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Abstract 19 

The thermal balance of forests is the result of complex land–atmosphere interactions. Different 20 

climate regimes and plant functional types can have contrasting energy budgets, but little is known 21 

about the influence of forest structure and functional traits. Here, we combined spaceborne 22 

measurements of surface temperature from ECOSTRESS with ground-based meteorological data 23 

to estimate the thermal balance at the surface (∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟) during four summers (2018–2021), at 24 

the Mediterranean–temperate ecotone in the NE Iberian Peninsula. We analyzed the 25 

spatiotemporal drivers of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 by quantifying the effects of meteorology, forest structure 26 

(stand density, tree height) and ecophysiology (hydraulic traits), during normal days and hot spells. 27 

Canopy temperatures (𝑇𝑐𝑎𝑛) fluctuated according to changes in air temperature (𝑇𝑎𝑖𝑟) but were on 28 

average 4.2 K warmer. During hot spells, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was smaller than during normal periods. We 29 

attribute this decrease to the advection of hot and dry air masses from the Saharan region resulting 30 

in a sudden increase in 𝑇𝑎𝑖𝑟 relative to 𝑇𝑐𝑎𝑛. Vapor pressure deficit (VPD) was negatively 31 

correlated with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, since the highest VPD values coincided with peaks in heat advection. 32 

Nonetheless, 𝑇𝑐𝑎𝑛 increased with VPD due to decreased transpiration (following stomatal closure), 33 

even though sufficient soil water availability enabled some degree of evaporative cooling. Our 34 

findings demonstrate that plot-scale forest structural and hydraulic traits are key determinants for 35 

the forest thermal balance. The integration of functional traits and forest structure over relevant 36 

spatial scales would improve our ability to understand and model land–atmosphere feedbacks in 37 

forested regions.   38 

 39 

Plain Language Summary 40 

Forests exchange energy with the atmosphere. Different types of forests may result in substantially 41 

different energy exchanges, but it is not clear which are the ecological factors causing these 42 

differences. This is relevant because during hot spells, the way by which the surface dissipates 43 

heat can either intensify or mitigate the air temperature increase. Here, we assessed how canopies 44 

exchange heat with the atmosphere depending on the characteristics of the forest cover, in a region 45 

densely covered by forests, with great ecological and climatic diversity, in the transition zone 46 

between the Mediterranean and the temperate ecotone. We show that recent hot spells were not 47 

aggravated by tree energy dissipation into the atmosphere. Instead, we argue that incoming hot air 48 

masses, often travelling from northern Africa, reduced the exchange of energy between the surface 49 

and the atmosphere, and so, the warming from below was not critical for the aggravation of these 50 

hot spells. Yet, we found that there was high variability in the thermal balance of forests along the 51 

ecoclimatic gradients of the study region that could not be explained by broad forest type 52 

classifications. Instead, differences in the thermal balance and its influence on air temperature were 53 

better explained by forests functional and structural characteristics, such as tree height or 54 

functional type of the dominant species. 55 

1 Introduction 56 

Biological and physical properties of the Earth’s surface regulate the exchange of energy 57 

and matter with the atmosphere, by determining the rates and magnitudes of the surface water and 58 

energy fluxes (Pitman, 2003). Processes such as evaporation, turbulent sensible heat transfer or 59 

the upwelling of shortwave and longwave radiation modulate the local, regional and global 60 
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climate, and strongly vary as a function of the characteristics of the land cover (Bagley et al., 2017; 61 

de Oliveira et al., 2019; Yan et al., 2014). The effects of surface structure on land–atmosphere 62 

exchanges, and in turn on local climate, are often well understood; for example, the surface 63 

properties of cities contribute to the development of urban heat islands, which can be mitigated by 64 

increasing vegetation cover (Shiflett et al., 2017). Yet, land surface influences exceed local scales, 65 

modulating for instance downwind precipitation patterns (Drumond et al., 2014; Keune & 66 

Miralles, 2019; O’Connor et al., 2021; te Wierik et al., 2021). At the regional scale, the onset of 67 

extreme temperature episodes is also influenced by a combination of atmospheric dynamics and 68 

land–atmosphere feedbacks. There is evidence of direct causal associations between the 69 

anomalous heat accumulation in the atmosphere and the preceding low soil moisture, which limits 70 

the magnitude of latent heat fluxes over hundreds of square kilometers (Fischer et al., 2007; 71 

Miralles et al., 2014, 2019). In addition to the short-term coupling dynamics between land and 72 

atmosphere, the impacts of this coupling can reflect over longer timescales (Koster et al., 2004). 73 

In fact, changes in land surface biological and physical properties occurring over decadal to 74 

centurial scales may have long-lasting global impacts. For instance, the Earth’s greening caused 75 

by the fertilization effect of anthropogenic CO2 (e.g., Zhu et al., 2016; Zhang et al 2012) may have 76 

partially mitigated global warming in recent decades through an increase in evaporative cooling 77 

(Forzieri et al., 2017). The interest on the topic of land influence on climate has grown steadily in 78 

recent years because of its important implications for future climate (Canadell et al., 2021; IPCC, 79 

2021, p. 20; Seneviratne et al., 2021). 80 

Land vegetation affects land–atmosphere energy, momentum and mass exchanges 81 

(Anderegg et al., 2019; Ellison et al., 2017). The characteristics of vegetation regulate how much 82 

solar radiation is reflected (Cescatti et al., 2012), partitioned into latent and sensible heat fluxes 83 

(Williams & Torn, 2015) or absorbed and temporally stored, thus yielding an increase in surface 84 

temperature (Meier et al., 2019). The sole categorization of vegetation into plant functional types 85 

(PFTs) – such as conifer/broadleaf forests or grasslands – can help explain changes in surface 86 

energy partitioning due to intrinsic properties of these PFTs (Forzieri et al., 2020), such as their 87 

leaf area index, which are  associated with different ecosystem functions (Migliavacca et al., 2021; 88 

Nemani et al., 1996). Besides structural traits, plant physiological traits can also influence the 89 

energy balance at the ecosystem-level. For instance, recent studies found that land–atmosphere 90 

feedbacks during drought are modulated by plant hydraulic traits and forest specific composition 91 

(Anderegg et al., 2018, 2019). This is because evaporative response of forests will depend not only 92 

on atmospheric conditions but also on the form and function of specific tree species, and the soil 93 

and landscape features that determine access to water resources (Barbeta & Peñuelas, 2017). In 94 

another example, Teuling et al., (2010) demonstrated contrasting temporal dynamics of surface 95 

energy fluxes during heatwaves in grasslands, which depict a more opportunistic water-use 96 

strategy, compared to forests, with a more conservative water use. Grasslands respond to heat with 97 

a fast increase in transpiration that initially minimizes sensible heat fluxes, but as soil moisture is 98 

depleted, sensible heat fluxes progressively increase. In contrast, the more conservative water-use 99 

in forests, combined with their lower albedo, yields an initially stronger increase in sensible heat 100 

fluxes; after a few days, however, forests prevent heatwave amplification due to the sustained 101 

transpiration enabled by a usually deeper root system. This example shows that differences among 102 

plant functional types are critical to understand how the land feeds back into the atmospheric state, 103 

and particularly during the evolution of hot spells. A key trait driving the energy balance of the 104 

vegetation is surface conductance, defined as the inverse of the resistance to water diffusion along 105 

the soil–plant–atmosphere continuum (Wang et al., 2019). To date, the study of the biotic 106 
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determinants of surface conductance has been, typically restricted to the consideration of different 107 

PFTs (Gerken et al., 2019; Teuling et al., 2010). However, there is evidence that the surface 108 

conductance can drastically differ among different types of forest and plant species (Wang et al., 109 

2019).  110 

Canopy temperature (𝑇𝑐𝑎𝑛) is largely driven by incoming radiation, and it determines 111 

sensible heat, water and carbon fluxes (Still et al., 2021). Deviations of 𝑇𝑐𝑎𝑛 from air temperature 112 

(𝑇𝑎𝑖𝑟) are often associated with fluctuations in surface and aerodynamic resistance to the heat 113 

transfer by conduction and convection (sensible heat flux) (Grace, 1988). Simultaneously, 𝑇𝑐𝑎𝑛 114 

influences and is influenced by tree transpiration, which reduces the temperature of the leaves by 115 

'evaporative cooling' (Javadian et al., 2022). The difference between 𝑇𝑐𝑎𝑛 and 𝑇𝑎𝑖𝑟 (i.e. ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟) 116 

can be seen as the integrative result of all the components of the energy balance of the canopy. 117 

From the biological point of view, the relationship between 𝑇𝑐𝑎𝑛 and 𝑇𝑎𝑖𝑟  can be an indicator of 118 

plant water stress (Fauset et al., 2018; Moyano et al., 2018). From an atmospheric standpoint, 119 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 may reflect the influence of non-local controls on 𝑇𝑎𝑖𝑟 (e.g., advection, entrainment, 120 

subsidence, condensation). As such, estimating ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 at high temporal and spatial resolutions 121 

provides valuable insights into dynamic land–atmosphere feedbacks and how these are modulated 122 

by plant water-use strategies (Anderegg et al., 2019; Wang et al., 2019). This approach can help 123 

elucidate how biotic and abiotic determinants interact and affect the surface energy balance of 124 

forests. 125 

In recent years, there has been an increase in the spatial and temporal resolution of remote 126 

sensing products measuring land surface temperature (LST) that may be used as a proxy for 𝑻𝒄𝒂𝒏 127 

in vegetated regions. More specifically, the ECOsystem Spaceborne Thermal Radiometer 128 

Experiment on Space Station (ECOSTRESS) launched in 2018 by the National Aeronautics and 129 

Space Administration (NASA) provides LST at a spatial resolution of 70x70m, every 3–5 days 130 

(Fisher et al., 2020) and with high accuracy (Hulley et al., 2022). Interestingly, this high spatial 131 

resolution enables the coupling of remotely-sensed LST with plot-scale variations in forest 132 

structure, environmental conditions or any other variable measured at the fine scale (Javadian et 133 

al., 2022). It is thus possible to achieve more detailed, mechanistic-oriented analyses of the forest 134 

thermal balance, beyond the comparison of the thermal balance between different vegetation types. 135 

  Here we leverage the availability of spatially-dense datasets on forest structure, 136 

meteorological conditions and topography for an ecologically and climatically diverse area in the 137 

Mediterranean–temperate ecotone to investigate ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, and its drivers over the growing 138 

season. Particularly, we hypothesize that (i) ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 will be higher during hot spells than in 139 

normal days due to reduced transpiration and evaporative cooling and that (ii) forests with a more 140 

conservative water-use and occupying the warmer and drier areas will present a relatively higher 141 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 during hot spells due to reduced transpiration rates (see e.g., Teuling et al., (2010)). Low 142 

water availability should be correlated with forest structural properties – such as lower LAI, 143 

aboveground biomass and basal area – so we do not expect structural variables to explain 144 

additional variability in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, beyond that explained by climatic gradients (mean 145 

precipitation, temperature and radiation). On the other hand, we also hypothesize (iii) a strong 146 

effect on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 of variables that are directly related to heat dissipation through their effect on 147 

surface roughness (Muller et al., 2021). Specifically, we expect that larger canopy height, canopy 148 

cover and stand density (all variables analyzed here) have independent (and negative) effects on 149 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. Finally, since low transpiration rates should lead to higher ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, we also 150 
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hypothesize that (iv) forests dominated by drought-resistant species (with a certain suite of 151 

associated hydraulic traits) would show higher ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, compared to those dominated by more 152 

drought-sensitive species (Still et al., 2022). However, it would also be possible that some drought-153 

sensitive species with access to deep-water could maintain relatively high transpiration rates 154 

during hot spells (Krich et al., 2022), and hence lower ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. 155 

2 Data and Methods 156 

2.1 Study Area 157 

The selected study area corresponds to Catalonia, an area covering 32114 km² in the NE of the 158 

Iberian Peninsula, in the NW shores of the Mediterranean Sea. Catalonia is located at the transition 159 

zone between Mediterranean and temperate climates, so its climate is predominantly 160 

Mediterranean, but is also subjected to Atlantic, temperate and subtropical influences (Llebot, 161 

2005). The complex orography in this area results into a high diversity in thermic regimes across 162 

an altitude range from sea level to >3000 m a.s.l., as well as into drier/wetter areas due to 163 

leeward/windward exposures relative to the Mediterranean sea, but also to the Atlantic Ocean 164 

(Martín Vide, 2016). Hence, Catalonia depicts an unusually high climatic diversity for such a small 165 

area, which ranges from cold semi-arid climates (BSk in the Köppen–Geiger classification) to 166 

temperate ones (e.g., Cfa or Cfb in the same classification system), with coastal areas presenting a 167 

typical hot-summer Mediterranean climate (Csa) (Beck et al., 2018). As such, mean annual 168 

precipitation (MAP) ranges widely, from 350 to 1300 mm, with mean annual temperatures (MAT) 169 

ranging from 0 to 17°C (Llebot, 2005). In line with the climatic diversity of the area, the relatively 170 

high fraction of forested area – ca. 38% (Rosas et al., 2019) – is occupied by functionally and 171 

structurally diverse forests, mostly dominated by tree species from the Fagaceae and Pinaceae 172 

families (Roces-Díaz et al., 2018). The lowland forests in the coastal areas are dominated by 173 

broadleaf evergreen tree species, such as Quercus ilex L., and needleleaf Mediterranean trees, such 174 

as Pinus halepensis Mill., the latter occupying the drier coastal area and the inland lowland areas 175 

(Fig. 1). Moister and cooler areas at mid altitudes (500–1600 m), and often with a maritime 176 

influence, harbor forests dominated by broadleaf deciduous species, some common across Europe 177 

(e.g., Fagus sylvatica L., Fraxinus excelsior L.), but also trees typical of the Mediterranean–178 

temperate biome transition (e.g., Quercus pubescens Willd., Quercus faginea Lam.). In the mid to 179 

high altitudes of the Pyrenees, we find needleleaf montane forests dominated by coniferous species 180 

that reach their southernmost distribution range in the study area, such as Abies alba Mill., Pinus 181 
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uncinata Ram. and Pinus sylvestris L. (Fig. 1). The diversity in forest structure, function and 182 

environmental conditions makes the area especially suitable for our research goals. 183 

 184 

Figure 1. Study area. Map of Catalonia and the forest plots included in the analysis, with colored 185 

dots illustrating the functional group of the dominant species of each plot (light blue: BLDEC, 186 

broadleaf deciduous, dark blue: BLEVE, broadleaf evergreen, light green: NLMON, needleleaf 187 
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montane, dark green: NLMED, needleleaf Mediterranean). Inset: the black area represents the 188 

location of the study area (Catalonia) within the Western Mediterranean Basin. 189 

2.2 Forest Structural, Topographical and Meteorological Data and Species-Specific 190 

Hydraulic Traits 191 

The dataset comprises 4131 forest plots belonging to the Fourth Spanish Forest National 192 

Inventory (IFN4) conducted between 2013–2016 193 

(https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-forestal-194 

nacional/cuarto_inventario.aspx). From this inventory, we extracted data on forest stand 195 

composition, i.e., the dominant species, according to measurements of basal area and the 196 

percentage of basal area of the dominant species. A forest with more than 80% of basal area of the 197 

same species was considered a pure stand; conversely, those stands in which the basal area of the 198 

dominant species was below 80% were considered as mixed. From the IFN4, we also extracted 199 

plot topographic information including the elevation, the aspect of the plot (North, South, East, 200 

West or flat), the slope of the terrain (%) and the type of curvature, where positive values denote 201 

a concave curvature (i.e., hills) and negative values denote a convex curvature (i.e., valleys). 202 

Average climatic data for each plot was also available (see Table S1). Forest structural data was 203 

extracted from each of the IFN4 plots from a LIDAR-based dataset with a 20x20m resolution 204 

collected between 2008–2011 and processed by the Center of Ecological Research and Forest 205 

Applications (CREAF) and the Catalan Geologic and Cartographic Institute (ICGC). The variables 206 

included in our analysis were: total aerial biomass, foliar biomass, basal area, tree cover, diameter 207 

at breast height (DBH), leaf area index, stand density and mean tree height (Table S2). In addition, 208 

we used a dataset on tree hydraulics traits collected in the same forest plot network across aridity 209 

gradients of the six most abundant species; a detailed description of the methods used to measure 210 

the hydraulic traits is provided by Rosas et al. (2019). Because of the large number of dominant 211 

species represented in our dataset (60, according to our dominance criteria based on basal area, 212 

Barbeta et al. (2022)), for some of our analyses we grouped species in four functional groups: 213 

needleleaf Mediterranean (NLMED), needleleaf montane (NLMON), broadleaf evergreen 214 

(BLEVE) and broadleaf deciduous (BLDEC). 215 

Meteorological data specific for the location of each plot and for the period 2018–2021 was 216 

obtained using the R package meteoland (De Cáceres et al., 2018). This package provides estimates 217 

of daily weather variables over the landscape by spatial interpolation of daily weather records, at 218 

a resolution of 30x30 meters, and accounting for the effects of elevation, slope, and aspect. For the 219 

present dataset, data from stations of the Spanish State Meteorology Agency (AEMET) and the 220 

Catalan Meteorological Service (SMC) were used as input data. The meteorological data included 221 

daily air temperature, relative humidity, wind speed, precipitation, potential evaporation and solar 222 

radiation. With the interpolated variables we also calculated the climatic water balance (CWB) of 223 

the 30 days prior to the remote sensing measurement (precipitation minus potential evaporation), 224 

for each plot. After the spatial interpolation using meteoland (De Cáceres et al., 2018), midday 225 

daily vapor pressure deficit (VPD) was estimated with the rh.to.VPD function from the R package 226 

bigleaf (Knauer et al., 2018). Next, we downscaled these interpolated daily data on wind speed, 227 

air temperature (𝑇𝑎𝑖𝑟, at canopy height) and relative humidity to hourly scales, using hourly data 228 

from the network of automatic meteorological stations XEMA 229 

(https://www.meteo.cat/observacions/xema), so that each meteorological observation would be 230 

more comparable to the overpass of ECOSTRESS. Air temperature at ground-level was 231 

https://www.meteo.cat/observacions/xema
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transformed into air temperature at canopy height, by using temperature scales in forested surfaces 232 

(Bonan, 2015) – see Text S1 for further details.  233 

Forest structural, topographical and meteorological data were accessed through the R package 234 

lfcdata (https://github.com/MalditoBarbudo/lfcdata), which gives direct access to the data of the 235 

Catalan Forest Laboratory (https://laboratoriforestal.creaf.cat/), an initiative of CREAF and the 236 

Forest Science and Technology Center of Catalonia (CTFC). We also obtained shortwave albedo 237 

data from MODIS MCD43A3 datasets that provide both black-sky and white-sky albedo. We used 238 

only black-sky albedo (directional hemispherical reflectance) for the analysis, yet these values 239 

were highly correlated with white-sky albedo (R2=0.96). We calculated the average black-sky 240 

albedo from June to September for each of the plots and the period of study. 241 

2.3 Land Surface Temperature (LST) Data from ECOSTRESS 242 

We retrieved LST data from the ECOsystem Spaceborne Thermal Radiometer Experiment on 243 

Space Station (ECOSTRESS, https://ecostress.jpl.nasa.gov/), particularly, from the ECO2LSTE 244 

Version 1, a Level-2 product from ECOTRESS. ECO2LSTE provides LST at a spatial resolution 245 

of 70x70 m and every 3–5 days (Fisher et al., 2020). Our choice of ECOSTRESS over other 246 

remotely-sensed LST products was based on the unique combination of high spatial resolution and 247 

relatively more frequent observations. For each of the forest plots in our network, we downloaded 248 

the LST for all dates available in the ECO2LSTE Version 1 collection through the Application for 249 

Extracting and Exploring Analysis Ready Samples (AρρEEARS) data portal. From that, we used 250 

the product quality flags to select only those clear sky observations with the best quality and a LST 251 

accuracy below 1.5 K. The period spanned from the beginning of the ECOSTRESS mission (2018) 252 

to December 2021. Here, we only used data from June–September, comprising the growing season 253 

in the study area. Finally, we selected only observations corresponding to the central hours of the 254 

day (9–15 h UTC), during which the vegetation transpires and thus dynamically influences LST. 255 

2.4 Data Processing 256 

Daily meteorological data for each plot (wind speed, air temperature at canopy height and relative 257 

humidity) were obtained by spatial interpolation (De Cáceres et al., 2018) (see section 2.3 for 258 

further details) and maximum daily vapor pressure deficit (VPD) was estimated with the rh.to.VPD 259 

function from the R package bigleaf (Knauer et al., 2018). Next, we downscaled these interpolated 260 

daily data on wind speed, air temperature (𝑇𝑎𝑖𝑟, at canopy height) and relative humidity to hourly 261 

scales, using hourly data from the network of automatic meteorological stations XEMA 262 

(https://www.meteo.cat/observacions/xema), so that each meteorological observation would be 263 

more comparable to the overpass of ECOSTRESS. Once we had a complete database of  air 264 

temperature (𝑇𝑎𝑖𝑟) collocated with their corresponding LST observation (𝑇𝑐𝑎𝑛, from the 265 

ECO2LSTE version 1 (see section 2.3), we calculated ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟., i.e., the difference (between 266 

land (𝑇𝑐𝑎𝑛) and air temperature (𝑇𝑎𝑖𝑟). Positive values of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 indicate that the land surface 267 

(i.e. the forest upper canopy) is warmer than the free air above it, whereas negative values indicate 268 

that the land surface is cooler.  269 

Our study period (June–September 2018–2021) was divided into normal periods and hot 270 

spells. According to the Catalan Meteorological Service, hot spells are defined as periods in which 271 

temperatures above the 98th percentile of June–August maximum temperatures (according to a 10-272 

https://github.com/MalditoBarbudo/lfcdata
https://laboratoriforestal.creaf.cat/
https://www.meteo.cat/observacions/xema
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year record) at any given XEMA meteorological station. Hot spells are considered a heatwave when 273 

they last for 3 days or more. During the 2018–2021 study period, the area experienced five hot 274 

spells. 275 

2.5 Statistical Analysis 276 

We first tested for the effect of several categorical variables on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛: (a) 277 

functional group of the plot’s dominant species, (b) stand composition (pure versus mixed stands). 278 

We also assed (c) differences between normal and hot spell days. For each of these fixed 279 

categorical factors we fitted a generalized linear mixed model (GLMM) with hour of the 280 

observation, aspect of the plot and the plot identifier as random factors, using the function lmer of 281 

the R package lme4 (Bates et al., 2015). The mean annual precipitation was also added to these 282 

models to account for gradients in annual rainfall. We then checked for pairwise differences with 283 

Tukey post-hoc tests from the R package emmeans (Lenth et al., 2018). Next, we tested for the 284 

effects of continuous forest variables on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛. We initially considered the 285 

correlation with 19 variables characterizing forest structure (basal area, stand density, tree cover, 286 

total aerial biomass, DBH, mean tree height, foliar biomass, LAI, and albedo), topography (slope, 287 

curvature and distance to the sea), meteorology (30-day climatic water balance, VPD, solar 288 

radiation and wind speed) and climate (mean annual temperature (MAT), mean annual 289 

precipitation (MAP) and mean daily solar radiation). In order to assess the independent and 290 

interactive effects of all these variables on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and to quantify their relative importance, we 291 

followed the recommendations of Murray & Conner (2009). In brief, we first computed zeroth-292 

order correlations and eliminated those variables that presented near-zero correlations with 293 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. In a second step, we ran hierarchical partitioning of the variance for each family of 294 

variables (forest structure, topographical, climatic and meteorological) to rank the importance of 295 

these variables and discard those with small independent contributions (Mac Nally & Walsh, 296 

2004). Selected variables were included in a lmer mixed model, for which we confirmed the 297 

absence of multicollinearity effects using the performance R package (Lüdecke et al., 2020). Then, 298 

we included in the final model those variables that improved the Akaike Information Criterion 299 

(AIC) of the model (Akaike, 1974). Finally, we ran a general mixed model to assess the effects of 300 

continuous environmental variables, in which we included functional group and stand composition 301 

(pure versus mixed), hour of the observation, aspect of the plot and the MAP decile as random 302 

factors. To compare the relative effects of model variables, we estimated beta (standardized) 303 

coefficients. We also ran a similar model but with 𝑇𝑐𝑎𝑛 as dependent variable, instead of  304 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 . 305 

The data on tree functional and hydraulic traits from Rosas et al. (2019) were obtained from 306 

the same area and forest plot network as for the rest of data. However, trait data was only available 307 

for the six most abundant species in the area, including two needleleaf Mediterranean trees 308 

(NLMED; Pinus halepensis and Pinus nigra), one needleleaf montane tree (NLMON; Pinus 309 

sylvestris), one broadleaf evergreen tree (Quercus ilex) and two broadleaf deciduous trees (Fagus 310 

sylvatica and Quercus pubescens). Rosas et al. (2019) sampled 15 plots of each of these six species, 311 

categorized across percentiles of the growing season climatic water balance (from dry to medium 312 

to wet according to the <33rd, 33th–66th and >66th percentiles, respectively) calculated at the 313 

species-specific level, for the whole forest plot network. This allowed us to estimate trait averages 314 

across species and percentiles of climatic water balance (25 individuals in each combination of 315 

species and type of climate). We categorized the climatic water balance of the growing season of 316 
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all plots classified as pure stands (>80% in basal area) of the six species studied in Rosas et al. 317 

(2019), and computed group means (and their corresponding standard errors) of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 318 

and 𝑇𝑐𝑎𝑛 for all observations of the study period in normal days and hot spells, separately. We also 319 

extracted the β coefficients of the correlation between ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 and VPD, for the same 320 

groups. We then calculated linear correlations of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, 𝑇𝑐𝑎𝑛, and their correlation with VPD 321 

with the following traits: specific leaf area (SLA), xylem pressure at the 50% loss of conductivity 322 

(P50), xylem pressure at the turgor loss point (ψtlp), stem specific conductivity (ks), leaf specific 323 

conductivity (kl), leaf lifespan, leaf carbon isotopic composition (δ13C), wood density, leaf 324 

thickness and Huber value (sapwood to leaf area ratio at the branch level). In a second step, we set 325 

the “species” as random factor to determine whether inter-specific trait differences could explain 326 

any potential correlation. All data processing and statistical analyses were carried out using the 327 

software R, version 4.1.2. (R Core Team, 2021).  328 

  329 
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3 Results 330 

 3.1 Thermal Balance of Forests 331 

As estimated by the data collected by ECOSTRESS, 𝑇𝑐𝑎𝑛 was on average (±se) 4.18±0.03 K 332 

warmer than 𝑇𝑎𝑖𝑟, ranging from –2.17 to 12.2 K (5th and 95th percentiles of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, 333 

respectively), for June–September of 2018–2021 and from 9–15h UTC. There was a significant (p 334 

< 0.001) effect of the hour of the measurement on  𝑇𝑐𝑎𝑛; a peak in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (8.12±0.13 K) was 335 

observed at 13h UTC coinciding with a peak in  𝑇𝑐𝑎𝑛 (303.7±0.15 K) (Fig. S1). In contrast, during 336 

hot spells, the higher forest 𝑇𝑐𝑎𝑛, compared to normal days (301.9±0.08 K vs 299.3±0.03 K, p 337 

<0.001) was not accompanied by an also higher ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, in fact ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟,  was significantly 338 

lower during hot spells (1.32±0.07 K vs 4.50±0.09 K, p <0.001) (Fig. 2). Over the study period, 339 

there were significant differences within the growing season among months in both ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 340 

𝑇𝑐𝑎𝑛. First, observations for the month of July were very scarce (Fig. S2). For the rest of the 341 

months, the warmest 𝑇𝑐𝑎𝑛 was estimated for August, followed by June, and September (all 342 

differences at least p <0.01) (Fig. S3). For ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, the largest values were estimated for the 343 

months of September, followed by June, and August (p <0.01) (Fig. S3). The species composition 344 

of the stand also had significant influence on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. Mixed forests presented lower ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 345 

compared to pure forests (3.28±0.05 K vs 4.53±0.04 K, p <0.001) (Fig. S4). Likewise, the 346 

functional group of the dominant species also had a significant effect on the thermal balance of the 347 

forest (Fig. 3). To test for differences in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, we accounted for the spatial and temporal 348 

distribution of the observations using random factors and included the precipitation gradients as a 349 

fixed factor.  As a result, pairwise comparisons among the four different functional groups revealed 350 

significant differences in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (p <0.05) that were not apparent in raw observations (Fig. 3a). 351 

The statistical model revealed that NLMED had the lowest ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. NLMON and BLDEC had 352 

significantly higher ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 than NLMED (Fig. 3a). BLEVE had the highest ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, but not 353 

significantly higher than NLMON. On the other hand, 𝑇𝑐𝑎𝑛 was significantly different in each 354 

group, being warmer in drier plots and following the thermal niche of each group (NLMED > 355 

BLEVE > BLDEC > NLMON, Figure 3). 356 
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 357 

 358 

Figure 2. The thermal balance (∆𝑻𝒄𝒂𝒏−𝒂𝒊𝒓) (a) and canopy temperature (𝑻𝒄𝒂𝒏) (b) in hot spells 359 

and normal days. For both ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 differences between hot spells and normal days 360 

were significant, as noted by the different letters above each group of data points.   361 
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 362 

Figure 3. The thermal balance (∆𝑻𝒄𝒂𝒏−𝒂𝒊𝒓) (a) and canopy temperature (𝑻𝒄𝒂𝒏) (b) across 363 

different forest types. Forest types are broadleaf deciduous (BLDEC), broadleaf evergreen 364 

(BLEVE), needleleaf montane (NLMON) and needleleaf Mediterranean (NLMED). Letters on top 365 

of each group of data points (a, b, c, or d) indicate significant differences between these groups as 366 

obtained with the GLMM. Note that statistical differences in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 estimated with GLMM do 367 
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not coincide with those derived by the medians of the observations of each group, because spatial 368 

and temporal factors were included as random factors (see section 2.5 for details). 369 

 3.2 Drivers of the Spatiotemporal Variability in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 370 

We considered several plot-level structural, topographical, climatic, and daily meteorological 371 

continuous predictors that could affect ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛. By means of hierarchical partitioning 372 

and generalized linear mixed models (see Sect. 2.5), we identified 11 variables that explained 373 

15.4% of the variance of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 in the GLMM (40.5% including random effects). The 374 

standardized β coefficients showed that the strongest correlation with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was found for 375 

MAT, followed by the effects of MAP, albedo, and VPD (Fig. 4a). 376 
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 377 

Figure 4. Drivers of the thermal balance (∆𝑻𝒄𝒂𝒏−𝒂𝒊𝒓) and the canopy temperature (𝑻𝒄𝒂𝒏). 378 

Standardized β coefficients of the effect of the average climate (pink), daily weather (blue), forest 379 

structural (green) and topographical (orange) variables on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (a) and 𝑇𝑐𝑎𝑛  (b). Positive 380 

(negative) coefficients on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 imply correlations with warm (cool) 𝑇𝑐𝑎𝑛 relative to 𝑇𝑎𝑖𝑟. 381 

Positive (negative) coefficients on 𝑇𝑐𝑎𝑛 imply correlations with warmer (cooler) values of 𝑇𝑐𝑎𝑛. 382 

All variables included in the mixed model were significant (p <0.001). Uncertainty bars are the 383 
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standard error of the mean, estimated for each individual effect. Effects are sorted based on their 384 

beta coefficient. 385 

According to the mixed model, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 tended to be closer to zero in tall forests (> 20 m) with 386 

a high density and tree cover fraction, likely due to the higher surface roughness and aerodynamic 387 

conductance (Fig. S5). Unsurprisingly, meteorological conditions were more strongly correlated 388 

with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 than with 𝑇𝑐𝑎𝑛, due to the direct dependency of 𝑇𝑎𝑖𝑟 on atmospheric 389 

(thermo)dynamics. ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was closer to zero under high VPD, suggesting a control of warm 390 

air advection over 𝑇𝑎𝑖𝑟. The climatic water balance (CWB) of the last 30 days was negatively 391 

correlated with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, indicating that wetter conditions were associated with a ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 392 

closer to zero, as expected. The correlation with mean annual radiation was small, compared to 393 

other climatic variables, but still, more radiation was associated with more positive ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. In 394 

addition, forests in steeper slopes had low ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 compared to those in flatter areas. The 395 

correlation of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟  with VPD was significantly modified by the CWB (Fig. 5a). The negative 396 

correlation of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 with VPD was stronger under wet conditions (positive CWB), whereas it 397 

tended to vanish under drought due to the increase in 𝑇𝑐𝑎𝑛 (Fig. 5). 398 

The mixed model for 𝑇𝑐𝑎𝑛 explained 71.2% of its variance, with fixed factors (the same that were 399 

selected for ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟) explaining 64.2%. VPD was the factor with the highest correlation, even 400 

more than other climatic variables. Although in this case the correlation with VPD was positive: 401 

high VPD was associated with hotter 𝑇𝑐𝑎𝑛. We note that this may occur due to the partial stomatal 402 

closure in response to high VPD, or due to the influence of heat advection constraining the ability 403 

of the canopy to dissipate heat via sensible heat flux. On the other hand, CWB was associated with 404 

cooler 𝑇𝑐𝑎𝑛. The interaction between VPD and CWB was significant for 𝑇𝑐𝑎𝑛. Model predictions 405 

show that the positive correlation between VPD and 𝑇𝑐𝑎𝑛 shifted to negative in wetter sites (Fig. 406 

5b). In general, meteorological variables appeared to be more relevant than forest structural 407 

variables for 𝑇𝑐𝑎𝑛 (Fig. 4b). Still, we observed that cooler 𝑇𝑐𝑎𝑛 was associated with tall forests with 408 

high tree cover and stand density, whereas higher albedo was associated with hotter 𝑇𝑐𝑎𝑛. 409 
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 410 

Figure 5. Interactive effects of VPD and climatic water balance (CWB) on the thermal 411 

balance (∆𝑻𝒄𝒂𝒏−𝒂𝒊𝒓) and the canopy temperature (𝑻𝒄𝒂𝒏). Model predictions of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (a) 412 

and 𝑇𝑐𝑎𝑛 (b) as a function of the vapor pressure deficit (VPD) and the climatic water balance 413 

(CWB) of the previous 30 days. Line colors illustrate different levels of CWB, from drier 414 

(negative) to wetter (positive) conditions. The shades around the lines correspond to the 95th 415 
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confidence intervals of the predicted ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. The interaction between VPD and CWB was 416 

significant in the mixed models. 417 

 3.3 Effect of Plant Functional Traits on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 418 

 Plant functional traits measured in Rosas et al. (2019) were associated with average 419 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 across water availability gradients of the six most common tree species in the study 420 

area. We computed the correlation of plant functional traits with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and found out that five 421 

out of the ten considered traits presented significant (p<0.05) relationships in normal days (Table 422 

S3). After accounting for inter-specific variability (i.e., with the inclusion of species as a random 423 

factor in the models) the effect of plant functional traits on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 largely became not 424 

significant (Table S4). Still, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 showed a marginally significant relationship with the xylem 425 

pressure at 50% loss of conductivity (P50, Fig. 6a); trees with higher resistance to conductivity 426 

losses tended to have more positive values of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. We then tested if plant functional traits 427 

were associated with the response of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 to VPD. We found positive and significant effects 428 

of P50, leaf δ13C, specific leaf area (SLA), and the xylem pressure at turgor loss point (ψtlp) on the 429 

VPD–∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 relationship. This means that forests dominated by species with higher water-use 430 

efficiency (higher δ13C), resistance to cavitation and turgor loss, and lower SLA also exhibited 431 

greater ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 increases in response to high VPD, in normal days (Fig. 6c). Interestingly, the 432 

effect of P50 and leaf δ13C on VPD–∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was significant but shifted their sign during hot 433 

spells (Fig. 6d, Table S3 and S4). 434 

 𝑇𝑐𝑎𝑛 was significantly associated with plant hydraulic traits of the most common species 435 

of the study area (see Table S5 for full results). During both normal periods and hot spells, 𝑇𝑐𝑎𝑛 436 

was warmer in forests dominated by species with higher resistance to conductivity losses (P50), 437 

more efficient water-use (δ13C) and more negative xylem pressure at the turgor loss point (ψtlp) 438 

(Fig. 6e, f, Table S5). Thus, forests dominated by species with a vascular system that is more 439 

resistant to water stress tended to exhibit hotter 𝑇𝑐𝑎𝑛. The correlation of VPD with 𝑇𝑐𝑎𝑛 was also 440 

dependent on leaf δ13C during hot spells, but also on the leaf-to-sapwood area ratio (Huber value), 441 

leaf thickness, and leaf lifespan (Fig. 6h, Table S5). Forests dominated by species with higher 442 

resistance to conductivity losses (P50) were the only ones showing a decrease in 𝑇𝑐𝑎𝑛 in response 443 

to the high VPD experienced during hot spells. In fact, those cases corresponded to the 444 

Mediterranean needleleaf Pinus halepensis. 445 

  446 
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 447 

Figure 6. Correlation of the thermal balance of forests (∆𝑻𝒄𝒂𝒏−𝒂𝒊𝒓) and canopy temperature 448 

(𝑻𝒄𝒂𝒏) with the xylem pressure at the 50% loss of conductivity (𝐏𝟓𝟎). Left panels (a, c, e and 449 

g) depict the linear mixed-model fits (species as random factor) between the average ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 450 

(a), the β coefficients of the vapor deficit pressure (VPD) effect on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (b), 𝑇𝑐𝑎𝑛 (c) and the 451 

β coefficients of the vapor deficit pressure (VPD) effect on 𝑇𝑐𝑎𝑛. Right panels (b, d, f and h) depict 452 

the same but for hot spells. Significant correlations are shown by solid lines and the corresponding 453 

p value is shown at the bottom right of each panel. Dashed lines represent marginally significant 454 

correlations. Fill colors show the different species included in the analysis.  455 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

4 Discussion  456 

4.1 Plot-scale Measurements of the Canopy Thermal Balance with ECOSTRESS 457 

 458 

In this study, we leveraged the availability of high-resolution LST data from ECOSTRESS 459 

to estimate the canopy thermal balance (as diagnosed by ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟) at a spatial scale that allows 460 

integration with forest structural data from forest inventories and plant functional traits. On 461 

average, our estimations of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 were slightly higher than those from montane coniferous 462 

forests in both warm and cold seasons, but our range was similar (Javadian et al., 2022). This range 463 

was broad, which could be caused by the wide ecoclimatic gradient covered by the study area, 464 

including structurally and functionally different forests over a wide range of MAP (from 350 to 465 

1300 mm, Table S1). Thus, our study included forests that are drier than those from studies in 466 

other temperate areas where ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was estimated to be ca. 1 K lower (Still et al., 2022; Yi et 467 

al., 2020). Importantly, the estimated ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 derived from ECOSTRESS was comparable to 468 

the ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 obtained with in-situ thermal imaging for high elevation shrublands and meadows 469 

(Blonder et al., 2020) and temperate needleleaf and broadleaf forests (Still et al., 2022). While the 470 

area covered by infrared cameras is inevitably limited, their observations can be individual-471 

specific. On the contrary, analyses of the relationship between 𝑇𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 from remote sensing 472 

usually have a spatial resolution (ca. 0.5°) that exceeds the scale at which forest plot measurements 473 

are collected. Our approach takes advantage of the best of these two approaches: the high spatial 474 

coverage of satellite observations and the high spatial resolution provided by the novel 475 

ECOSTRESS thermal sensor. This allows not only for a better understanding of how heat and 476 

water exchange over time and space (Xiao et al., 2021), but also enables us to associate these 477 

exchanges with fine-scale variations in forest structure and function (Cooley et al., 2022). 478 

4.2 Heat Advection Influence on Forest ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 Patterns 479 

 480 

During hot spells, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was significantly lower than in normal days, regardless of the 481 

type of forest and its average climate (Fig. 2a). Hot spells in the Iberian Peninsula are usually 482 

caused by the heat advection associated with Saharan air intrusions (Sousa et al., 2019). The warm 483 

and dry air carried by these intrusions results in a lower ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 driven by a sudden increase in 484 

𝑇𝑎𝑖𝑟. Hence, during hot spells although 𝑇𝑐𝑎𝑛 was still higher than in normal days (Fig. 2b), the 485 

increase experienced in 𝑇𝑎𝑖𝑟 was even larger. As 𝑇𝑎𝑖𝑟  increases, canopy-to-air sensible heat fluxes 486 

will be inhibited (Still et al., 2021). As a result, the amplification of hot spells by local sensible 487 

heat fluxes would be comparably unimportant, and thus the forest canopies would not have a 488 

positive feedback on hot spell occurrence. Instead, the studied hot spells would be largely driven 489 

by circulation and the advection of heat, rather than accompanied by changes in incoming radiation 490 

and subsequent sensible heat fluxes (Fig. S6). Therefore, the response to hot spells of the forest 491 

thermal balance in this Mediterranean region seems to contrast with the important influence of soil 492 

desiccation found in higher latitudes (Schumacher et al., 2019; Teuling et al., 2010).  493 

 494 

While heat advection appears to be a key component of the forest thermal balance, we still 495 

found that ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was a function of local climatic gradients and daily meteorological conditions 496 

across the studied forest plot network. Spatial variability in rainfall and solar radiation exerted 497 

negative and positive effects, respectively, on both ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛. This can be expected 498 

because solar radiation warms the surface (𝑇𝑐𝑎𝑛), and the availability of water governs the 499 
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partitioning of that radiation between sensible and latent heat fluxes. 𝑇𝑐𝑎𝑛 was on average warmer 500 

in locations with warmer mean annual temperatures (Fig. 4b). During hot spells, heat advection 501 

results in decreases in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. This explains the negative correlation between VPD and MAT 502 

with ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 (Fig. 4a). High VPD during hot spells coincides in space and time with low  503 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟, as opposed to what could be expected if the high VPD was a response to dry and warm 504 

surfaces. In summary, increases in 𝑇𝑎𝑖𝑟 are externally driven by advection, and not by local 505 

sensible heat fluxes because in that case, we should have observed a positive relationship between 506 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and VPD. 507 

 508 

    VPD is one of the main drivers of canopy transpiration (Flo et al., 2021; Grossiord et al., 509 

2020), but transpiration responses to high VPD range from strong decreases to strong increases as 510 

a function of the plants’ water use strategy (Massmann et al., 2019). Initially, in moist temperate 511 

forests, moderate increases in VPD may enhance transpiration rates and cool down the canopy (Yi 512 

et al., 2020). Yet, in water-limited areas, such as the one studied here, canopy transpiration tends 513 

to decline with increases in VPD (Duursma et al., 2014; Flo et al., 2021). This agrees with the 514 

positive correlation between high VPD and warm 𝑇𝑐𝑎𝑛 that we observed under dry conditions (Fig. 515 

5b) showing that high VPD prevents the transpiration-driven cooling of the canopy. Yet, increasing 516 

VPD should still result in cooler canopies when water is still available for plants (Fig. 5b). Indeed, 517 

we found lower ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and cooler 𝑇𝑐𝑎𝑛 under wetter conditions (Fig. 4), which we attributed 518 

to the increase in transpiration when the soil is moist in these water-limited environments. Our 519 

results are consistent with observations from tropical regions, where water availability in the upper 520 

soil layers strongly controls surface temperature (Green et al., 2022). Similarly, in temperate 521 

regions, the deeper root systems of forests compared to grasslands also result in more 522 

transpirational cooling and lower temperatures (Lansu et al., 2020; Teuling et al., 2010; Zhang et 523 

al., 2020), emphasizing the importance of root water uptake for predicting vegetation-atmosphere 524 

feedbacks (Barbeta & Peñuelas, 2017; Cabon et al., 2018). Access to deep soil water allows the 525 

vegetation to dissipate heat through evaporation from the leaves, thus avoiding overheating, 526 

decreasing 𝑇𝑐𝑎𝑛 and sensible heat fluxes (Krich et al., 2022). Under wet soils and high VPD, our 527 

model predicted that ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 would become negative, i.e., 𝑇𝑐𝑎𝑛 could be cooler than 𝑇𝑎𝑖𝑟 (Fig. 528 

5a). Yet, previous studies have shown that a negative ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 in clear sky days is rare for 529 

temperate forests and that it can only be expected in systems such as rice paddies where water 530 

supply is unlimited (Still et al., 2022), or during rain events (van Dijk et al., 2015). Because our 531 

remotely sensed 𝑇𝑎𝑖𝑟 is only available for clear sky days, the predicted low ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was most 532 

likely caused by the occurrence of heat advection in combination with s sufficient soil water 533 

availability to supply transpiration during hot spells, instead of by a VPD-induced transpiration 534 

increase, as indicated above. 535 

4.3 Biotic controls on forest ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟  536 

 We found significant but quantitatively small differences in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 among forests 537 

dominated by species belonging to different functional groups (Fig. 3a). For example, the thermal 538 

balance of needleleaf montane forests did not differ from that of broadleaf deciduous, despite their 539 

slightly different climatic niches (Table S1). ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 differed among forests dominated by 540 

functional groups occupying contrasting climatic niches (see summer PPET in Table S1), but also 541 

presenting substantial structural differences (Table S2). For example, we found that ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was 542 

higher in broadleaf evergreen forests than in the also drought-adapted needleleaf Mediterranean 543 
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(Table S1, Fig. 3b). Still, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 in broadleaf evergreen forests was not statistically different to 544 

the structurally and climatically different needleleaf montane forests. The differences in 𝑇𝑐𝑎𝑛 545 

between functional groups are constrained by the background climatic conditions (i.e., gradients 546 

in MAT), but for ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 the differences among groups were possibly modified by contrasting 547 

surface properties and forest functioning. This was further confirmed by the analysis of the drivers 548 

of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 showing significant effects of MAP and MAT, but also of forest structural variables 549 

such as albedo, mean tree height or tree cover (Fig. 4). The discrete nature of functional groups 550 

may be too limiting to describe continuous fluxes such as those involved in the forest thermal 551 

balance (Bodegom et al., 2012). Indeed, the intra-group variability in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 was high within 552 

all groups (Fig. 3), in agreement with previous studies suggesting that site-specific conditions may 553 

be more relevant than plant functional groups (Wang et al., 2019) or leaf-level traits (Blonder et 554 

al., 2020) for the surface energy balance.  555 

 The structure of forests appeared almost as determinant as daily meteorological conditions 556 

for ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟. In contrast, 𝑇𝑐𝑎𝑛 mostly varied as a function of daily VPD and CWB (Fig. 4). As 557 

hypothesized, we found significant correlations of forest structural variables that determine heat 558 

dissipation mechanisms. The model showed that tall and dense forests with a canopy fully covering 559 

the ground maintained a cooler 𝑇𝑐𝑎𝑛 relative to 𝑇𝑎𝑖𝑟, compared to forests with short trees with 560 

sparse stems and canopies. Albedo affected positively both ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛. This positive effect 561 

on ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 or 𝑇𝑐𝑎𝑛 may be the consequence of the higher albedos of forests adapted to warmer 562 

temperatures and with a more conservative water use (Muller et al., 2021). Albedo is indeed lower 563 

in montane needleleaf forests, compared to Mediterranean needleleaf ones (Table S2). Similarly, 564 

∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 is higher in those stands occupying drier areas and composed by species with functional 565 

traits associated with a more efficient water use and a higher resistance to drought (Table S3 and 566 

Fig. 6a), as expected. In addition, the response of ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 to VPD is clearly positive in drier 567 

stands (Fig. 6c). Interestingly, this relationship was reversed during hot spells (Table S3 and Fig. 568 

6d). During hot spells, the ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 did not respond to VPD in drought-sensitive species such as 569 

F. sylvatica (Fig. 6d). In contrast, ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 and 𝑇𝑐𝑎𝑛 were disproportionately reduced by VPD 570 

during hot spells in drought-resistant conifer species, such as P. halepensis (Sánchez-Costa et al., 571 

2015). This trait-mediated disparity in species-specific (and intra-specific) response to VPD during 572 

hot spells is in agreement with the observations of high transpiration during extremely high VPD 573 

conditions in Australian Mediterranean woodlands (Krich et al., 2022), but only for certain 574 

ecosystems with access to groundwater. The capacity to tap on deep water sources in 575 

Mediterranean ecosystem may be key to sustain transpiration under high VPD and heat stress.  576 

5. Conclusions 577 

Here we used a novel approach combining high-resolution remotely-sensed land surface 578 

temperature with a suite of ground-based structural and functional forest data to investigate the 579 

environmental determinants of the forest thermal balance for a Mediterranean region. We found 580 

that the forest thermal balance during hot spells was more dependent on heat advection episodes 581 

suddenly increasing 𝑇𝑎𝑖𝑟 than on 𝑇𝑐𝑎𝑛. This pattern is fundamentally different to the strong 582 

influence of surface responses in less water-limited regions (Lansu et al., 2020; Teuling et al., 583 

2010; Wang et al., 2019). In fact, background climatic conditions explained a significant part of 584 

the variability in ∆𝑇𝑐𝑎𝑛−𝑎𝑖𝑟 in our study area, which also contains relatively moist forests 585 

analogous to those in temperate regions, as central Europe. Furthermore, we found that climatic 586 

water availability and the plant water use strategy exert additional controls on the forest thermal 587 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

balance, probably through transpiration cooling. The coordination of rooting depth and other plant 588 

functional traits linked to water-use strategies (Illuminati et al., 2022) may underlie the association 589 

of the considered traits with the response to increased VPD during hot spells, that included canopy 590 

cooling in the driest stands of the most drought-resistant species (Fig. 6h). Finally, we also showed 591 

that forest structural characteristics related to surface roughness such as tree height and cover, 592 

stand density, and albedo also influence the forest thermal balance, as they affect heat dissipation 593 

mechanisms (Muller et al., 2021). Therefore, our results demonstrate that the integration of 594 

functional traits and forest structure over relevant spatial scales could improve our ability to 595 

understand and model land–atmosphere feedbacks in forested regions. 596 
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