Transient Response and Adjustment Timescales of Channel Width and Angle of Valley-Side Slopes to Accelerated Incision

Naoya Takahashi¹, J. Bruce H. Shyu², Shinji Toda¹, Yuki Matsushi³, Ryoga Ohta⁴, and Hiroyuki Matsuzaki⁵

¹Tohoku University ²National Taiwan University ³DPRI, Kyoto University ⁴Chuo University ⁵University of Tokyo

January 20, 2023

Abstract

Studying bedrock rivers during their transient states helps understand the response of a fluvial system to changed boundary conditions. Although studies show how river form adjusts to changes in incision or rock uplift rates, field constraints on the timescale of this adjustment are limited. We present a method that uses knickpoint travel time to estimate the adjustment times of channel width and angle of valley-side slopes to accelerated incision. The travel time of knickpoints between their current positions and the points where changes in width or hillslope angle have just finished represents the time required for morphological adjustment after knickpoint passage. We documented channel slopes, channel widths, and hillslope angles along six rivers that cross an active normal fault in Iwaki, Japan, and identified river sections in a transient state. Channel slopes and basin-averaged erosion rates determined from ¹⁰Be concentrations are distinct between rivers near and distant from the fault, suggesting that past increases in fault throw rates triggered the knickpoint formation and the observed transient response. Adjustment time depends on the slope exponent in the detachment-limited model and is 2–5 times greater for channel width than hillslope angle, indicating that catchment adjustment times can be much longer than times predicted only by knickpoint travel time. The fact that channel slope, channel width, and hillslope angle have distinct adjustment times underlines the importance of correctly identifying river sections that are fully adjusted to the new boundary conditions when inferring erosion or relative uplift rates for bedrock rivers.

1 Transient Response and Adjustment Timescales of Channel Width and Angle of

- 2 Valley-Side Slopes to Accelerated Incision
- 3

Naoya Takahashi^{1,*}, J. Bruce H. Shyu^{2,*}, Shinji Toda³, Yuki Matsushi⁴, Ryoga Ohta⁵, and Hiroyuki Matsuzaki⁶

- 6 ¹ Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
- ² Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan,
- 8 ROC
- ⁹ International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aoba, 468-1, Aoba, Sendai
- 10 980-0845, Japan
- ⁴ Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji city, Kyoto 611-0011, Japan
- ⁵ Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- ⁶ Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo,
- 14 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- 15 Corresponding author:
- 16 Naoya Takahashi (naoya.takahashi.c5@tohoku.ac.jp) (orcid.org/0000-0003-4196-1409)
- 17 J. Bruce H. Shyu (jbhs@ntu.edu.tw) (orcid.org/0000-0002-2564-3702)
- 18

19 Key Points:

- We use knickpoint travel time to estimate the time between knickpoint passage and
 channel/hillslope adjustments to accelerated incision.
- The adjustment of channel width after the passage of a knickpoint takes 2–5 times longer
 than the adjustment of valley-side slope.
- Adjustment of the entire river basin takes much longer than the time a knickpoint takes to
 travel upstream to the channel heads.
- 26

27 Abstract

Studying bedrock rivers during their transient states helps understand the response of a fluvial 28 system to changed boundary conditions. Although studies show how river form adjusts to 29 changes in incision or rock uplift rates, field constraints on the timescale of this adjustment are 30 31 limited. We present a method that uses knickpoint travel time to estimate the adjustment times of channel width and angle of valley-side slopes to accelerated incision. The travel time of 32 knickpoints between their current positions and the points where changes in width or hillslope 33 angle have just finished represents the time required for morphological adjustment after 34 knickpoint passage. We documented channel slopes, channel widths, and hillslope angles along 35 six rivers that cross an active normal fault in Iwaki, Japan, and identified river sections in a 36 transient state. Channel slopes and basin-averaged erosion rates determined from ¹⁰Be 37 concentrations are distinct between rivers near and distant from the fault, suggesting that past 38 increases in fault throw rates triggered the knickpoint formation and the observed transient 39 response. Adjustment time depends on the slope exponent in the detachment-limited model and 40 is 2–5 times greater for channel width than hillslope angle, indicating that catchment adjustment 41 times can be much longer than times predicted only by knickpoint travel time. The fact that 42 channel slope, channel width, and hillslope angle have distinct adjustment times underlines the 43 importance of correctly identifying river sections that are fully adjusted to the new boundary 44 conditions when inferring erosion or relative uplift rates for bedrock rivers. 45

46

47 Plain Language Summary

48 Bedrock rivers adjust their forms in response to changes in their boundary conditions, such as underlying rock types, climate, and tectonics, which means that establishing their quantitative 49 50 relationships between these boundary conditions may enable us to infer rates of erosion or relative uplift from river morphologies. Although it is well known how river and hillslope forms 51 52 adjust after an increase in erosion rates, the timescale of these adjustments is difficult to constrain in an actual landscape. This study presents a method to estimate the adjustment times 53 of channel width and hillside slope angles along the sides of a valley. We studied a set of rivers 54 that cross an active normal fault and documented the variations of channel and hillslope forms 55 along their courses. These rivers are now changing their shapes after motion on the fault has 56

57 increased their erosion rates. Our analysis shows that channel width likely takes 2–5 times longer

to complete its adjustment than does the hillslope angle. Our findings show that channel slope,

59 channel width, and hillslope angle all have distinct adjustment times. It may take longer than

60 previously thought for an entire river system to adjust to new boundary conditions.

61

62 **1. Introduction**

Because the incision of rivers into bedrock is a major element in the formation of 63 mountain landscapes, quantifying incision rates and their relationships with external forces is 64 important for understanding landscape evolution. The morphology of channels and hillslopes is 65 closely related to erosion rates, and a long history of research has gone into establishing their 66 functional relationships (e.g., Ahnert, 1970; Wobus et al., 2006a; Roering et al., 2007; Kirby & 67 Whipple, 2012). A sudden increase in the rate of base-level fall (i.e., relative uplift) can enhance 68 69 local incision rates and may generate a knickpoint that migrates upstream (e.g., Whipple & Tucker, 1999; Crosby & Whipple, 2006). As it does so, channels and hillslopes along its passage 70 gradually adjust their forms to the accelerated incision rates. Knickpoints are common in 71 tectonically active areas, and thus knowledge of the transient response of rivers to an increase in 72 incision rates may enable researchers to infer a region's erosional or tectonic history from river 73 morphologies. 74

Channel slope, channel width, and the angle of valley-side slopes are closely related to 75 channel incision rates, and many studies have focused on quantifying relationships between 76 morphologies of channel and hillslope and rates of incision or relative uplift (e.g., Whipple & 77 78 Tucker, 1999; Snyder et al., 2000; Lavé & Avouac, 2001; Roering et al., 2001; Montgomery & Brandon, 2002; Reinhardt et al., 2007; Yanites & Tucker, 2010). The channel steepness index, 79 expressing the channel slope normalized by upstream drainage area (e.g., Snyder et al., 2000), 80 increases after the passage of a knickpoint in response to an increase in incision rates. Channel 81 82 steepness downstream from the migrating knickpoint is assumed to reach a new steady-state value and is often positively correlated with uplift rates (e.g., Kirby & Whipple, 2012; Regalla et 83 al., 2013; Chen et al., 2015; Gallen & Wegmann, 2017). Channel width can become wider or 84 narrower in response to increased incision rates or be insensitive to incision rates (e.g., Lavé & 85 Avouac, 2001; Snyder et al., 2003; Yanites & Tucker, 2010). According to a numerical study 86

that considered the effects of sediment cover, channel narrowing occurs after the knickpoint 87 passage, but as the knickpoint travels upstream the local sediment supply continues to increase, 88 89 resulting in gradual widening of the channel (Yanites, 2018). A similar width adjustment was observed in a flume experiment (Baynes et al., 2022). Hillslope morphology is set by river 90 incision at its base. The hillslope angle increases with incision rates until it reaches a threshold 91 angle, above which it becomes insensitive to incision rate (e.g., Montgomery & Brandon, 2002). 92 The threshold angle, usually $\sim 30^{\circ} - 40^{\circ}$, is reached at relatively slow incision rates of 0.2–1.0 93 mm/yr (e.g., Montgomery & Brandon, 2002; Ouimet et al., 2009; DiBiase et al., 2012). 94

95 Whereas many studies have examined how river morphologies adjust to changes in incision rates, relatively few have attempted to quantify the adjustment timescales of channels 96 and hillslopes to accelerated incision. Such studies require a chronology that specifies the times 97 at which these morphological adjustments begin and end. However, in actual landscapes, it is 98 99 very difficult to constrain those timings except for channel slope (e.g., Crosby & Whipple, 2006; Whittaker & Boulton, 2012). The arrival of a knickpoint triggers a change in channel slope from 100 101 which a rate of knickpoint retreat can be calculated (e.g., Whipple & Tucker, 1999; Royden & Perron, 2013). Therefore, when the time and place a knickpoint is generated are known, the 102 timescale of channel slope adjustment can be estimated based on the knickpoint's travel distance 103 and travel speed (e.g., DiBiase et al., 2015). 104

The adjustment timescales of channel width and hillslope, unlike that for channel slope, 105 are difficult to estimate by using field evidence. Instead, they have been studied by numerical 106 107 modeling (e.g., Roering et al., 2001; Mudd & Furbish, 2007; Yanites, 2018; Turowski, 2020). Yanites (2018), modeling the evolution of channel width after knickpoint passage, showed that 108 the full adjustment could take 10^{5} – 10^{6} years. Roering et al. (2001) used sediment transport 109 models on hillslopes to estimate the adjustment time of valley-side slopes to a change in base-110 level lowering rates. The model parameters used in these studies were based on field 111 observations. However, we still know little about the actual adjustment timescales of channel 112 width and hillslopes, due to the difficulties in constraining when those adjustments started and 113 finished. 114

115 This paper presents a method to quantify the adjustment timescales of channel width and 116 the angle of valley-side slopes. We applied the method to bedrock rivers that cross an active

normal fault near the city of Iwaki, Japan. Because changes in channel width and hillslope follow 117 the passage of a knickpoint, we can use knickpoint travel times to estimate three quantities at any 118 given location: response time, the time between the start and finish of a morphological 119 adjustment; delay time, the lag time between the knickpoint arrival and the start of 120 morphological adjustment; and adjustment timescale, the sum of response and delay times, 121 representing the time between knickpoint passage and the finish of adjustment. Therefore, for the 122 adjustment of channel slopes, the delay time at a given location is always zero, the response time 123 is the time from the knickpoint passage until the channel slope attains a steady-state value, and 124 the adjustment time equals the response time. We investigated channel slope, channel width, and 125 hillslope angle along trunk streams and identified points at which morphological adjustments 126 started and finished. Because we cannot know exactly when channel or hillslope adjustments 127 128 have finished, we defined the end of adjustment as the condition where channel and hillslope forms are indistinguishable from those presumably at a steady state. We then calculated 129 knickpoint travel times and estimated the response and delay times of channel width and 130 hillslope angle. We use these results to discuss how the channel width and the angle of valley-131 132 side slopes change following an increase in channel incision rates, highlighting the need to inspect channels and hillslopes along a trunk stream and its tributaries when inferring incision or 133 134 tectonic histories from river morphologies.

135

136 2. Background

137 2.1 Tectonic and Geologic Background

138 Iwaki is in the Tohoku region of northeastern Japan, which is subjected to E-W compression due to westward subduction of the Pacific plate under the Eurasia plate (Figure 1a). 139 Although most earthquakes in Tohoku are characterized by reverse faulting, analysis of 140 microearthquakes during 2003–2010 has revealed that the Iwaki area has been in an extensional 141 stress regime since before the 11 March 2011 Mw 9.0 Tohoku-Oki earthquake (Imanishi et al., 142 2012). Shortly after the Tohoku-Oki event, a normal-faulting event of Mw 6.6 occurred in Iwaki 143 on 11 April 2011. This earthquake produced surface ruptures along the Yunodake and Itozawa 144 faults (Figure 1a) (e.g., Fukushima et al., 2013; Toda & Tsutsumi, 2013). The Yunodake and 145 Itozawa faults are normal faults dipping SW and WSW, respectively, that form a half-graben 146

between them (Mitsui, 1971), suggesting that this area has experienced extension on a geological 147 timescale. The vertical slip rate of the Yunodake fault is unknown. A paleoseismic trenching 148 study (Miyashita, 2018) showed that three surface-rupturing earthquakes including the 2011 149 event occurred on the Yunodake fault within the last 7 ky. If we assume that each of these 150 produced vertical displacements similar to that in 2011 (~80 cm: Toda & Tsutsumi, 2013), a 151 rough estimate of the fault throw rate is ~ 0.34 mm/yr. 152 Bedrock around the Yunodake fault consists of metamorphic and granitic rocks of 153 Cretaceous age and sedimentary rocks of Miocene age (e.g., Kubo et al., 2007) (Figure 1b). 154 Cretaceous metamorphic rocks include siliceous, mafic, pelitic and calcareous rocks (Kano et al., 155 1973; Hiroi et al., 1987; Kubo et al., 2007). Cretaceous granodiorite and porphyritic granodiorite 156 occur along the middle and eastern part of the Yunodake fault (Kubo et al., 2007). Miocene 157 158 sedimentary rocks southwest of the Yunodake fault include marine and nonmarine clastic rocks (Kubo et al., 2007) that overlie Cretaceous metamorphic rocks (Mitsui, 1971). 159 We focus on six trunk streams, numbered 1 through 6, along the Yunodake fault (Figure 160 1). Their drainage areas range from 1.6 to 24.1 km² and average 7.4 km² (Table S1). The 161 162 substrates are either metamorphic or granitic rocks. Riverbeds are typically covered with gravel in reaches of metamorphic rocks and with sand in reaches of granitic rocks. Although Basins 2-6 163 164 intersect with or are very close to the fault, Basin 1 does not cross the fault. Basins 2-6 are

characterized by steeper downstream reaches and gentler upstream reaches of smaller relief(Figure 1c).

167

169 Figure 1. (a) Location and topography of the study area. Drainage basins and their trunk streams

- are labeled with their identification number (1-6). The inset map shows topography and active
- 171 fault traces in eastern Japan. Active fault traces are from Nakata and Imaizumi (2002). Surface
- rupture traces are after Toda and Tsutsumi (2013). (b) Geologic map around the Yunodake fault
- 173 (Kubo et al., 2007; Geological Survey of Japan, 2020). (c) Topographic relief in the area of (b)
- 174 within circular windows of 500 m radius.
- 175

176 2.2. Channel and Hillslope Morphology

177 **2.2.1. Channel Slope**

In a stream at steady state, local channel slope (S) is a function of flow discharge, whichis commonly represented by upstream drainage area (A):

180

$$S = k_s A^{-\theta},\tag{1}$$

181 where k_s is a steepness index and θ is a concavity index (e.g., Flint, 1974; Snyder et al., 2000).

182 Equation (1) holds only above a critical drainage area ($A > A_{crt}$), at which the dominant

183 erosional process changes from colluvial (debris flows) to fluvial processes (e.g., Montgomery &

184 Foufoula-Georgiou, 1993; Stock & Dietrich, 2003). In drainage areas smaller than A_{crt}, channel

185 slope either increases with or is independent of drainage area. The concavity index typically

ranges between 0.4 and 0.6 (e.g., Kirby & Whipple, 2012).

187 The standard stream power model (e.g., Howard & Kerby, 1983) predicts a relation 188 between channel slope and upstream drainage area similar to equation (1):

189 $S = (E/K)^{1/n} A^{-m/n},$ (2)

where E is a local erosion rate, K is erodibility, m is related to the dominant erosion process and *n* is related to the hydraulic scaling relationships among channel width, flow discharge, and

drainage area (e.g., Whipple & Tucker, 1999). From equations (1) and (2), under a steady state

193 where local erosion rates match local uplift rates (U), channel steepness can be written as

194 $k_s = (E/K)^{1/n} = (U/K)^{1/n}.$ (3)

Because the concavity index is independent of uplift rates when the gradient of local uplift rates

196 within a basin has a negligible impact on a channel profile (e.g., Snyder et al., 2000), a fixed

- 197 concavity index ($\theta = \theta_{ref}$, equation (1)) is used to calculate k_s , and the resulting channel
- 198 steepness is termed a normalized steepness index (k_{sn} ; Wobus et al., 2006a).

A sustained increase in the rate of base-level lowering can generate a knickpoint (or a knickzone). This knickpoint propagates upstream and separates the longitudinal river profile into two segments: an adjusted segment downstream with higher steepness and a pre-adjusted segment upstream with lower steepness. This mobile knickpoint, called a slope-break knickpoint (e.g., Whipple et al., 2013), is readily distinguished from a stationary knickpoint (vertical-step knickpoint) that has different origins, such as a local decrease in bed erodibility associated with resistant substrates.

206

207 **2.2.2. Channel Width**

The channel width (W) of bedrock rivers is a power function of drainage area (e.g.,
Montgomery & Gran, 2001):

210

$$W = k_w A^b, (4)$$

where k_w (unit: m^{1-2b}) is a wideness index (e.g., Allen et al., 2013) and *b* is a positive exponent that is typically 0.3–0.5 at a steady state (e.g., Whipple, 2004). A larger wideness index indicates a wider channel. Similar to k_{sn} and θ_{ref} , k_w calculated using a fixed value of *b* (b_{ref}) is a normalized wideness index (k_{wn}). An adjustment in channel width in response to accelerated incision should appear as a break in the hydraulic scaling of equation (4) or a change in average k_{wn} values with distance along the stream.

218 2.2.3. Angle of Valley-Side Slopes

In mountainous landscapes, drainage basins consist primarily of hillslopes, and material transport on hillslopes dictates the sediment supply to channels (e.g., Roering, 2008). Following the passage of a knickpoint produced by increased base-level lowering rates, hillslopes become steeper such that hillslope lowering keeps pace with channel incision (e.g., Roering et al., 2001). A downstream increase in hillslope angle is expected downstream of a slope-break knickpoint, and our analysis focused on this transition.

226 2.3. Knickpoint Travel Speed and the Timescales of Channel Width and Hillslope Angle 227 Adjustments

Following the passage of a slope-break knickpoint, the channel width and the angle of valley-side slopes are expected to change until the local incision rate matches the local uplift rate. This morphological adjustment is characterized by a response time and a delay time, as defined in section 1. We estimated the response and delay times for channel width and hillslope angle based on knickpoint travel time.

Figure 2 schematically illustrates the response of a valley-side slope to accelerated 233 incision. Hillslopes downstream from the knickpoint can be divided into three sections 234 representing the phases of morphological adjustment. The pre-adjustment hillslope extends from 235 upstream to slightly downstream of the knickpoint, and its angle reflects the incision rate before 236 acceleration. The adjusted hillslope, well downstream from the knickpoint, has an angle that is 237 fully adjusted to the accelerated incision. Between these two sections is the adjusting hillslope, 238 with an angle that is currently changing in response to the accelerated incision. Because the 239 knickpoint propagates upstream, its travel time from the boundary between the pre-adjustment 240 and adjusting sections to the current knickpoint position represents the delay time. The 241 knickpoint travel time from this boundary to the boundary between the adjusting and adjusted 242 sections is the response time. The adjustment time is the sum of the response and delay times. 243 244

245

Figure 2. Schematic diagram of the right bank of a stream showing the response of hillslope angle to accelerated incision. The hillslope angle starts to change at the boundary between the pre-adjustment and adjusting sections and finishes at the boundary between the adjusting and adjusted sections.

250

Following a sustained increase in incision rates, knickpoint travel distance in χ -space is written as (Royden & Perron, 2013; Mitchell & Yanites, 2019):

253
$$\chi_{kp}(t) = \begin{cases} \frac{nU_{ini}}{\left(\frac{U_{ini}}{K}\right)^{\frac{1}{n}}A_0^{-\frac{m}{n}}}t & n < 1 \quad (5a)\\ \frac{KA_0^{\frac{m}{n}}t}{KA_0^{\frac{m}{n}}t} & n = 1 \quad (5b)\\ \frac{U_{fin} - U_{ini}}{\left(\left(\frac{U_{fin}}{K}\right)^{\frac{1}{n}} - \left(\frac{U_{ini}}{K}\right)^{\frac{1}{n}}\right)A_0^{-\frac{m}{n}}}t & n > 1 \quad (5c) \end{cases}$$

where $\chi_{kp}(t)$ is a χ of a mobile knickpoint at time t since knickpoint generation. A_0 is a

reference drainage area, which was set at 1 in this study. Subscripts *ini* and *fin* represent the

initial and final steady state, respectively; thus U_{ini} and U_{fin} are initial and final uplift rates

257 $(U_{ini} < U_{fin})$. Substituting equation (3) for equation (5) and solving equation (5) with respect to

258 t, the knickpoint travel time since the incision rate increase (t = 0) is

259
$$t = \begin{cases} \frac{k_{sn \, ini}}{nU_{ini}} \chi_{kp}(t) & n < 1 \quad (6a) \\ \frac{1}{K} \chi_{kp}(t) & n = 1 \quad (6b) \\ \frac{k_{sn \, fin} - k_{sn \, ini}}{U_{fin} - U_{ini}} \chi_{kp}(t) & n > 1. \quad (6c) \end{cases}$$

260

261 **2.4. Basin-Averaged Erosion Rate Determined from Cosmogenic**¹⁰Be Concentration</sup>

The ¹⁰Be concentration in fluvial sediment (\overline{C} : atoms/g) is used to estimate the average erosion rate within a catchment (\overline{D} : g/m² yr) (e.g., Brown et al., 1995a; Bierman & Steig, 1996; Granger et al., 1996) by

265

$$\overline{D} = P_0 \Lambda / \overline{C},\tag{7}$$

where P_0 (atoms/g yr) is the cosmogenic ¹⁰Be production rate at the surface and Λ (g/cm²) is the attenuation length of particles responsible for ¹⁰Be production. Because the total sediment mass produced in a catchment is the sum of the sediment from its nested sub-catchments, average erosion rates within and outside the sub-catchments can be estimated by analyzing ¹⁰Be samples from multiple sites in the catchment (e.g., Regalla et al., 2013):

271
$$\overline{D} = \sum_{i=1}^{j} D_i A_i / \sum_{i=1}^{j} A_i, \qquad (8)$$

where D_i and A_i are the average erosion rate and drainage area of sub-catchment *i*, respectively, and *j* is the number of subcatchments.

274

275 **3. Method**

276 **3.1. Observations of Channel and Hillslope Morphology**

We compiled observations of the along-trunk variations of channel slope, channel width, and hillslope angle as detailed below. We used the channel slope data to identify the current knickpoint position, and we used the other observations to determine the points where the adjustments of channel width and hillslope angle started and finished.

281

282 **3.1.1. Normalized Steepness Index**

We analyzed a digital elevation model (DEM) of the study area to calculate the normalized steepness index k_{sn} every 50 m along trunk streams using Topotoolbox 2 (Schwanghart & Scherler, 2014). The DEM, obtained from the Geospatial Information Authority of Japan, has a resolution of 10 m. We first determined A_{crt} and then calculated k_{sn} for channel reaches with $A > A_{crt}$. We also calculated χ (Perron & Royden, 2013) and constructed χ elevation (z) plots (χ -plots):

289
$$\chi = \int_{x_h}^{x} (A_0 / A(x))^{\frac{m}{n}} dx$$
(9)

$$z(x) = z(x_b) + (E/KA_0^m)^{\frac{1}{n}}\chi$$
(10)

where x is the distance along a stream course measured from the outlet of the channel reach, x_b is the distance at the outlet (thus $x_b = 0$). Equation (10) is the integral form of equation (2) under the assumption of a spatially uniform *E* and *K*, and it predicts that the slope of a χ -plot represents a reach-averaged value of k_{sn} . A knickpoint appears as a kink in a χ -plot. We used the k_{sn} values and χ -plots to determine the current positions of slope-break knickpoints (at the upstream end of knickzones), where the adjustment of channel slope begins.

297

3.1.2. Field Measurement of Channel Width

We measured bankfull channel widths in the field every 30-100 m along trunk streams 299 300 using a laser rangefinder (TruPulse 360B Laser Technology). Measurement error is approximately ± 30 cm. Width measurements depend on how one defines flow depth at bankfull 301 302 stage. The bankfull depth is typically identified based on the limits of active abrasion, vegetation boundaries, and remnants of flood debris (e.g., Whittaker et al., 2007). Where there were 303 304 multiple candidates for the high-flow depth, we measured channel widths at each candidate level and calculated their average. The measured width of each trunk river was fitted to equation (4) to 305 estimate exponent b based on least squares. We determined b_{ref} by averaging b of all river 306 segments whose width variations were consistent with the general scaling of equation (4). We 307 then used the resulting b_{ref} values and upstream drainage areas calculated from the 10 m DEM 308 to calculate the normalized wideness index k_{wm} . 309

310

311 3.1.3. Average Angle of Valley-Side Slopes

We calculated the angles of hillslopes adjacent to trunk streams using the 5 m DEM 312 provided by the Geospatial Information Authority of Japan. We used this high-resolution DEM 313 because the accuracy of hillslope angles depends on the DEM grid size. Because the available 5 314 m DEM lacks data along the streams, we could not use it for the channel analysis. We mapped 315 hillslopes along trunk streams based on the upstream drainage area, slope aspect, and slope 316 curvature. We did not include hillslopes along tributaries with drainage areas greater than A_{crt} as 317 our focus was on trunk streams. Although it was difficult to determine a clear threshold, we also 318 excluded hillslopes along small tributaries (maximum area $< A_{crt}$) visible on the 5 m DEM 319 (Figure S1). We then segmented mapped valley-side slopes every 50 m along trunk streams and 320 calculated average angles for each hillslope segment. 321

322

323 **3.1.4. Identifying Sections of Transient Response**

To identify river sections where hillslopes and channels are undergoing transient response to a knickpoint passage, we calculated 8-point moving averages of k_{wn} and hillslope angle. Given the large natural variability in channel width and hillslope angle, we augmented the moving averages with statistical tests to identify the sections in transience. The Kolmogorov-

- 328 Smirnov test showed that in Basin 1, k_{wn} values were normally distributed (p = 0.64) and
- hillslope angles were not normally distributed ($p \ll 0.01$) at the 5% significance level.
- 330 Therefore, we applied the Student's *t* test for k_{wn} data and the Mann-Whitney U test for hillslope
- angle data. In these tests, we used 16 contiguous samples and determined whether the difference

between the upstream 8 samples and the downstream 8 samples was statistically significant.

- 333 Despite trying various significance levels, we could not properly identify sections experiencing
- transient response. Therefore, we defined transient sections as those where the moving average
- values showed a gradual decrease or increase and where the *p*-value of statistical tests was
 smaller than those of adjacent channel sections.
- 337

338 3.2. Adjustment Timescales of Channel Width and Hillslope Angle

Using equation (6), we calculated knickpoint travel time for *n* values of 2/3, 1, and 5/3 (e.g., Whipple et al., 2000) and estimated the delay, response, and adjustment times of channel width and valley-side slope angles in response to a sustained increase in incision rates. Normalized channel steepness at the initial and final steady state were defined as the average k_{sn} upstream and downstream of a slope-break knickpoint, respectively. We assumed that the erodibility constant (*K*) was uniform over time and calculated *K* using k_{sn} and ¹⁰Be-derived erosion rates with equation (3).

346

347 **3.3. Basin-Averaged Erosion Rate Determined from Cosmogenic**¹⁰Be Concentration</sup>

We collected four sand samples (diameter < 2 mm) from trunk streams and measured 348 ¹⁰Be concentrations of quartz grains to determine basin-averaged erosion rates (Figures 1 and 349 S2). We purified quartz following a method adapted from Kohl and Nishiizumi (1992). We first 350 crushed and sieved samples to obtain grains 0.25-1 mm in diameter. These were heated in 9% 351 HCl to remove carbonates, iron oxides, and organic materials, then quartz was separated from 352 the samples using sodium polytungstate. The extracted quartz was leached using a 1% HF and 353 HNO₃ solution to remove residual feldspars and meteoric ¹⁰Be. Then, after adding a ⁹Be spike, 354 the quartz was dissolved with HF, HNO₃, and HClO₄. After the solution was used in anion- and 355 cation-exchange chromatography, NH4OH was added, and the precipitant was heated to obtain 356

BeO. ¹⁰Be/⁹Be ratios were measured using accelerator mass spectrometry at Micro Analysis 357 Laboratory, Tandem Accelerator, the University of Tokyo (Matsuzaki et al., 2007). 358 ¹⁰Be production rates were calculated using scaling factors presented in Stone (2000). We 359 computed topographic shielding factors for all sampled points using the 10 m DEM and an 360 algorithm developed by Li (2013). Attenuation lengths for neutrons, slow muons and fast muons 361 were set at 160, 1500, and 5300 g/cm², respectively (Brown et al., 1995b; Gosse & Phillips, 362 2001; Braucher et al., 2003). Contributions of slow and fast muons to the total ¹⁰Be production at 363 the surface were assumed to be 1.2% and 0.65%, respectively (Braucher et al., 2003). We 364 assumed a bulk density of 1.63 g/cm³ for the shallow subsurface materials on hillslopes 365 (Nakamura et al., 2014). Although it sometimes snows in Iwaki, we did not consider the effect of 366

367 snow shielding on ¹⁰Be production because the snow cover was mostly less than several

centimeters deep during 1960–2008 (Japan Meteorological Agency, 2021).

369

4. Results

371 4.1. Channel and Hillslope Morphology

372 4.1.1. Steepness of Stream Channels

Calculated values of normalized channel steepness (k_{sn}) are summarized in Figure 3. 373 Each of the six drainage basins contains a slope-break knickpoint dividing the trunk streams into 374 a downstream segment with greater k_{sn} and an upstream segment with smaller k_{sn} (Figures 1 375 and 3). Downstream segments of Basins 2–6 are much steeper than that of Basin 1, suggesting 376 that incision rates in Basin 1 are much slower than in other basins. The channel steepness in the 377 downstream segment of Basin 1 is three times greater than that of the upstream segment (Figure 378 3), suggesting that Basin 1 may be at a transient state. However, because the trunk stream of 379 Basin 1 does not cross the Yunodake fault and we cannot know where the knickpoint formed, we 380 will not discuss its morphological characteristics in detail. A slope-break knickpoint in Basin 3 381 382 occurs near a boundary between granitic rocks and schist (Figure 1), presenting the possibility that differential rock erodibility may explain the observed increase in k_{sn} . However, channel 383 steepness does not change significantly at similar lithologic boundaries in Basins 3 and 4 384

- (Figures 1b and S2). Therefore, we assumed that factors other than differential rock erodibilitycontributed to the formation of the knickpoint in Basin 3.
- 387

388

Figure 3. A χ -plot for the trunk streams in Basins 1 to 6. Relative elevation (y-axis) denotes the elevation above the basin outlet.

391

4.1.2. Channel Width

We measured channel width and depth at 308 points, which are presented in the 393 supporting information (Table S2). Channel width in Basins 1, 2, and 4 increases monotonically 394 with drainage area and follows the general hydraulic scaling of equation (4) (Figure 4; Table 1). 395 Normalized wideness index $(k_{wn}, b_{ref} = 0.42)$ in Basins 1, 2, and 4 do not vary significantly 396 over their entire reaches (Figure 4). It is noteworthy that k_{wn} for the trunk streams of Basins 1 397 and 2 are identical despite their twofold difference in k_{sn} . This result implies that their channel 398 widths are insensitive to changes in channel incision rates or that they have not started to adjust 399 to the accelerated incision (e.g., Snyder et al., 2003; Zhang et al., 2017). 400

401 While channel width increases with drainage area in upstream segments of Basins 3 and 5, in their downstream segments channel width decreases or does not change significantly with 402 increasing drainage area (Figure 4). In Basin 3, channel width starts to decrease at $A = -5.2 \text{ km}^2$, 403 and that transition occurs near the lithologic boundary between granitoids and metamorphic 404 rocks (Figures 4e and 4f). These results suggest that substrate property may partly control 405 channel width. However, the break in the scaling relationship for channel width observed in 406 Basin 3 cannot be solely attributed to the difference in substrates because the channel width 407 continues to decrease downstream from the lithologic boundary (Figure 4e and 4f). 408

In Basin 6, the channel width changes by a factor of 2 at A = 1.5 km² (Figure 4k and 4l) 409 and clearly deviates from the general trend of equation (4). Downstream from this point, bedrock 410 extensively crops out in the riverbed and channel width decreases with drainage area, which is 411 likely associated with accelerated river incision as in Basins 3 and 5. The upstream reaches are 412 covered by thick alluvium. Aerial photographs taken in 1976 and 1986 show that many trees 413 upstream in Basin 6 were cut during this period and the surrounding areas were widely excavated 414 (Figure 5). This human activity displaced large amounts of soil, which currently occupies the 415 channel and results in channel narrowing upstream of the knickpoint. 416

- 418 **Figure 4.** (Left) Channel width versus drainage area for the trunk streams. (Right)
- 419 Normalized channel wideness ($b_{ref} = 0.42$) versus drainage area. Colored bars at the bottom of
- 420 each diagram indicate substrate rock types in the corresponding river sections. Red vertical lines
- 421 indicate positions of slope-break knickpoints.

422

Figure 5. Deforestation in the headwater area of Basin 6. (a, b) Aerial photographs taken in 1976 and 1986, respectively. (c) Relief map created from the 5 m DEM issued in 2011 by the Geospatial Information Authority of Japan. Colored points along the trunk stream show normalized channel wideness at nearby sites.

427

428 **Table 1**

- 429 Results of Field Measurement and Regression of Channel Width
- 430

Basin/ segment	Max. area (km ²)	Min. area (km ²)	k_w	<i>b</i> *	R^2	Ave k_{wn} (10 ⁻³ m ^{0.16})
1	24.1	0.025	3.45	0.43	0.73	10.6
2	4.6	0.021	3.43	0.40	0.41	10.2
3	6.9	0.021	5.37	0.20	0.20	12.0
3-downstream	6.9	6.2	2.52	0.52	0.03	9.2
3-upstream	5.4	0.021	4.70	0.35	0.51	13.2
4	1.6	0.1	2.69	0.52	0.73	8.1
5	3.4	0.4	4.75	0.30	0.64	13.4

manuscript submitted to Journal of Geophysical Research: Earth Surface

5-downstream	3.4	2.8	5.28	0.18	0.00	12.1
5-upstream	2.4	0.4	4.79	0.39	0.65	14.3
6	3.8	0.3	4.73	0.26	0.13	12.8
6-downstream	3.8	1.7	7.19	-0.17	0.03	12.6
6-upstream	1.6	0.3	2.96	1.77	0.53	12.7

431 *Numbers in italics were used to calculate $b_{ref.}$

433 4.1.3. Angle of Valley-side Slopes

As illustrated in Figure 2, hillslopes in Basins 1–6 consist of three sections: an upstream 434 435 section with gentler slopes, a downstream section with steeper slopes, and an intervening transition section. Hillslope angles in the upstream sections were positively correlated with 436 normalized channel steepness (Figure 6). In the downstream sections, hillslope angles were less 437 sensitive to channel steepness and clustered at 35°–38°, suggesting that these are predominantly 438 439 threshold hillslopes (e.g., Ouimet et al., 2009). Left-skewed distributions of hillslope angles also support the interpretation that the downstream sections have threshold hillslopes (Figure 6b) 440 441 (DiBiase et al., 2012). These transitions from gentler to steeper hillslopes occur downstream of the knickpoints and presumably result from the change in incision rates. Also, it is worth noting 442 that the histograms for hillslope angles along the trunk stream distinctly differ from those for the 443 whole basin (Figure 6b and 6c). 444

445

Figure 6. (a) Hillslope angle versus normalized channel steepness for upstream and
downstream segments of the six basins. (b) Histogram of hillslope angles along trunk streams.
(c) Histogram of hillslope angles in each entire basin. The bins in (b) and (c) are 1° wide.

450

451

⁴³²

4.1.4. Identifying Sections undergoing Transient Response 452

We used the moving averages of channel and hillslope parameters and the *p*-values from 453 454 statistical tests to identify river sections experiencing transient response to accelerated incision. Figure 7 shows the along-trunk variations of channel and hillslope morphology in Basin 3, and 455 those for the other basins are shown in Figure S5. As mentioned in section 4.1.1, we excluded 456 Basin 1 from further analysis because its trunk stream does not cross the Yunodake fault. Also, 457 we do not discuss hillslope adjustment time for Basin 5 because the observed increase in 458 hillslope angle starts upstream of the knickpoint. 459

467

Figure 7. Variations of channel width and hillslope morphology along the trunk stream in 462 Basin 3. (a) Normalized channel steepness (k_{sn}) . The blue line indicates the current knickpoint 463 position. (b) Normalized channel wideness (k_{wn}) . The green line indicates the *p*-value from 464 Student's t test. (c) Average hillslope angle in each 50 m segment of the trunk stream. The green 465 line indicates the *p*-value from the Mann-Whitney U test. Gray bars in (b) and (c) represent 466 standard deviation of 8-point moving averages and blue and orange areas indicate sections where

adjustments start and finish, respectively. (d) Time elapsed since knickpoint passage (knickpoint travel time) for three different values of n.

470

471 **4.2.** Substrate Erodibility Calculated from Basin-Averaged Erosion Rates

The basin-averaged erosion rates of our study basins ranged between 260 and 400 g/m²yr, 472 equivalent to 0.16–0.25 mm/yr (Table 2). Basin 4 differs from the others in consisting almost 473 entirely of granitic rock. It also lacks evidence of recent large slope failures, which dilute the 474 average ¹⁰Be concentration of fluvial sand downstream by supplying material with low ¹⁰Be 475 concentrations. Thus, we used equation (8) to calculate the basin-averaged erosion rate of the 476 477 downstream half of Basin 4 (IWK4-1, Table 2) and found that it is faster than that of the upstream half of Basin 4 (IWK4-2, Table 2). Overall, basin-averaged erosion rates were 478 positively correlated with average k_{sn} (Table 2, Figure S3). Therefore, we assume that the 479 erosion rates determined from the ¹⁰Be concentrations reflect channel incision rates and can be 480 481 used to calculate the erodibility *K* in equation (2).

Using k_{sn} and basin-averaged erosion rates, we determined the erodibility coefficient K 482 for granitic and metamorphic rocks. These were 1.77×10^{-5} (n = 2/3), 4.85×10^{-6} (n = 1), and 483 3.70×10^{-7} (n = 5/3) m^{0.1}/yr for granitic rocks. To verify these estimates, we calculated erodibility 484 coefficients for similar granitic rocks in the Abukuma massif (Kubo & Yamamoto, 1990) north 485 486 of the study area using the same DEM and procedure we used in Iwaki (Figure S4; Tables S3, S4). We relied on ¹⁰Be concentrations of fluvial sand reported by Regalla et al. (2013), 487 Nakamura et al. (2014), and Matsushi et al. (2014) to recalculate basin-averaged erosion rates 488 using the same method used in Iwaki. The resulting erodibility coefficients were similar to those 489 obtained in Iwaki: 1.58×10^{-5} (n = 2/3), 4.52×10^{-6} (n = 1), and 3.90×10^{-7} (n = 5/3) m^{0.1}/yr. The 490 coefficients for metamorphic rocks in Iwaki were 1.64×10^{-5} (n = 2/3), 5.21×10^{-6} (n = 1), and 491 5.30×10^{-7} (n = 5/3) m^{0.1}/yr, which were not very different from those for granitic rocks. 492 Although sample limitations may affect the accuracy of the coefficient for metamorphic rocks, 493 considering that the reaches of granitic and metamorphic rocks have comparable channel 494 495 steepness (Figure 1b), our results indicate that these two rock types have similar erodibility. 496

4.3. Knickpoint Travel Time 497

498	To estimate knickpoint travel time, we first calculated uplift (erosion) rates at the initial
499	and final steady states, using equation (6), based on the standard detachment limited model of
500	equation (3) (Table 3). Given the erosion rates derived from 10 Be data (Table 2), a slope
501	exponent of $n = 2/3$ yields the most probable estimates of initial and final uplift rates (Table 3).
502	When calculating knickpoint travel time, we assumed that knickpoints were generated where the
503	stream intersects the Yunodake fault. The resulting knickpoint travel times were somewhat
504	similar among Basins 3-6, while the travel time for Basin 1 was much longer than those for the
505	other basins (Table 4).

- 506
- 507 Table 2

Basin-averaged Erosion Rates Determined from ¹⁰Be Concentrations 508

Sample ID	Mass sample (g)	Mass ⁹ Be carrier (g)	$^{10}\text{Be}/^{9}\text{Be}$ (×10 ⁻¹⁴) ^a	¹⁰ Be concentration (atoms/g)	¹⁰ Be production rate (atoms/g yr) ^b	Erosion rate (g/m ² yr)	Erosion rate (mm/yr) ^c	Upstream ave. k_{sn} $(m^{0.9})^d$
IWK1	26.4364	3.4882	7.5 ± 0.51	55627 ± 4929	7.0 ± 0.4	261 ± 37	0.16 ± 0.03	28
	20.2525	2 40.91	175 + 2.2	(7402 + 0579	$C \subset \{0, 1\}$	201 + 62	0.24 + 0.04	50
IWK4	39.3525	2.4981	17.5 ± 2.2	$6/402 \pm 95/8$	6.6 ± 0.4	391 ± 63	0.24 ± 0.04	59
IWK3	39.4954	2.4994	10 ± 0.90	34884 ± 4041	7.2 ± 0.4	405 ± 62	0.25 ± 0.04	25
IWK4-2	40.0002	2.4809	10.6 ± 0.88	36878 ± 3920	6.9 ± 0.4	329 ± 46	0.20 ± 0.03	17
IWK4-1*						444 ± 78	0.28 ± 0.05	90
Note. * Average rate for the downstream sub-catchment of Basin 4 calculated from equation (10).								
^a Results based on the KNB5-1 ¹⁰ Be standard (Nishiizumi et al., 2007). The ¹⁰ Be/ ⁹ Be ratio for the								
chemical b	lank was 1	$1.8 \times 10^{-14} \pm 0$	0.30×10^{-14} .		1	1		

509 510

511

^b We used the production rate at sea level and high latitude of 4.68 atoms g^{-1} yr⁻¹, corrected from the 512

value proposed by Stone (2000) assuming a ¹⁰Be half-life of 1.387 My (Chmeleff et al., 2010; Korschinek 513 et al., 2010). 514

[°] The bulk density of samples was 1.63 g/cm³ (Nakamura et al., 2014). 515

^d Average k_{sn} for trunk and tributaries upstream from a sampling point. 516

517 518 Table 3

Initial and Final Uplift Rates Used to Calculate Knickpoint Travel Time 519

		1 0							
			n = 2/3			n = 1		 n = 5/3	
Basin	k _{sn ini}	k _{sn fin}	U _{ini} (mm/yr)	U _{fin} (mm/yr)	(n	U _{ini} nm/yr)	U _{fin} (mm/yr)	U _{ini} (mm/yr)	U _{fin} (mm/yr)
2	15.1	61.7	0.10	0.26		0.08	0.32	0.05	0.51

manuscript submitted to Journal of Geophysical Research: Earth Surface

3	31	120	0.17	0.40	0.15	0.63	0.11	1.54
4	20.5	122.4	0.13	0.44	0.10	0.59	0.06	1.12
5	57.2	87.9	0.26	0.35	0.28	0.43	0.31	0.64
6	12	94	0.09	0.37	0.06	0.46	0.02	0.72

520 Note. Uplift rates were calculated using normalized channel steepness and ¹⁰Be analyses.

521

522 **Table 4**

523 Knickpoint Travel	Time
-----------------------	------

Basin	Knickpoint position (m)	Travel time, n = 2/3 (My)	Travel time, n = 1 (My)	Travel time, n = 5/3 (My)
2	3908	0.73	1.38	2.16
3	2896	0.28	0.45	0.93
4	1154	0.21	0.42	0.69
5	1933	0.40	0.53	0.98
6	2550	0.28	0.62	0.97

524

525 4.4. Adjustment Timescales

The delay times for hillslope angle ranged between 0 and 0.3 My and were much shorter than those for channel width (Figure 8). The response times, too, were shorter for hillslope angle than for channel width. The most preferred case (n = 2/3) predicted that the change in hillslope angle was finished within 5-230 ky after the knickpoint passage. This result is consistent with response timescales reported in the Oregon Coast Range (Roering et al., 2001) and the Feather River basin, California (Hurst et al., 2012), which were estimated from sediment transport laws. The adjustment time for channel width was 2–5 times longer than those of hillslope angles.

While it is relatively easy to classify hillslopes into sections based on their degree of 533 adjustment to the new boundary conditions (Figures 2 and 7), doing the same for channel width 534 is tricky (Figures 4 and 7). One reason is the large variability in channel width (Figure 4); 535 another is the large uncertainty in determining when an adjusting channel has achieved the 536 537 steady-state form predicted by equation (4). Although we determined that the most downstream sections in Basins 3, 5, and 6 have adjusted to accelerated incision, it is also possible that our 538 539 interpretation is wrong. Therefore, the response and adjustment times of channel width shown in Figure 8 are minimum estimates. 540

541

Figure 8. Delay, response, and adjustment times of channel width (a–c) and hillslope angle (d–f) in response to an increase in incision rates for three different values of n.

545 5. Discussion

546 5.1. Cause of Knickpoint Formation

The common occurrence of slope-break knickpoints and the similar erodibility coefficients between granitic and metamorphic rocks suggest that incision rates have increased in the study area. The average erosion rates in Basin 3, which are different upstream and downstream of the slope-break knickpoint, support the idea that accelerated river incision is responsible for the observed transient behavior.

We interpret the increase in incision rates to the activity of the Yunodake fault because rivers flowing across the fault (Basins 2–6) are much steeper than the river in Basin 1, away from the fault (Figure 1). Awata and Kakimi (1985) and Awata (1988) estimated initiation ages of active faulting in the current stress regime on the Pacific side of Tohoku on the basis of average slip rates and cumulative displacement. They found that many faults became active after 0.5–1.0 Ma. Doke et al. (2012) conducted an extensive literature review and reached a similar conclusion. Our modeled knickpoint travel times in Iwaki (Table 4) ranged between 0.2 and 0.7

559 My, consistent with the inferred onset of fault activity in Tohoku. Therefore, although there is no

direct evidence of the throw rate of the Yunodake fault increasing during the middle Pleistocene,

561 we attribute the generation of slope-break knickpoints to changes in throw rates of the fault.

562

563 **5.2. Implications for Transient Response**

The delay and response times of channel width are 2-5 times longer than those of 564 hillslope angle. Depending on the erosion process (the slope exponent n in equation (2)) and the 565 magnitude of the acceleration of river incision, width adjustment can take 0.16–0.81 My after the 566 knickpoint passage (Figure 8). In addition, our observations confirmed that the transient response 567 takes place at different spatiotemporal scales for channel slope, channel width, and hillslope 568 angle. Thus channel width and hillslope angle may be continuing to adjust even when the river 569 lacks a prominent knickpoint. Since channel characteristics and hillslope morphology are the 570 571 primary controls of river incision (e.g., Whipple & Tucker, 2002), correctly identifying the adjusted sections within a catchment is essential for assessing the transient response to an 572 increase in incision rates. 573

Another inference from our observation is on the transient response of channel width. 574 575 The ratio of sediment supply to transport capacity dictates the dynamics of channel width adjustment (e.g., Finnegan et al., 2007; Yanites & Tucker, 2010; Baynes et al., 2020). Because 576 577 the total sediment supply into a channel is modulated by the form of upstream hillslopes (e.g., Roering et al., 2007), the adjustment of channel width is expected to continue until a slope-break 578 579 knickpoint reaches the headwaters and adjacent hillslopes achieve their steady-state forms. However, despite the fact that most hillslopes exhibit pre-adjustment forms in Basins 3, 5, and 6 580 581 (Figures 6b and 6c), the channel widths in their downstream sections appear to be adjusted to the accelerated incision (Figures 4 and S5, Table S4). It appears, then, that the dynamics of width 582 583 adjustment are not simply a response to the increase in total sediment supply from upstream.

An alternative interpretation is that the channel width adjustment has not in fact been completed, and the ongoing changes in the channel are too small to be confidently detected due to measurement error and natural variability. This interpretation is compatible with the result of numerical modeling, which predicts that the response of channel width is rapid at first, then

decays as the response progresses (Yanites, 2018). We speculate that this gradual decrease is 588 related to the downstream fining of sediment. Abrasion and selective transport are the main 589 drivers of downstream fining (i.e., mass reduction) of sediment (e.g., Parker, 1991). Their effects 590 typically scale with travel distance and can be significant even after only a few kilometers of 591 transport (e.g., Parker, 1991; Phillips & Jerolmack, 2014; Miller et al., 2014). Therefore, the rate 592 of increase in sediment supply at a point downstream should slow as the knickpoint travels 593 upstream, as demonstrated by numerical experiments (Yanites, 2018). Given the dependence of 594 channel width on grain size and the ratio of sediment supply to transport capacity (e.g., Yanites 595 & Tucker, 2010; Finnegan et al., 2017), we attribute the decay in the response speed of channel 596 width to a decline in the rate of increase in sediment supply. 597

598

599 5.3. Timescale of Catchment-Scale Adjustment

The adjustment of an entire catchment is a more complex matter than the adjustment of a 600 trunk stream. Knickpoint travel speed depends on stream discharge (e.g., Whipple & Tucker, 601 1999; Hayakawa & Matsukura, 2003; Bishop et al., 2005), and the travel time from its origin to 602 the channel head is on the order of 10^5 – 10^6 years (Whipple, 2001; Whittaker and Boulton, 2012). 603 The adjustment of channel slopes in tributaries must also be considered; this is sometimes 604 prolonged where hanging valleys are present (Wobus et al., 2006b; Crosby et al., 2007; DiBiase 605 et al., 2015). Adjustments of channel width and hillslope require hundreds of thousands more 606 years after a knickpoint has finished propagating to the heads of the trunk and tributaries. 607 Moreover, other aspects of channels and hillslopes respond to changes in channel incision rates, 608 such as channel sinuosity (Turowski, 2018) and hilltop curvature (Gabet et al., 2021). 609 Morphological adjustments of these variables are also triggered by climate variability and occur 610 at timescales of 10⁵–10⁶ years (e.g., Whipple, 2001), although fluvial systems might not fully 611 adjust to high-frequency climatic oscillations such as Milankovitch cycles (Armitage et al., 2013; 612 613 Goren, 2016). Given all these factors, it is clear that catchment-scale adjustment to accelerated incision takes much longer than the knickpoint travel time within the trunk stream. This further 614 confirms that to estimate rates of erosion or base-level fall, one must consider whether the river 615 system has reached a steady state even when it contains no prominent knickpoint. 616

617

618 6. Conclusions

Based on the observed channel and hillslope geometries and knickpoint travel time, we 619 have estimated their adjustment times to accelerated incision. Our approach enables us to 620 estimate both delay and response times of channel width and hillslope angles, which are 621 otherwise difficult to constrain in an actual landscape. Our results indicate that hillslope 622 adjustment starts and finishes much earlier than channel width adjustment. Change in hillslope 623 angle starts soon after the passage of a knickpoint (10^0-10^4 yr) and generally finishes on the 624 order of 10⁵ years later. Channel width adjustment takes 2–5 times longer than hillslope 625 adjustment. Unlike hillslope angle, channel width has adjustment times that are not always 626 negligible compared to that of channel slope, which depends closely on knickpoint travel time. 627

The longevity of catchment-scale adjustment time and the different adjustment timescales 628 among channel slope, channel width, and hillslope angles remind us that we need to infer erosion 629 630 or uplift rates from channel reaches that are in a well-defined steady state. Our findings also suggest that it is important to understand the temporal evolution of erosion rates during the 631 632 adjustment of individual channel and hillslope components. Lastly, it has to be noted that our estimates of knickpoint travel time do not explicitly consider important factors including the 633 effects of sediment characteristics and temporal changes in precipitation. Because these factors 634 may significantly alter estimates of adjustment time, inter-model comparisons or more 635 sophisticated models of migrating knickpoints are necessary to better understand the transient 636 response of bedrock rivers. 637

638

639 Acknowledgments

We thank Chia-Yu Chen (National Taiwan University) for helpful comments and A. Morikawa, K. Kitamura (Kyoto University), N. Miyauchi, and Y. Tsuchiya (The University of Tokyo) for their assistance during preparation of the ¹⁰Be samples. This work was supported by the International Joint Graduate Program in Earth and Environmental Sciences, Tohoku University. N. Takahashi and R. Ohta thank the staff at Yunodake sanso in Iwaki for their generous support during our fieldwork. We obtained DEM data from the Geospatial Authority of Japan and NOAA (ETOPO1). Some color maps were obtained from Crameri (2018).

647

648 **References**

Ahnert, F. (1970). Functional relationships between denudation, relief, and uplift in large mid latitude drainage basins. *American Journal of science*, 268, 243–263.

651 https://doi.org/10.2475/ajs.268.3.243

- Allen, G. H., Barnes, J. B., Pavelsky, T. M., & Kirby, E. (2013). Lithologic and tectonic controls
- on bedrock channel form at the northwest Himalayan front. *Journal of Geophysical*

654 *Research: Earth Surface*, 118(3), 1806–1825. https://doi.org/10.1002/jgrf.20113

- Armitage, J. J., Dunkley Jones, T., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2013).
- Temporal buffering of climate-driven sediment flux cycles by transient catchment

response. *Earth and Planetary Science Letters*, 369–370, 200–210.

- 658 https://doi.org/10.1016/j.epsl.2013.03.020
- Awata, Y. (1988). Shortening of the central inner arc of the northeast Japan and movement of the
 Pacific plate. *Chikyu Monthly*, 10(9), 586–591.
- Awata, Y., & Kakimi, T. (1985). Quaternary tectonics and damaging earthquakes in northeast
 Honshu, Japan. *Earthquake Prediction Research*, 3, 231–251.
- Baynes, E. R. C., Lague, D., Steer, P., Bonnet, S., & Illien, L. (2020). Sediment flux-driven

channel geometry adjustment of bedrock and mixed gravel–bedrock rivers. *Earth Surface Processes and Landforms*, 45(14), 3714–3731. https://doi.org/10.1002/esp.4996

- Baynes, E. R. C., Lague, D., Steer, P., & Davy, P. (2022). Dynamic bedrock channel width
- during knickpoint retreat enhances undercutting of coupled hillslopes. *Earth Surface Processes and Landforms*. https://doi.org/10.1002/esp.5477
- Bierman, P., & Steig, E. J. (1996). Estimating rates of denudation using cosmogenic isotope
 abundances in sediment. *Earth Surface Processes and Landforms*, 21(2), 125–139.

671 https://doi.org/10.1002/(sici)1096-9837(199602)21:2<125::aid-esp511>3.0.co;2-8

Bishop, P., Hoey, T. B., Jansen, J. D., & Lexartza Artza, I. (2005). Knickpoint recession rate and

- 673 catchment area: The case of uplifted rivers in eastern Scotland. *Earth Surface Processes*
- 674 and Landforms, 30(6), 767–778. https://doi.org/10.1002/esp.1191Braucher, R., Brown, E.
- T., Bourlès, D. L., & Colin, F. (2003). In situ produced ¹⁰Be measurements at great depths:
- 676 Implications for production rates by fast muons. *Earth and Planetary Science Letters*,
- 677 211(3–4), 251–258. https://doi.org/10.1016/S0012-821X(03)00205-X
- Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., & Yiou, F. (1995a). Denudation

rates determined from the accumulation of in situ-produced ¹⁰Be in the luquillo 679 experimental forest, Puerto Rico. Earth and Planetary Science Letters, 129(1-4), 193-202. 680 https://doi.org/10.1016/0012-821X(94)00249-X 681 Brown, E. T., Bourlès, D. L., Colin, F., Raisbeck, G. M., Yiou, F., & Desgarceaux, S. (1995b). 682 Evidence for muon-induced production of ¹⁰Be in near-surface rocks from the Congo. 683 Geophysical Research Letters, 22(6), 703-706. https://doi.org/10.1029/95GL00167 684 Chen, Y. W., Shyu, J. B. H., & Chang, C. P. (2015). Neotectonic characteristics along the eastern 685 flank of the Central Range in the active Taiwan orogen inferred from fluvial channel 686 morphology. Tectonics, 34(10), 2249–2270. https://doi.org/10.1002/2014TC003795 687 Chmeleff, J., von Blanckenburg, F., Kossert, K., & Jakob, D. (2010). Determination of the ¹⁰Be 688 half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments 689 and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 690 268(2), 192–199. https://doi.org/10.1016/j.nimb.2009.09.012 691 Crameri, F. (2018). Scientific colour maps (Version 7.0.0). Zenodo. 692 https://doi.org/10.5281/ZENODO.1243862 693 694 Crosby, B. T., & Whipple, K. X. (2006). Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. 695 696 Geomorphology, 82(1-2), 16-38. https://doi.org/10.1016/j.geomorph.2005.08.023 Crosby, B. T., Whipple, K. X., Gasparini, N. M., & Wobus, C. W. (2007). Formation of fluvial 697 698 hanging valleys: Theory and simulation. Journal of Geophysical Research, 112(F3), F03S10. https://doi.org/10.1029/2006JF000566 699 700 DiBiase, R. A., Heimsath, A. M., & Whipple, K. X. (2012). Hillslope response to tectonic forcing in threshold landscapes. Earth Surface Processes and Landforms, 37(8), 855-865. 701 702 https://doi.org/10.1002/esp.3205 DiBiase, R. A., Whipple, K. X., Lamb, M. P., & Heimsath, A. M. (2015). The role of waterfalls 703 and knickzones in controlling the style and pace of landscape adjustment in the western 704 San Gabriel Mountains, California. Bulletin of the Geological Society of America, 127(3-705 4), 539-559. https://doi.org/10.1130/B31113.1 706 Doke, R., Tanikawa, S., Yasue, K., Nakayasu, A., Niizato, T., Umeda, K., & Tanaka, T. (2012). 707 Spatial patterns of initiation ages of active faulting in the Japanese islands. Active Fault 708 Research, 37, 1–15. https://doi.org/10.11462/afr.2012.37 1 709

Finnegan, N. J., Sklar, L. S., & Fuller, T. K. (2007). Interplay of sediment supply, river incision, 710 and channel morphology revealed by the transient evolution of an experimental bedrock 711 712 channel. Journal of Geophysical Research: Earth Surface, 112(3), 1–17. https://doi.org/10.1029/2006JF000569 713 Finnegan, N. J., Klier, R. A., Johnstone, S., Pfeiffer, A. M., & Johnson, K. (2017). Field 714 evidence for the control of grain size and sediment supply on steady-state bedrock river 715 channel slopes in a tectonically active setting. Earth Surface Processes and Landforms, 716 42(14), 2338–2349. https://doi.org/10.1002/esp.4187 717 Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water 718 Resources Research, 10(5), 969–973. https://doi.org/10.1029/WR010i005p00969 719 Fukushima, Y., Takada, Y., & Hashimoto, M. (2013). Complex ruptures of the 11 April 2011 720 721 Mw 6.6 Iwaki earthquake triggered by the 11 March 2011 Mw 9.0 Tohoku earthquake, Japan. Bulletin of the Seismological Society of America, 103(2 B), 1572–1583. 722 https://doi.org/10.1785/0120120140 723 Gabet, E. J., Mudd, S. M., Wood, R. W., Grieve, S. W. D., Binnie, S. A., & Dunai, T. J. (2021). 724 725 Hilltop curvature increases with the square root of erosion rate. Journal of Geophysical Research: Earth Surface, 126(5), 1–16. https://doi.org/10.1029/2020jf005858 726 Gallen, S. F., & Wegmann, K. W. (2017). River profile response to normal fault growth and 727 linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth 728 729 Surface Dynamics, 5(1), 161–186. https://doi.org/10.5194/esurf-5-161-2017 Geological Survey of Japan, 2020. Seamless Digital Geological Map of Japan. Geological 730 Survey of Japan. Retrieved from https://gbank.gsj.jp/seamless/v2.html 731 Goren, L. (2016). A theoretical model for fluvial channel response time during time-dependent 732 climatic and tectonic forcing and its inverse applications. Geophysical Research Letters, 733 43(20), 10,753-10,763. https://doi.org/10.1002/2016GL070451 734 Gosse, J. C., & Phillips, F. M. (2001). Terrestrial in situ cosmogenic nuclides: Theory and 735 application. Quaternary Science Reviews, 20(14), 1475–1560. 736 https://doi.org/10.1016/S0277-3791(00)00171-2 737 738 Granger, D. E., Kirchner, J. W., & Finkel, R. (1996). Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. Journal of 739 Geology, 104(3), 249–257. https://doi.org/10.1086/629823 740

- Hayakawa, Y., & Matsukura, Y. (2003). Recession rates of waterfalls in Boso Peninsula, Japan,
 and a predictive equation. *Earth Surface Processes and Landforms*, 28(6), 675–684.
 https://doi.org/10.1002/esp.519
- Hiroi, Y., Yokose, M., Oba, T., Kishi, S., Nohara, T., & Yao, A. (1987). Discovery of Jurassic
- radiolaria from acmite-rhodonite-bearing metachert of the Gosaisyo metamorphic rocks in
- the Abukuma terrane, northeastern Japan. *Journal of the Geological Society of Japan*,
- 747 93(6), 445–448. https://doi.org/10.5575/geosoc.93.445
- Howard, A. D., & Kerby, G. (1983). Channel changes in badlands. *Geological Society of America Bulletin*, 94(6), 739–752. https://doi.org/10.1130/0016-
- 750 7606(1983)94<739:CCIB>2.0.CO;2
- Hurst, M. D., Mudd, S. M., Walcott, R., Attal, M., & Yoo, K. (2012). Using hilltop curvature to
- derive the spatial distribution of erosion rates. *Journal of Geophysical Research: Earth*
- 753 Surface, 117(F2), F02017. https://doi.org/10.1029/2011JF002057
- Imanishi, K., Ando, R., & Kuwahara, Y. (2012). Unusual shallow normal-faulting earthquake
 sequence in compressional northeast Japan activated after the 2011 off the Pacific coast of
 Tohoku earthquake. *Geophysical Research Letters*, 39(9), L09306.
- 757 https://doi.org/10.1029/2012GL051491
- Japan Meteorological Agency (2021). Past meteorological data.
- 759 http://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed 27 April, 2021)
- Kano, H., Kuroda, Y., Uruno, K., Nureki, T., Kanisawa, S., Maruyama, T., Umemura, H.,
- 761 Matsukawa, H., Seto, N., Ohira, Y., Sato, S., & Isshiki, N. (1973). Geology of the
- 762 Takanuki district (07-70, scale 1:50,000). Tsukuba: Geological Survey of Japan.Kirby, E.,
- Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. *Journal of Structural Geology*, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
- Kohl, C., & Nishiizumi, K. (1992). Chemical isolation of quartz for measurement of in-situ-
- produced cosmogenic nuclides. *Geochimica et Cosmochimica Acta*, 56(9), 3583–3587.
 https://doi.org/10.1016/0016-7037(92)90401-4
- Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., et al.
- (2010). A new value for the half-life of ¹⁰Be by Heavy-Ion Elastic Recoil Detection and
- ⁷⁷⁰ liquid scintillation counting. *Nuclear Instruments and Methods in Physics Research*,
- *Section B: Beam Interactions with Materials and Atoms*, 268(2), 187–191.

- 772 https://doi.org/10.1016/j.nimb.2009.09.020
- Kubo, K., & Yamamoto, T. (1990). Cretaceous intrusive rocks of the Haramachi district, eastern
 margin of the Abukuma mountains. *Journal of Geological Society of Japan*, 96(9), 731–
 743. https://doi.org/10.5575/geosoc.96.731
- Kubo, K., Yanagisawa, Y., Yamamoto, T., Nakae, S., Takahashi, Y., Toshimitsu, S., Banno, Y.,
 Miyachi, Y., Takahashi, M., Komazawa, M., & Ohno, T. (2007). Geological map of Japan,

```
778 Shirakawa (NJ54-17·23, scale 1:200,000). Tsukuba: Geological Survey of Japan.
```

- Lavé, J., & Avouac, J. P. (2001). Fluvial incision and tectonic uplift across the Himalayas of
 central Nepal. *Journal of Geophysical Research: Solid Earth*, 106(B11), 26561–26591.
 https://doi.org/10.1029/2001jb000359
- Li, Y.-k. (2013). Determining topographic shielding from digital elevation models for
- cosmogenic nuclide analysis: A GIS approach and field validation. *Journal of Mountain Science*, 10(3), 355–362. https://doi.org/10.1007/s11629-013-2564-1
- Matsushi, Y., Matsuzaki, H., & Makino, H. (2014). Testing models of landform evolution by
 determining the denudation rates of mountains watersheds using terrestrial cosmogenic
 nuclides. *Transactions, Japanese Geomorphological Union*, 35(2), 165–185.
- 788 Matsuzaki, H., Nakano, C., Tsuchiya, Y. (Sunohara), Kato, K., Maejima, Y., Miyairi, Y., et al.
- 789 (2007). Multi-nuclide AMS performances at MALT. *Nuclear Instruments and Methods in*
- *Physics Research, Section B: Beam Interactions with Materials and Atoms*, 259(1), 36–40.
- 791 https://doi.org/10.1016/j.nimb.2007.01.145
- 792 Miller, K. L., Szabó, T., Jerolmack, D. J., & Domokos, G. (2014). Quantifying the significance
- of abrasion and selective transport for downstream fluvial grain size evolution. *Journal of Geophysical Research: Earth Surface*, 119(11), 2412–2429.
- 795 https://doi.org/10.1002/2014JF003156
- 796 Mitchell, N. A., & Yanites, B. J. (2019). Spatially variable increase in rock uplift in the northern
- 797 U.S. Cordillera recorded in the distribution of river knickpoints and incision depths.
- *Journal of Geophysical Research: Earth Surface*, 124(5), 1238–1260.
- 799 https://doi.org/10.1029/2018JF004880
- 800 Mitsui, S. (1971). Studies on the mechanism of deformation of sedimentary rocks in the Iwaki
- area of the Joban Coal-Field, Fukushima Prefecture. *The science reports of the Tohoku*
- 802 University. Second series, Geology, 42, 199–272. <u>http://hdl.handle.net/10097/28814</u>

- 803 Miyashita, Y. (2018). Holocene paleoseismic history of the Yunodake fault ruptured by the 2011
- 804 Fukushima-ken Hamadori earthquake, Fukushima Prefecture, Japan. *Geomorphology*, 323,
- 805 70–79. https://doi.org/10.1016/j.geomorph.2018.08.040
- Montgomery, D. R., & Brandon, M. T. (2002). Topographic controls on erosion rates in
- tectonically active mountain ranges. *Earth and Planetary Science Letters*, 201(3–4), 481–
 489. https://doi.org/10.1016/S0012-821X(02)00725-2
- Montgomery, D. R., & Foufoula-Georgiou, E. (1993). Channel network source representation
 using digital elevation models. *Water Resources Research*, 29(12), 3925–3934.
- 811 https://doi.org/10.1029/93WR02463
- Montgomery, D. R., & Gran, K. B. (2001). Downstream variations in the width of bedrock

channels. *Water Resources Research*, 37(6), 1841–1846.

- 814 https://doi.org/10.1029/2000WR900393
- 815 Mudd, S. M., & Furbish, D. J. (2007). Responses of soil-mantled hillslopes to transient channel
- incision rates. *Journal of Geophysical Research: Earth Surface*, 112(3), 1–12.
- 817 https://doi.org/10.1029/2006JF000516
- Nakamura, A., Yokoyama, Y., Shiroya, K., Miyairi, Y., & Matsuzaki, H. (2014). Direct
- comparison of site-specific and basin-scale denudation rate estimation by in situ
- 820 cosmogenic nuclides: An example from the Abukuma Mountains, Japan. *Progress in Earth*

821 and Planetary Science, 1(1), 1–11. https://doi.org/10.1186/2197-4284-1-9

- Nakata, T., & Imaizumi, T. (Eds.) (2002). Digital active fault map of Japan. Tokyo: University
 of Tokyo press.
- Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., & McAninch, J.
- 825 (2007). Absolute calibration of ¹⁰Be AMS standards. *Nuclear Instruments and Methods in*
- 826 Physics Research, Section B: Beam Interactions with Materials and Atoms, 258(2), 403–
- 413. https://doi.org/10.1016/j.nimb.2007.01.297
- Ouimet, W. B., Whipple, K. X., & Granger, D. E. (2009). Beyond threshold hillslopes: Channel
 adjustment to base-level fall in tectonically active mountain ranges. *Geology*, 37(7), 579–
 582. https://doi.org/10.1130/G30013A.1
- 831 Parker, G. (1991). Selective sorting and abrasion of river gravel. I: Theory. *Journal of Hydraulic*

Engineering, 117(2), 131–147. https://doi.org/10.1061/(ASCE)0733-

833 9429(1991)117:2(131)

- Perron, J. T., & Royden, L. (2013). An integral approach to bedrock river profile analysis. *Earth Surface Processes and Landforms*, 38(6), 570–576. https://doi.org/10.1002/esp.3302
- 836 Phillips, C. B., & Jerolmack, D. J. (2014). Dynamics and mechanics of bed-load tracer particles.
- *Earth Surface Dynamics*, 2(2), 513–530. https://doi.org/10.5194/esurf-2-513-2014
- 838 Regalla, C., Kirby, E., Fisher, D., & Bierman, P. (2013). Active forearc shortening in Tohoku,
- Japan: Constraints on fault geometry from erosion rates and fluvial longitudinal profiles.
- *Geomorphology*, 195, 84–98. https://doi.org/10.1016/j.geomorph.2013.04.029
- Reinhardt, L. J., Bishop, P., Hoey, T. B., Dempster, T. J., & Sanderson, D. C. W. (2007).
- 842 Quantification of the transient response to base-level fall in a small mountain catchment:
- 843 Sierra Nevada, southern Spain. *Journal of Geophysical Research*, 112(F3), F03S05.
- 844 https://doi.org/10.1029/2006JF000524
- Roering, J. J. (2008). How well can hillslope evolution models "explain" topography?
- 846 Simulating soil transport and production with high-resolution topographic data. *Bulletin of*
- *the Geological Society of America*, 120(9–10), 1248–1262.
- 848 https://doi.org/10.1130/B26283.1
- Roering, J. J., Kirchner, J. W., & Dietrich, W. E. (2001). Hillslope evolution by nonlinear, slope-
- dependent transport: Steady state morphology and equilibrium adjustment timescales.
- *Journal of Geophysical Research: Solid Earth*, 106(B8), 16499–16513.
- 852 https://doi.org/10.1029/2001jb000323
- 853 Roering, J. J., Perron, J. T., & Kirchner, J. W. (2007). Functional relationships between
- denudation and hillslope form and relief. *Earth and Planetary Science Letters*, 264(1–2),
- 855 245–258. https://doi.org/10.1016/j.epsl.2007.09.035
- Royden, L., & Perron, J. T. (2013). Solutions of the stream power equation and application to the
 evolution of river longitudinal profiles. *Journal of Geophysical Research: Earth Surface*,
- 858 118(2), 497–518. https://doi.org/10.1002/jgrf.20031
- Schwanghart, W., & Scherler, D. (2014). Short Communication: TopoToolbox 2 MATLABbased software for topographic analysis and modeling in Earth surface sciences. *Earth Surface Dynamics*, 2(1), 1–7. https://doi.org/10.5194/esurf-2-1-2014
- 862 Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to
- tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino
- triple junction region, Northern California. *Bulletin of the Geological Society of America*,

- 865 112(8), 1250–1263. https://doi.org/10.1130/0016-
- 866 7606(2000)112<1250:LRTTFD>2.0.CO;2
- Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2003). Channel response to
 tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino
- triple junction region, northern California. *Geomorphology*, 53(1–2), 97–127.
- 870 https://doi.org/10.1016/S0169-555X(02)00349-5
- Stock, J., & Dietrich, W. E. (2003). Valley incision by debris flows: Evidence of a topographic
 signature. *Water Resources Research*, 39(4), 1089.
- 873 https://doi.org/10.1029/2001WR001057
- Stone, J. O. (2000). Air pressure and cosmogenic isotope production. *Journal of Geophysical Research*, 105(B10), 23753–23759. https://doi.org/10.1029/2000jb900181
- Toda, S., & Tsutsumi, H. (2013). Simultaneous reactivation of two, subparallel, inland normal
- faults during the Mw 6.6 11 April 2011 Iwaki earthquake triggered by the M w 9.0
- Tohoku-oki, Japan, Earthquake. *Bulletin of the Seismological Society of America*, 103(2
- B), 1584–1602. https://doi.org/10.1785/0120120281
- 880 Turowski, J. M. (2018). Alluvial cover controlling the width, slope and sinuosity of bedrock
- channels. *Earth Surface Dynamics*, 6(1), 29–48. https://doi.org/10.5194/esurf-6-29-2018
- Turowski, J. M. (2020). Mass balance, grade, and adjustment timescales in bedrock channels.
 Earth Surface Dynamics, 8(1), 103–122. https://doi.org/10.5194/esurf-8-103-2020
- 884 Whipple, K. X. (2001). Fluvial Landscape Response Time: How Plausible Is Steady-State
- 885 Denudation? *American Journal of Science*, 301(4–5), 313–325.
- 886 https://doi.org/10.2475/ajs.301.4-5.313
- Whipple, K. X. (2004). Bedrock rivers and the geomorphology of active orogens. *Annual Review of Earth and Planetary Sciences*, 32(1), 151–185.
- 889 https://doi.org/10.1146/annurev.earth.32.101802.120356
- 890 Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model:
- 891 Implications for height limits of mountain ranges, landscape response timescales, and
- research needs. *Journal of Geophysical Research: Solid Earth*, 104(B8), 17661–17674.
- 893 https://doi.org/10.1029/1999jb900120
- Whipple, K. X., & Tucker, G. E. (2002). Implications of sediment-flux-dependent river incision
 models for landscape evolution. *Journal of Geophysical Research*, 107(B2), 2039.

- 896 https://doi.org/10.1029/2000jb000044
- 897 Whipple, K. X., Hancock, G. S., & Anderson, R. S. (2000). River incision into bedrock:
- 898 Mechanics and relative efficacy of plucking, abrasion, and cavitation. *Bulletin of the* 899 *Geological Society of America*, 112(3), 490–503. https://doi.org/10.1130/0016-
- 900 7606(2000)112<490:RIIBMA>2.0.CO;2
- Whipple, K. X, DiBiase, R. A., & Crosby, B. T. (2013). Bedrock rivers. In Shroder, J. (Editor in
 Chief), Wohl, E. (Ed.), *Treatise on Geomorphology* (Vol. 9, pp. 550–573). San Diego, CA:
 Academic Press. https://doi.org/10.1016/B978-0-12-374739-6.00254-2
- 904 Whittaker, A. C., & Boulton, S. J. (2012). Tectonic and climatic controls on knickpoint retreat
- 905 rates and landscape response times. *Journal of Geophysical Research: Earth Surface*,
- 906 117(F2), F02024. https://doi.org/10.1029/2011JF002157
- 907 Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., & Roberts, G. P. (2007). Contrasting
- transient and steady-state rivers crossing active normal faults: New field observations from
- 909 the Central Apennines, Italy. *Basin Research*, 19(4), 529–556.
- 910 https://doi.org/10.1111/j.1365-2117.2007.00337.x
- 911 Wobus, C. W., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., et al. (2006a).
- 912 Tectonics from topography: Procedures, promise, and pitfalls. In Special Paper 398:
- 913 Tectonics, Climate, and Landscape Evolution (Vol. 398, pp. 55–74).
- 914 https://doi.org/10.1130/2006.2398(04)
- 915 Wobus, C. W., Crosby, B. T., & Whipple, K. X. (2006b). Hanging valleys in fluvial systems:
- 916 Controls on occurrence and implications for landscape evolution. *Journal of Geophysical*
- 917 *Research: Earth Surface*, 111(2), F02017. https://doi.org/10.1029/2005JF000406
- Yanites, B. J. (2018). The dynamics of channel slope, width, and sediment in actively eroding
 bedrock river systems. *Journal of Geophysical Research: Earth Surface*, 123(7), 1504–
- 920 1527. https://doi.org/10.1029/2017JF004405
- Yanites, B. J., & Tucker, G. E. (2010). Controls and limits on bedrock channel geometry.
 Journal of Geophysical Research, 115(F4), F04019. https://doi.org/10.1029/2009JF001601
- 23 Zhang, H., Kirby, E., Pitlick, J., Anderson, R. S., & Zhang, P. (2017). Characterizing the
- transient geomorphic response to base-level fall in the northeastern Tibetan Plateau.
- *Journal of Geophysical Research: Earth Surface*, 122(2), 546–572.
- 926 https://doi.org/10.1002/2015JF003715

@AGUPUBLICATIONS

Journal of Geophysical Research: Earth Surface

Supporting Information for

Transient response and adjustment timescales of channel width and angle of valley-side slopes to accelerated incision

Naoya Takahashi^{1,*}, J. Bruce H. Shyu^{2,*}, Shinji Toda³, Yuki Matsushi⁴, Ryoga Ohta⁵, and

Hiroyuki Matsuzaki⁶

¹ Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

² Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC

³ International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aoba, 468-1, Aoba, Sendai 980-0845, Japan

⁴ Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji city, Kyoto 611-0011, Japan

⁵ Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto city (JSPS Research Fellow), Kyoto 606-8502, Japan

⁶ Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Contents of this file

Tables S1, S3, and S4

Introduction

This document contains Tables S1, S3, and S4. Table S2 is provided separately.

Basin/ segment ID	Min. area (km ²)	Max. area (km ²)	θ^*	Ave k_{sn} (m ^{0.9})
1	0.025	24.1	0.19	28 ± 17
1-1	2.5	24.1	0.53	33 ± 16
1-2	0.025	2.5	0.34	11 ± 6
2	0.2	4.6	0.24	57 ± 19
2-1	0.2	4.6	0.46	62 ± 14
2-2	0.021	0.2	0.10	15 ± 5
3	1.0	6.9	0.11	69 ± 54
3-1	4.9	6.9	1.66	120 ± 46
3-2	0.021	4.7	0.48	31 ± 15
4	0.2	1.6	-1.05	61 ± 53
4-1	0.9	1.6	0.40	122 ± 21
4-2	0.1	0.9	-0.52	21 ± 11
5	0.3	3.4	0.26	83 ± 15
5-1	1.0	3.4	0.38	88 ± 11
5-2	0.4	1.0	0.88	57 ± 9
6	0.3	3.8	-0.69	64 ± 53
6-1	1.5	3.8	0.31	94 ± 44
6-2	0.3	1.4	0.68	12 ± 8

Table S1Basin Characteristics along the Yunodake Fault

* Calculated by fitting channel slope and drainage area to equation (1).

Resuits Of	De unarysis in Houri	ina massij				
Sample ID	10 Be concentration (×10 ⁴ atoms/g) ^d	Production rate (atoms/g yr) ^e	Erosion rate (g/m ² yr)	Erosion rate (mm/yr) ^f	Upstream area (km ²)	Upstream ave. k_{sn} $(m^{0.9})^{g}$
ABK-R1 ^a	6.96 ± 0.36	7.3	219 ± 27	0.13 ± 0.02	7.6	45.9
ABK-R3 ^a	4.80 ± 0.22	6.8	296 ± 36	0.18 ± 0.02	97.2	30.1
Bel ^b	5.22 ± 0.12	6.8	272 ± 31	0.17 ± 0.02	104.8	30.1
Be2 ^b	3.10 ± 0.09	6.1	412 ± 48	0.25 ± 0.03	24.1	47.6
Be3 ^b	5.05 ± 0.13	6.5	268 ± 31	0.16 ± 0.02	27.8	46.6
Be4 ^b	5.04 ± 0.12	7.1	296 ± 34	0.18 ± 0.02	161.3	35.0
Be5 ^b	4.49 ± 0.15	6.5	301 ± 35	0.18 ± 0.02	13.9	58.1
Be6 ^b	7.92 ± 0.16	6.7	178 ± 20	0.11 ± 0.01	101.6	17.5
Ab-21 ^c	5.86 ± 0.29	7.0	250 ± 31	0.15 ± 0.02	5.3	30.8

 Table S3

 Results of ¹⁰Be analysis in Abukuma Massif

^a Nakamura et al. (2014). ^b Regalla et al. (2013). ^c Matsushi et al. (2014) ^d KNB5-1 ¹⁰Be standard (Nishiizumi et al., 2007). ^e The production rate at sea level and high latitude was 4.68 atoms g^{-1} yr⁻¹ corrected from the value proposed by Stone (2000) assuming a ¹⁰Be half-life of 1.387 My (Chmeleff et al., 2010; Korshinek et al., 2010). ^f The bulk density of samples was 1.63 g/cm³ (Nakamura et al., 2014). ^g Average k_{sn} for trunk and tributaries upstream from a sampling point.

Table S4

Erodibility Coefficient (m^{0.1}/yr) for Granitic Rocks in Iwaki and Abukuma Massif

	n = 2/3	<i>n</i> = 1	n = 5/3	Reference
Iwaki	1.77E-05	4.85E-06	3.70E-07	This study
Abukuma	1.58E-05	4.52E-06	3.90E-07	Nakamura et al. (2014), Regalla et al. (2013), Matsushi et al. (2014)

@AGUPUBLICATIONS

Journal of Geophysical Research: Earth Surface

Supporting Information for

Transient response and adjustment timescales of channel width and angle of valley-side slopes to accelerated incision

Naoya Takahashi^{1,*}, J. Bruce H. Shyu^{2,*}, Shinji Toda³, Yuki Matsushi⁴, Ryoga Ohta⁵, and

Hiroyuki Matsuzaki⁶

¹ Department of Earth Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

² Department of Geosciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC

³ International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aoba, 468-1, Aoba, Sendai 980-0845, Japan

⁴ Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji city, Kyoto 611-0011, Japan

⁵ Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto city (JSPS Research Fellow), Kyoto 606-8502, Japan

⁶ Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

Contents of this file

Figures S1 to S5

Introduction

This document contains Figures S1 to S5.

Figure S1. Results of hillslope mapping. Hillslopes along the trunk stream are used in the analysis. The base map is a shaded relief map colored by topographic curvature.

Figure S2. ¹⁰Be sampling points and normalized channel steepness for the trunk and tributaries. The 2011 surface rupture trace is after Toda and Tsutsumi (2013). Geologic units are after Kubo et al. (2007) and Geological Survey of Japan (2020).

Figure S3. Basin-averaged erosion rates and average normalized channel steepness upstream of the ¹⁰Be sampling points. Vertical and horizontal bars indicate 1 sigma error ranges.

Figure S4. Normalized channel steepness and ¹⁰Be samples in the Abukuma massif. (a) Topography and active faults around the Abukuma massif. (b) Normalized channel steepness and ¹⁰Be samples. Results of the ¹⁰Be analysis and references are shown in Table S2. (c) Geologic map (Geological Survey of Japan, 2020). Active fault traces are after Nakata and Imaizumi (2002).

Figure S5. Along-trunk variations of channel and hillslope morphologies and knickpoint (kp) travel time in Basins 1–6. Average hillslope angle is calculated every 50 m along trunk streams. Gray bars in the upper and lower middle figures represent 8-point moving average and standard deviation. The green line in the upper middle figure indicates *p*-value of Student's *t* test. The green line in the lower middle figure indicates *p*-value of the Mann-Whitney U test. Blue and orange areas indicate sections where adjustment starts and finishes.

Figure S5. Continued.

Latitude	Longitude			Distance from		width	flow depth	flow depth
(F)	(N)	Basin	Area (m^2)	outlet (m)	width (m)	uncertainty	(m)	uncertainty
(L)	(14)			outlet (III)		(±, m)	(III)	(±, m)
140.6414	37.1359	1	3308724	7740	5	1	0.5	0
140.6499	37.1200	1	9697008	4860	8.9	1.1	0.7	0
140.6471	37.1192	1	9624754	5160	11.5	1	0.85	0.05
140.6571	37.1087	1	14398559	2495	11.45	1.95	0.01	0.1
140.6422	37.1287	1	4546321	6755	6.25	0.15	0.7	0.1
140.6427	37.1258	1	4914795	6285	6.3	0.2	1.2	0.1
140.6438	37.1221	1	7619083	5685	8	0.3	0.6	0.1
140.6444	37.1218	1	7632594	5620	8.15	0.15	0.5	0.1
140.6456	37.1202	1	7853117	5390	7.55	0.15	0.8	0.1
140.6646	37.0935	1	23956273	295	13.6	0.2	0.9	0.1
140.6428	37.1337	1	3981009	7375	4.9	0.1	0.7	0.1
140.6429	37.1298	1	4383003	6900	6.6	0.1	0.8	0.1
140.6462	37.1194	1	7893658	5245	8.8	0.1	0.6	0.1
140.6571	37.1049	1	14998044	2025	9.95	0.45	0.7	0.1
140.6571	37.1075	1	14578487	2350	10.4	0.6	1	0.1
140.6624	37.0969	1	19837173	820	15.1	0.5	1.1	0.1
140.6515	37.1191	1	11240483	4630	8.5	0.5	0.6	0.1
140.6567	37.1118	1	13843767	2910	10.7	0.3	0.8	0.1
140.6558	37.1137	1	13684863	3150	9.85	0.15	0.7	0.1
140.6418	37.1280	1	4571816	6655	7	0.1	0.95	0.15
140.6416	37.1354	1	3320389	7625	6.1	0.1	0.75	0.15
140.6624	37.0986	1	19280323	1030	12.15	0.65	0.95	0.15
140.6617	37.1018	1	19103742	1415	9.6	0.1	0.95	0.15
140.6542	37.1177	1	11967646	4195	11.5	0.1	0.95	0.15
140.6572	37.1106	1	13905837	2760	10.8	0.6	1.15	0.15
140 6576	37 1099	1	14228164	2655	9.5	0.1	0.85	0.15
140 6621	37 1007	1	19141110	1280	13.1	0.8	0.03	0.2
140 6553	37 1146	1	13588868	3280	11.3	0.0	1.1	0.2
140 6643	37 0919	1	24004851	105	11.5	0.75	1.1	0.2
140 6480	37 1193	1	9646482	5075	10.65	0.85	0.9	0.2
140.6450	37 1211	1	7688725	5510	7 4	0.03	0.7	0.2
140.6645	37.0909	1	24098780	0	14 95	0.5	1	0.2
140.6045	37.1346	1	3338568	7505	7 85	0.25	11	0.2
140.6592	37 1038	1	17300336	1755	10.1	0.55	0.8	0.2
140.6592	37.1038	1	17347565	1655	10.1	0.1	0.8	0.2
140.6533	37.1052	1	10806455	600	10.25	0.55	0.7	0.2
140.0027	37.0938	1	17308887	1520	10.55	0.55	0.7	0.2
140.0010	37.1025	1	10177671	1320	11.9	0.5	1.1	0.2
140.0024	37.0390	1	11003823	4020	13.1	0.1	1.1	0.2
140.0554	37.1170	1	117733023	4020	15.0	0.3	1.1	0.2
140.0501	37.1126	1	13723230	3625	9.9	0.1	0.8	0.2
140.0339	37.1130	1	13239243	6000	6.9	0.4	0.8	0.2
140.0420	37.1300	1	4349041	0990 8425	0.2	0.0	0.75	0.23
140.0373	37.1402	1	2010280	6433	2.5	1	0.75	0.25
140.0418	37.1273	1	4377308	7205	0.0	0.1	1.33	0.23
140.0428	37.1332	1	4198/33	7293	0.1 5.4	0.5	0.85	0.23
140.0425	37.1320	1	4213944	7220	5.4 10.2	0.5	1.15	0.25
140.6569	57.1064 27.1140	1	14003000	2220	10.3	0.1	0.95	0.25
140.0338	37.1148 27.0024	1	13303144	3443	9.9 1 <i>5 7 5</i>	0.1	0.95	0.25
140.0044	37.0924 27.0017	1	24008208	165	13.73	0.25	1	0.3
140.6643	57.0917 27.1001	1	24040634	85	12.65	0.35	0.9	0.3
140.6573	5/.1091	1	143/6/33	2555	12.3	0.2	0.9	0.3
140.6571	57.1081	1	14403072	2425	11.4	0.4		0.3
140.6646	37.0940	1	20017949	350	12.3	0.7	1.2	0.3

140.6623	37.0989	1	19249199	1065	10.3	0.3	0.8	0.3
140.6523	37.1177	1	11910837	4455	7.75	0.25	1	0.3
140.6554	37.1168	1	13257232	3835	13.3	0.7	1	0.4
140.6414	37.1267	1	4734345	6490	8.15	1.35	1.1	0.44
140.6544	37.1180	1	11983181	4155	11.45	1.75	1.2	0.5
140.6543	37.1146	1	13552123	3380	10.85	0.55	1.3	0.5
140.6569	37.1053	1	14844375	2080	10.6	1	1.2	0.6
140 6556	37 1142	1	13688090	3225	14.4	04	1 35	1 15
140 6827	37 0808	2	1294430	2605	4 1	0.3	1.55	0.1
140 6878	37.0000	2	3826125.9	1460	5 75	0.15	17	0.1
140 6880	37.0729	2	3870734	1365	6.65	0.15	1.7	0.1
140.6881	37.0722	2	3805254	1270	4.1	0.55	0.7	0.1
140.6881	37.0722	2	3007132	1270	4.1	0.5	0.7	0.1
140.0881	37.0713	2	1856680	1230	5.4	0.1	0.7	0.1
140.0807	37.0733	2	1030009	1723	3.4	0.2	0.8	0.1
140.0874	37.0741	2	2704024	1320	5.7	0.2	0.5	0.1
140.08/0	37.0739	2	3/94934	1495	5.8	0.2	0.8	0.1
140.0881	37.0718	2	390/132	1225	4.8	0.0	0.7	0.1
140.6877	37.0663	2	4504252	350	5.3	0.9	0.8	0.1
140.6876	37.0663	2	4514968	305	4.7	0.3	0.9	0.1
140.6845	37.0794	2	1594915	2320	3.9	0.1	0.8	0.1
140.6852	37.0792	2	1703111	2245	5.2	0.4	0.8	0.1
140.6854	37.0789	2	1727083	2205	4.7	0.3	0.6	0.1
140.6855	37.0784	2	1747590	2130	3.6	0.2	0.8	0.1
140.6825	37.0812	2	1195143	2660	3	0.3	0.6	0.1
140.6826	37.0809	2	1197940	2610	3.9	0.3	0.9	0.1
140.6828	37.0804	2	1526529	2540	3.1	0.1	0.6	0.1
140.6855	37.0780	2	1766827	2095	4.35	0.45	0.7	0.1
140.6857	37.0778	2	1772874	2045	3.4	0.2	0.6	0.1
140.6859	37.0775	2	1785656	2005	4.4	0.5	0.7	0.1
140.6819	37.0828	2	1121721	2860	3.65	0.35	0.6	0.1
140.6820	37.0825	2	1160326	2815	3	0.4	0.6	0.1
140.6821	37.0822	2	1168761	2785	3.4	0.1	0.8	0.1
140.6841	37.0796	2	1597571.8	2360	8.5	0.1	1.85	0.15
140.6880	37.0663	2	4500153.1	380	6.25	1.15	2.25	0.15
140.6873	37.0743	2	3406932.8	1565	7.8	0.1	2.95	0.15
140.6872	37.0660	2	4527040	255	5.3	0.5	0.75	0.15
140.6838	37.0798	2	1569351	2405	4.5	0.2	0.75	0.15
140.6861	37.0771	2	1797879	1945	3.2	0.3	0.75	0.15
140.6822	37.0837	2	972554	2965	4.2	0.1	0.55	0.15
140.6880	37.0724	2	3870734	1290	6.75	0.35	2	0.2
140.6892	37.0668	2	4394018	530	10	0.5	1	0.2
140.6872	37.0748	2	3328024	1610	4.2	0.3	0.6	0.2
140.6871	37.0659	2	4545847	240	6.6	0.5	0.7	0.2
140.6871	37.0643	2	4583548	55	8.2	0.4	1.2	0.2
140.6861	37.0769	2	1810704	1915	3.7	0.5	0.8	0.2
140.6865	37.0757	2	1851546	1745	5.3	0.7	0.7	0.2
140 6823	37 0819	2	1179305	2740	3 4	0.7	0.8	0.2
140 6849	37.0793	2	1703272 7	2785	5 95	0.15	1 45	0.25
140 6878	37 0727	2	3873735	1340	<u> </u>	0.15	0.65	0.25
140 6887	37 0708	2	4145042	1100	5.5	0.4	0.05	0.25
140 6879	37 0733	2	3847737	1415	5.5 4 6	1.6	0.75	0.25
140 6871	37 0645	2	4577002	1413 80	т.0 6 0	0.1	1.5	0.3
140 6863	37.0764	2	1811177 Q	1850	72	0.1	1.5	0.5
140 6864	37.0704	∠ ว	1843640	1820	7.3 5 2	1 2	0.85	0.35
140.6862	37.0700	2	1820/72	1020	5.5 A A	1.5	1 1	0.55
1/0 6882	37.0700	2	300/75/ 0	10/3	4.4 8 75	0.0	1.1	0.4
170.0002	57.0710	2	5704/34.9	1103	0.75	0.03	5.25	0.45

140.6873	37.0662	2	4536126.9	290	5.6	0.4	1.55	0.55
140.6882	37.0705	2	4200503	1060	7	0.2	1.45	0.75
140.6834	37.0799	2	1537922.2	2455	9.7	2.2	1.8	1
140.6962	37.0707	3	5898270	1420	7.1	0.1	0.85	0.05
140.7125	37.0892	3	2352413	5025	5.6	0.1	0.55	0.05
140.7131	37.0897	3	1850815	5110	5.15	0.05	0.55	0.05
140 7104	37 0876	3	2473778	4730	63	0.5	0.55	0.05
140 7110	37 0881	3	2426911	4810	7 95	0.25	0.65	0.05
140 7116	37 0885	3	2383658	4895	7.25	0.05	0.85	0.05
140 7135	37.0913	3	1022951	5310	3.6	0.03	0.05	0.05
140 7095	37.0913	3	2941119	4275	6.65	0.05	0.55	0.05
140.7093	37.0842	3	3371319	4110	6.05	0.05	0.05	0.05
140 7043	37.0812	3	4307440 2	3500	9.05	0.55	0.85	0.05
140.6930	37.0619	3	6716988	195	6 35	0.55	0.05	0.05
140.6956	37.0017	2	5027040	1220	7.6	0.15	0.7	0.1
140.0900	37.0702	3	1788066	5160	7.0	0.1	0.7	0.1
140.7151	37.0901	3	744715	5605	4.9	0.1	0.5	0.1
140.7103	37.0918	3	1417302	3310	7.65	0.15	0.4	0.1
140.7032	37.0803	2	4417392	2060	7.03	0.23	0.0	0.1
140.7035	37.0781	3	4641021	2900	/./	0.2	0.0	0.1
140.7040	37.0790	2	4034390	5525	0	0.5	0.0	0.1
140.7150	37.0917	2	793092 927150	5355	J 1 15	0.2	0.5	0.1
140.7130	37.0910	2	03/139 1022051	5220	4.43	0.03	0.4	0.1
140.7137	37.0914	2	1022931	5350	4.5	0.1	0.8	0.1
140./133	37.0906	2	1/55550	5255	0.55	0.25	0.5	0.1
140./09/	37.0855	3	2936062	4330	0.2	0.1	0.7	0.1
140.7094	37.0803	2	2906343	4440	0.55	0.25	0.4	0.1
140.7059	37.0868	3	2900072	4565	0.8	0.2	0.5	0.1
140.7058	37.0838	3	3942294	3850	1.2	0.3	0.7	0.1
140.7087	37.0844	3	3365939	4155	6.3	0.3	0.9	0.1
140.7066	37.0839	3	3535936	3925	11.2	l	0.4	0.1
140.7050	37.0800	3	4536687.1	3260	7.9	0.1	0.6	0.1
140.7041	37.0825	3	4224177	3610	6.95	0.15	0.5	0.1
140.7048	37.0830	3	4124839.5	3690	6.8	0.2	1.1	0.1
140.7045	37.0793	3	4644569.1	3135	7.3	0.2	0.8	0.1
140.6932	37.0623	3	6704268.3	250	9.45	0.25	0.01	0.1
140.6960	37.0709	3	5899700	1440	10.95	0.15	1.1	0.1
140.6941	37.0630	3	6640856	365	10.4	1	0.01	0.1
140.6952	37.0659	3	6255185.3	755	8.15	0.15	1.9	0.1
140.6944	37.0632	3	6620069	400	5.15	0.45	0.75	0.15
140.6953	37.0649	3	6394511	635	4.75	0.25	0.75	0.15
140.6950	37.0639	3	6587952	505	5.2	0.2	0.85	0.15
140.7144	37.0916	3	846670	5400	4.5	0.5	0.65	0.15
140.6958	37.0712	3	5878451	1495	5.2	0.2	1	0.2
140.6997	37.0736	3	5429703	2100	5.5	0.1	1.1	0.2
140.6958	37.0675	3	6104440	965	7.25	0.45	0.6	0.2
140.7051	37.0809	3	4334233	3360	5.95	0.05	0.7	0.2
140.7079	37.0839	3	3392881	4050	7.1	0.1	0.8	0.2
140.7098	37.0874	3	2804691	4675	6.7	0.2	0.5	0.2
140.7105	37.0877	3	2486284	4745	7.1	1	0.6	0.2
140.7074	37.0838	3	3409800.9	4010	8	0.1	1.1	0.2
140.7091	37.0846	3	3174725.5	4200	5.3	0.5	1	0.2
140.7015	37.0739	3	5196032.5	2320	8	0.2	1.8	0.2
140.7016	37.0753	3	5126678	2495	10.55	0.85	0.9	0.2
140.6959	37.0720	3	5787847.8	1600	8.75	0.65	1.2	0.2
140.6967	37.0729	3	5669979.7	1750	9.35	0.35	2.3	0.2
140.7034	37.0768	3	4940907.9	2790	10.15	0.15	0.8	0.2

140.7033	37.0778	3	4849706.7	2915	8.65	0.65	1.1	0.2
140.7039	37.0787	3	4723068.9	3040	9.3	0.2	1.1	0.2
140.7052	37.0835	3	3946647	3780	7.2	0.1	0.9	0.2
140.6926	37.0615	3	6767403.8	145	6.7	1	1.7	0.2
140.6967	37.0696	3	5935793.6	1265	8.1	0.8	1.1	0.2
140.6953	37.0662	3	6244268	790	5.1	1.1	0.75	0.25
140.7095	37.0872	3	2892702	4650	7.1	0.5	0.65	0.25
140 6958	37.0716	3	5804772	1555	6 65	0.95	0.9	0.3
140 6966	37 0705	3	5905866	1380	7 7	1	0.9	0.3
140 6990	37.0730	3	5458882	1995	6.7	03	1	0.3
140 6978	37.0731	3	5495334	1875	5.8	0.5	0.8	0.3
140 6953	37.0751	3	6280473	725	2.0 4 7	0.5	1	0.3
140 6946	37.0635	3	6613613	450	73	0.1	0.9	0.3
140.6954	37.0633	3	6194839	900	5.9	0.2	0.9	0.3
140.7098	37.0857	3	2946423 9	4355	9.65	0.2	0.0	0.3
140.7017	37.0337	3	5196032.5	2420	7.85	0.25	2.1	0.3
140.7017	37.0747	3	5556673 5	1840	9.95	0.75	2.1	0.3
140.6951	37.0732	3	6499995 2	555	73	0.55	1.0	0.3
140.6953	37.0653	3	6373465.0	680	6.8	0.2	1.0	0.3
140.6961	37.0000	3	5782909	1650	6.2	0.2	1.5	0.5
140.6960	37.0724	3	6102349 9	995	7.8	0.2	1.05	0.35
140.0000	37.0077	3	5343339.6	2235	7.85	0.2	1.55	0.55
140.7007	37.0755	3	6206045	850	10.5	0.05	1.5	0.4
140.6935	37.0625	3	6688885	295	6.3	0.5	1.5	0.7
140.6994	37.0023	3	5434437 1	2065	9.55	0.75	2 25	0.75
140.7060	37.0606	4	1535653	125	3 3	0.75	0.55	0.05
140 7059	37.0690	4	906589	1210	2.6	0.1	0.35	0.05
140 7063	37.0691	4	853621	1250	1.85	0.05	0.45	0.05
140.7078	37.0708	4	797457	1575	2.5	0.1	0.55	0.05
140.7082	37.0711	4	767471	1630	2.2	0.1	0.35	0.05
140.7073	37.0701	4	826249	1420	2.15	0.05	0.45	0.05
140.7075	37.0705	4	801869	1465	2	0.2	0.55	0.05
140.7063	37.0596	4	1553438	10	3.5	0.5	0.7	0.1
140.7055	37.0612	4	1446986	220	3.55	0.35	0.7	0.1
140.7058	37.0608	4	1509411	170	3.6	0.2	0.6	0.1
140.7061	37.0680	4	951681	1080	2.9	0.1	0.4	0.1
140.7059	37.0685	4	941255	1145	2.6	0.2	0.4	0.1
140.7061	37.0677	4	959299	1035	2.3	0.2	0.4	0.1
140.7093	37.0714	4	721411	1745	2.2	0.2	0.5	0.1
140.7068	37.0693	4	844938	1300	2.4	0.2	0.5	0.1
140.7071	37.0696	4	837159	1350	2.4	0.2	0.4	0.1
140.7086	37.0712	4	729674	1680	2.8	0.1	0.65	0.15
140.7062	37.0600	4	1544949	60	2.8	0.2	0.8	0.2
140.7390	37.0535	5	2370076	1110	6.95	0.05	0.85	0.05
140.7402	37.0548	5	2234767	1310	6.35	0.45	1.05	0.05
140.7369	37.0495	5	3102455	560	6.6	0.2	0.95	0.05
140.7414	37.0626	5	367425	2305	2.5	0.1	0.5	0.1
140.7413	37.0620	5	405436	2235	3	0.1	0.6	0.1
140.7414	37.0614	5	423421	2170	2.9	0.1	0.4	0.1
140.7414	37.0586	5	1016366	1795	4.7	0.7	0.9	0.1
140.7411	37.0568	5	1073498	1575	4.8	0.7	0.7	0.1
140.7420	37.0607	5	639941	2060	4.75	0.15	0.7	0.1
140.7393	37.0541	5	2359030	1180	7.05	0.05	1	0.1
140.7406	37.0557	5	1208936	1420	5.65	0.15	1.1	0.1
140.7405	37.0552	5	1212906	1370	6.05	0.05	1.1	0.1
140.7363	37.0481	5	3191251	360	7.05	0.45	1.4	0.1

140.7376	37.0507	5	2837382	750	6.05	0.45	1.2	0.1
140.7356	37.0467	5	3305687	165	6	0.2	1	0.1
140.7418	37.0609	5	631100	2095	3.55	0.15	0.45	0.15
140.7421	37.0603	5	949196	2005	3.5	0.1	0.45	0.15
140.7354	37.0465	5	3312875	130	4.8	0.5	0.85	0.15
140.7357	37.0468	5	3301577	185	7.4	0.8	1.1	0.2
140.7412	37.0576	5	1033280	1675	6.95	0.15	0.75	0.25
140 7416	37 0595	5	965787	1895	51	0.5	0.85	0.25
140 7347	37.0459	5	3341322	35	63	0.1	1 15	0.25
140 7352	37.0463	5	3327916	95	7 75	0.25	0.85	0.25
140 7364	37.0477	5	3747641	315	6	0.25	0.05	0.25
140.7382	37.0477	5	2702834	870	63	0.0	1.05	0.25
140.7386	37.0517	5	2792034	1045	6.65	0.5	1.05	0.23
140.7360	37.0331	5	2407008	1043	5.0	0.15	1.2	0.3
140.7302	37.0483	5	20624941	410 500	5.9	0.5	1.5	0.3
140.7570	37.0498	5	1204440	390 1460	0.1	0.5	1.5	0.3
140.7408	37.0300) 5	1204449	1460	5.05	0.15	0.9	0.4
140.7383	37.0323	5	23/1/22	945	0.0	0.8	1.2	0.4
140./39/	37.0547	2	2330283	1265	5.4	0.4	1.1	0.4
140.7365	37.0490	5	313/767	485	8.1	0.4	1.1	0.4
140.7817	37.0231	6	3666963	430	4.05	0.25	0.95	0.05
140.7809	37.0259	6	3006880	795	3.8	0.1	0.95	0.05
140.7803	37.0368	6	1549769	2490	5.6	0.4	0.65	0.05
140.7803	37.0364	6	1562121	2435	7.8	0.4	0.95	0.05
140.7779	37.0410	6	1266843	3085	3.8	0.2	0.55	0.05
140.7770	37.0429	6	1089529	3345	3.8	0.1	0.55	0.05
140.7815	37.0236	6	3643185	500	4.1	0.2	0.8	0.1
140.7796	37.0268	6	2940086	1000	5.3	0.1	1.1	0.1
140.7791	37.0274	6	2851903	1190	9.2	0.5	1.1	0.1
140.7806	37.0265	6	2997584	870	3.95	0.45	0.7	0.1
140.7795	37.0316	6	1914983	1810	5.75	0.55	1.2	0.1
140.7793	37.0310	6	2444179	1690	6.7	0.5	1.3	0.1
140.7802	37.0361	6	1570556	2405	8.65	0.25	0.7	0.1
140.7796	37.0345	6	1711503	2190	6.9	1.1	0.7	0.1
140.7776	37.0418	6	1203062	3170	4.3	0.2	0.5	0.1
140.7767	37.0432	6	1076790	3370	3.7	0.2	0.5	0.1
140.7771	37.0427	6	1104549	3305	3.8	0.2	0.5	0.1
140.7755	37.0443	6	643944	3580	2.5	0.2	0.3	0.1
140.7765	37.0434	6	975244	3430	3.5	0.1	0.4	0.1
140.7773	37.0421	6	1148103	3215	4.6	0.2	0.6	0.1
140.7810	37.0227	6	3713250	315	9	0.2	0.65	0.15
140.7790	37.0268	6	2876133	1110	6.9	0.7	0.45	0.15
140.7800	37.0268	6	2943744	970	3.7	0.5	0.85	0.15
140.7815	37.0242	6	3633330	565	6.15	0.55	0.55	0.15
140.7803	37.0268	6	2950329	935	3.2	0.2	0.65	0.15
140.7814	37.0251	6	3041052	690	4.5	0.5	0.95	0.15
140.7795	37.0311	6	2426222	1705	4.5	0.1	0.75	0.15
140 7803	37 0377	6	1516243	2590	74	0.1	0.65	0.15
140.7797	37 0337	6	1860283	2085	65	0.1	0.05	0.15
140 7796	37 0342	6	1775091	2005	0.5 7 <u>4</u>	0.5	1 15	0.15
140 7787	37 0403	6	1365484	2150	37	0.1	0.55	0.15
140 7783	37 0405	6	1342717	2005	2.5	0.5	0.33	0.15
140 7773	37 0425	6	11206/0	2995	3.5	0.1	0.45	0.15
140.7700	37.0423	6	1205825	3200 2005	5.9 1 0	0.5	0.55	0.15
140.7790	37.0399 37.0291	0	1393023	2093	4.2 0.2	0.3	0.55	0.15
140.7002	27 0205	U E	147/7024	2030	0.2 5 0	0.2	0.03	0.15
140.7706	37.0383	0	143/024	2/10	5.8	0.7	0.33	0.15
140.//90	s/.038/	0	1430032	2/40	3	0.3	0.85	0.15

140.7792	37.0266	6	2935395	1065	9.1	0.1	0.8	0.2
140.7788	37.0279	6	2834731	1250	4.7	0.3	1.1	0.2
140.7790	37.0271	6	2855002	1135	6.8	0.5	0.9	0.2
140.7811	37.0254	6	3029023	730	7.6	0.1	0.8	0.2
140.7815	37.0239	6	3638408	535	6.8	0.1	0.6	0.2
140.7796	37.0313	6	1917307	1760	6.2	0.4	0.9	0.2
140.7796	37.0322	6	1906160	1870	7.7	0.7	0.9	0.2
140.7785	37.0289	6	2793157	1380	7.4	0.1	1.1	0.2
140.7785	37.0286	6	2811448	1355	6.45	0.05	1.1	0.2
140.7785	37.0305	6	2454347	1605	6.7	0.1	0.9	0.2
140.7795	37.0333	6	1870138	2025	8.1	0.1	0.9	0.2
140.7793	37.0331	6	1874055	2000	4.6	0.4	1.2	0.2
140.7793	37.0393	6	1413062	2810	4.3	0.9	0.7	0.2
140.7792	37.0396	6	1407747	2845	3.7	0.1	0.7	0.2
140.7796	37.0325	6	1895315	1920	6.4	0.5	1.25	0.25
140.7787	37.0291	6	2720381	1430	7.15	0.05	0.85	0.25
140.7786	37.0282	6	2823369	1290	4.55	0.35	0.85	0.25
140.7784	37.0299	6	2681304	1530	7.05	0.55	1.35	0.25
140.7798	37.0356	6	1610882	2330	7.5	0.6	0.95	0.25
140.7796	37.0352	6	1684002	2265	6.8	0.2	0.85	0.25
140.7778	37.0416	6	1257676	3140	3.9	0.5	0.65	0.25
140.7778	37.0414	6	1259828	3115	6.2	1	0.55	0.25
140.7794	37.0391	6	1438389	2785	3.9	0.1	0.65	0.25
140.7815	37.0248	6	3050132	655	5	0.1	1.1	0.3
140.7794	37.0328	6	1884211	1965	6.55	0.75	1.5	0.3
140.7795	37.0318	6	1912100	1830	6.8	0.8	1	0.3
140.7791	37.0309	6	2444179	1670	6.8	0.7	1.1	0.3
140.7797	37.0340	6	1850212	2130	4.7	0.2	1	0.3
140.7796	37.0349	6	1701002	2235	6.15	0.15	1	0.3
140.7790	37.0276	6	2847104	1225	5.5	1	0.95	0.35
140.7787	37.0294	6	2711559	1470	7.45	1.25	1.3	0.6