremolite	
LIVI 0	254052	3703241	marble mylomic	top NL							obl qtz GSPO, postmylonitic normal faults associated with calcite	
EM-DZ	254031	3783237	quartzite mylonite	unoriented	BLG+SGR	108	13.6	13.7	3.3		mineralization	
EM-J-225		3784209	marble mylonite	unclear	DEGISGR	100	15.0	13.7	3.3		mineralization	
LIVI-J-22J	230324	3704203	marble mylonice	unciear							some large qtz grains comprising entire layer lack SGR,	
EM-J-232	253070	3784028	leucogranite mylonite	unclear	GBM, SGR					SGR	pervasive feldspar SGR, some chloritization of biot	
EM-188	256009	3782634	marble mylonite	top-NE	GDIVI, SGIV					SGIV	brittle-ductile S-C fabric	
CIA1-100	230003	3702034	marble mylorite	top-INE							some large qtz grains lacking SGR, minor chloritization of biot, C'	
EMJ-2-17	257145	3784578	lougagrapita mulanita	ton NE	CDM CCD	76	79.2	74.1	42.5	CCD marrow ole		
			leucogranite mylonite	top-NE	GBM, SGR	120	42.3		27.2	SGR, myrmek	S.b.	
EIVI-Z-3/	256492	3783151	leucogranite mylonite	unclear	SGR, GBM	120	42.3	43.3	27.2	SGR, BLG	incomplete qtz SGR over GBM, minor chloritization of biot obl calcite GSPO, very fine recrystallized calcite, clast of	
EMJ-146	256467	3783922	marble mylonite	top-NE							quartzite mylonite with SGR, BLG	
EMJ-2-21		3784530	leucogranite mylonite	top-NE	GBM	104	113	116.5	61.8	SGR	sublt obl qtz GSPO, pervasive feldpsar rxstalliz	
EMJ-2-27		3784382	mylonitic milky quartz vein	top-NE	GBM	166	211.1	217.4	130.6	36.1	clear obl qtz GSPO	
MJ-2-248	254159	3783190	leucogranite ultramylonite	top-NE	GBM+SGR	88	100.4	102.4	52.5	SGR	garnet common (locally disaggregated), feldpsar pervasively	
14-5-178	272345	3784306	ugly crystalline (?) mylonite	top-NE	SGR+BLG	60	11.5	11.7	6.2	BLG, fracturing	obl qtz GSPO, epi & chl veins abundant	
											5-10% epi, synkin chl, sericitization of feldspar, incomplete qtz	
14-5-180	271850	3783565	granitoid (?) mylonite	(unoriented)	SGR, BLG	55	39.7	40.8	14.1	BLG, fracturing	BLG localized along grains	
14-5-218	239026	3772439	quartzite mylonite	top-NE	SGR, BLG	60	18.4	18.3	7.1		obl qtz GSPO, muscovite fish, C's.b.	
											pods of qtz with very fine BLG, calcite (~200-400 um avg), some	
14-5-221	239133	3772522	marble mylonite	top-NE	BLG						C' s.b. in qtz-rich zones	
14-5-232	239346	3772634	marble mylonite	top-NE	BLG						minor qtz-chl-rich pods with BLG, ~100 um calcite grain size	
											ultra-fine grained recrystallized calcite, fol-// stylolitic seems	
											around micas, discrete top-NE offset of some postmylonitic	
											calcite veins, locally c-grained calcite (late veins?) are	
14-5-274	771361	3781994	marble mylonite	top-NE							brecciated, brittle-ductile marble mylonite	
L4-5-277A	226855	3793117	marble mylonite	unclear							unstrained qtz silt common, abundant graphite (?), syn- and	
L4-5-277B	226855	3793117	marble mylonite	top-NE							grungy marble with abundant qtz silt, some minor qtz-rich layers	
											rounded detrital qtz grains within pure marble mylonite areas	
											(with ultra fine-grained calcite), tremolite p.clasts, delta-type qtz	
14-5-283	248754	3780310	siliceous marble mylonite	top-NE	SGR+BLG						p.clasts	
				•							abundant C' s.b., local qtz obl GSPO, no chloritization of biot,	
14-5-288	248906	3780342	leucogranite mylonite	top-NE	GBM, SGR	60	50.1	47.7	26	SGR, BLG	incomplete qtz SGR overprint of GBM	
50					,						locally obl GSPO in ultra fine-grained calcite, some stylolitic fol-	
14-5-289	248864	3779709	marble mylonite	top-NE							// mica seams, synkin calcite veins	
12-203	240004	3113103	marble mylonice	top-INL		1			l		// Illica Seallis, sylikili calcite veilis	

											long qtz single-layer grains lacking SGR common, pervasive	
14-4-294	249142	3778970	leucogranite mylonite	top-SW	GBM	74	96.8	98.5	48.1	SGR	feldspar SGR, minor chloritization of biot, subtle obl qtz GSPO	4
14-5-298	249435	3779494	leucogranite mylonite	top-NE	GBM	78	90.8	85.7	59.4	SGR, myrmek.	very minor chloritization of biot, synkin titanite, C's.b.	4
14-5-301	249446	3780707	marble mylonite	unclear							relatively clean marble with finely recrystallized mylonite	1
14-5-315	237948	2771734	marble								relatively coarse-grained marble	
14-5-317	237935	3771711	calc-silicate								tremolite marble	
											~10% chl, trace non-chloritized biot,~5% epi, qtz well-mixed with	
											feldspar in many places (qtz grain size estimate somewhat	
											unreliable in this sample due to lack of pure qtz layers), qtz obl	
15-JS-74	264984	3779444	quartzofeldspathic mylonite	top-NE	SGR, minor BLG	58	38.6	38.8	12.3	BLG, SGR?	GSPO, C' s.b., locally some fol-// cataclasis	2
											S-C-C' fabric, incomplete quartz recystallization, ~25%	
											muscovite, minor feldspar appears to have undergone subgrain	
16-3-BP1	240282	3773252	micaceous quartzite	top-NE	SGR+BLG	130	13.8	14.1	4.2		development	1

^{*} UTM locations given in NAD27 Datum

^{**}categories for deformation conditions

^{1:} mid- to lower GS facies microstructures

^{2:} pervasive upper GS microstructures, little to no evidence of amphibolite-facies deformation

 $^{3:} lower amphibolite facies to upper GS \ (transitional \ or \ evidence \ for \ upper \ GS \ overprint \ on \ amphibolite-facies \ deformation)$

^{4:} amphibolite-facies fabric. little to no evidence for GS overprint

Swansea samples

<u>Sample</u>	UTM Easting (m)*	UTM Northing (m)	<u>Sample</u> <u>description</u>	Sense of shear	<u>Qtz</u> recrystalliz.	median qtz diameter (μ)	Feldspar deformation	additional microstructures, comments	Def. conditions category**
5-169	230296	3775048	Granodiorite	top-NE	SGR	~30-50	fracturing, BLG rextalliz.	obl. qtz GSPO: 27° (11-40°), σ- & δ-clasts, C' s.b. (15-30°), catacl., myrmek.	2
5-203	229512	3776811	Granodiorite	top-NE	SGR	32 ± 3	fracturing, BLG rextalliz.,	obl. qtz GSPO: 31° (14-42°), σ-clasts, C' s.b. (16-30°), myrmek.	2
5-174	231406	3775139	Granodiorite	top-NE	SGR	~20-40	fracturing, BLG rextalliz.	obl. qtz GSPO: 19° (7-25°), qtz ribbons, σ-clasts, C' s.b. (15-33°), catacl.,	2
5-155	232846	3774467	Quartz diorite	top-NE	SGR, GBM		fracturing, BLG rextalliz.,	local obl. qtz GSPO (subtle), qtz ribbons, σ-clasts, C' s.b. (16-38°), syn-kinematic	2
8-224	226966	3780859	Granite	top-NE	SGR	56 ± 10	fracturing, BLG rextalliz.	obl. qtz GSPO: 28° (13-36°), σ- & δ-clasts, C' s.b. (20-35°), myrmek., fl. Perthite	2
8-193	230652	3777843	Granite	top-NE	SGR, GBM	63 ± 10	fracturing, BLG rextalliz.,	obl. qtz GSPO: 18° (12-33°), σ- & δ-clasts, C' s.b. (14-30°), myrmek., fl. Perthite	2
1-51	229440	3779858	Granodiorite	top-NE	SGR, GBM	55 ± 9	fracturing, BLG rextalliz.	obl. qtz GSPO: 22° (10-34°), σ-clasts, C' s.b. (14-30°), myrmek.	2
9-1	232708	3776734	Granodiorite	top-NE	SGR	~30-55	fracturing, BLG rextalliz.	obl. qtz GSPO: 18° (14-28°), σ- & δ-clasts, C' s.b. (13-35°), myrmek., fl. Perthite	2
2-41	232737	3784401	Granite	top-NE	SGR	26 ± 2	fracturing, BLG rextalliz.	obl. qtz GSPO: 15° (9-26°), σ- & δ-clasts, C' s.b. (15-30°), catacl., myrmek., fl.	2
6-170	235121	3783226	Granite	top-NE	SGR	46 ± 7	fracturing, BLG rextalliz.	obl. qtz GSPO: 31° (11-35°), σ-clasts, C' s.b. (18-33°), catacl., myrmek., fl.	2
2-144	239160	3779399	Granite	top-NE	BLG II	~15-25	fracturing, BLG rextalliz.	obl. qtz GSPO: 20° (12-30°), σ-clasts, qtz ribbons, C' s.b. (17-28°), catacl.,	1
2-98	239009	3782534	Granite	top-NE	SGR, BLG	~12-20	fracturing, BLG rextalliz.	obl. qtz GSPO: 23° (9-33°), σ-clasts, C' s.b. (14-30°), catacl., fl. Perthite	1
2-90	239257	3782306	Granite	top-NE	SGR, minor	16 ± 1	fracturing, BLG rextalliz.	obl. qtz GSPO: 14° (7-28°), qtz ribbons, σ-clasts, catacl., myrmek., fl. Perthite	1
1-70	239138	3783840	Granodiorite	top-NE	SGR	47 ± 7	BLG rexstalliz., fracturing,	obl. qtz GSPO: 15° (8-35°), σ- & δ-clasts, C' s.b. (15-25°), myrmek., fl. Perthite	2
4-234	241433	3782661	Granodiorite	top-NE	SGR, GBM	~35-60	SGR rextalliz., BLG	C' s.b. (20-35°), σ-clasts, C' s.b. (15-25°), myrmek., fl. Perthite	3
2-152	239447	3784681	Granodiorite	top-NE	SGR	~30-55	BLG rextalliz., fracturing,	obl. qtz GSPO: 30° (10-38°), σ-clasts, C' s.b. (15-30°), myrmek.	2
6-262	241376	3783574	Granite	top-NE	SGR, minor	~15-30	fracturing, BLG rextalliz.	obl. qtz GSPO: 18° (10-30°), σ-clasts, C' s.b. (15-30°), catacl., myrmek., fl.	1
8-138	238588	3787279	Granite	top-NE	SGR	64 ± 8	fracturing, BLG rextalliz.,	obl. qtz GSPO: 25° (13-33°), σ- & δ-clasts, C' s.b. (20-30°), myrmek., fl. Perthite	2
4-464	243154	3784009	Granodiorite	top-NE	SGR, GBM	~35-55	fracturing, SGR rextalliz.,	σ-clasts, C' s.b. (13-25°), myrmek., fl. Perthite	2
9-35	240625	3788669	Granite	top-NE	SGR	~40-70	fracturing, BLG rextalliz.,	obl. qtz GSPO: 17° (9-30°), σ-clasts, myrmek., fl. Perthite	2
8-6	246035	3786154	Granodiorite	top-NE	SGR	~35-60	fracturing, BLG rextalliz.,	σ- & δ-clasts, myrmek., fl. perthite	2
5-7	247228	3787589	Granite	top-NE	SGR, minor	25 ± 2	fracturing, BLG rextalliz.	obl. qtz GSPO: 25° (8-33°), qtz ribbons, σ-clasts, C' s.b. (17-33°), myrmek., fl.	1
5-9	246989	3789220	Granite	top-NE	SGR	40 ± 4	BLG rextalliz., fracturing	obl. qtz GSPO: 19° (11-26°), C' s.b. (20-29°), myrmek., fl. Perthite	2
5-1	250001	3787797	Granodiorite		SGR	32 ± 4	BLG rextalliz., fracturing,	obl. qtz GSPO: 22° (12-33°), σ-clasts, C' s.b. (20-30°), myrmek., fl. Perthite	2
2-127	251049	3789401	Granodiorite	top-NE	SGR	~20-35	BLG rextalliz., fracturing,	obl. qtz GSPO: 24° (13-35°), σ-clasts, C' s.b. (14-24°), myrmek., fl. Perthite	2
1-121	260283	3790949.6	Granodiorite		SGR, GBM	~25-45	BLG rexstalliz., fracturing,	obl. qtz GSPO: 23° (9-33°), qtz ribbons, σ - & δ -clasts, C' s.b. (19-28°), myrmek.	2
1-119	259993	3791818	Granite	top-NE	SGR	48 ± 9	BLG rextalliz., fracturing,	obl. qtz GSPO: 16° (10-22°), σ- & δ-clasts, C' s.b. (19-28°), myrmek., fl. Perthite	2
5-27	258671	3793904	Granodiorite		SGR+GBM	53 ± 8	SGR rextalliz., fracturing,	obl. qtz GSPO: 23° (13-29°), qtz ribbons, σ-clasts, C' s.b. (19-28°), myrmek., fl.	3
3-263	260406	3792182	Granite	top-NE	SGR, GBM	31 ± 4	BLG rextalliz. & fracturing,	obl. qtz GSPO: 26° (12-32°), qtz ribbons, σ-clasts, C' s.b. (13-26°), myrmek., fl.	2
5-46	258093	3795051	Granite	top-NE	SGR, GBM	43 ± 5	BLG rextalliz., fracturing,	obl. qtz GSPO: 14° (8-25°), σ- & δ-clasts, C' s.b. (15-25°), myrmek., fl. Perthite	2
5-16	260524	3793858	Granite	top-NE	SGR, minor	~20-37	fracturing, BLG rextalliz.	obl. qtz GSPO: 30° (11-34°), qtz ribbons, σ -clasts, C' s.b. (20-35°), catacl., kink	1
12-144	239691	3768399		top-NE	BLG, SGR	7.0 ± 1.8	fracturing, BLG, local SGR	beautiful S-C fabric, sheared biot, no chl	1
	240335	3773137	ultramylonite	top-NE	SGR, GBM	77 ± 32	chemical breakdown, BLG	obl fine-grained mica (biot, chl, white mica), subtle qtz obl GSPO	2
BP-206	240237	3773221	ultramylonite	unoriente	BLG		chemical breakdown, BLG,	post-kinematic calcite+barite veins, most biot is chloritzed, white mica after	1
								~10% c-grained epi, minor chloritization of biot, symmetric conjug s.b. at	
8-221	226346	3783173		coaxial	SGR, GBM		minor BLG, local SGR	relatively high angle to fol	2

rows 1-63 from Singleton & Mosher (2012)

^{*} UTM locations given in NAD27 Datum

^{**}categories for deformation conditions

^{1:} mid- to lower GS facies microstructures

^{2:} pervasive upper GS microstructures, little to no evidence of amphibolite-facies deformation
3: lower amphibolite facies to upper GS (transitional or evidence for upper GS overprint on amphibolite-facies deformation)
4: amphibolite-facies fabric. little to no evidence for GS overprint