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Abstract

Arctic-Boreal lakes emit methane (CH4), a powerful greenhouse gas. Recent studies suggest ebullition may be a dominant

methane emission pathway in lakes but its drivers are poorly understood. Various predictors of lake methane ebullition have

been proposed, but are challenging to evaluate owing to different geographical characteristics, field locations, and sample

densities. Here we compare large geospatial datasets of lake area, lake perimeter, permafrost, landcover, temperature, soil

organic carbon content, depth, and greenness with remotely sensed methane ebullition estimates for 5,143 Alaskan lakes. We

find that lake wetland fraction (LWF), a measure of lake wetland and littoral zone area, is a leading predictor of methane

ebullition (adj. R² = 0.211), followed by lake surface area (adj. R² = 0.201). LWF is inversely correlated with lake area, thus

higher wetland fraction in smaller lakes may explain a commonly cited inverse relationship between lake area and methane

ebullition. Lake perimeter (adj. R² = 0.176) and temperature (adj. R² = 0.157) are moderate predictors of lake ebullition,

and soil organic carbon content, permafrost, lake depth, and greenness are weak predictors. The low adjusted R² values are

typical and informative for methane attribution studies. A multiple regression model combining LWF, area, and temperature

performs best (adj. R² = 0.325). Our results suggest landscape-scale geospatial analyses can complement smaller field studies,

for attributing Arctic-Boreal lake methane emissions to readily available environmental variables.
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Geospatial analysis of Alaskan lakes indicates wetland fraction and surface water area 

are useful predictors of methane ebullition 

Arctic-Boreal lakes emit methane (CH4), a powerful greenhouse gas. Recent 

studies suggest ebullition may be a dominant methane emission pathway in lakes 

but its drivers are poorly understood. Various predictors of lake methane 

ebullition have been proposed, but are challenging to evaluate owing to different 

geographical characteristics, field locations, and sample densities. Here we 

compare large geospatial datasets of lake area, lake perimeter, permafrost, 

landcover, temperature, soil organic carbon content, depth, and greenness with 

remotely sensed methane ebullition estimates for 5,143 Alaskan lakes. We find 

that lake wetland fraction (LWF), a measure of lake wetland and littoral zone 

area, is a leading predictor of methane ebullition (adj. R2 = 0.211), followed by 

lake surface area (adj. R2 = 0.201). LWF is inversely correlated with lake area, 

thus higher wetland fraction in smaller lakes may explain a commonly cited 

inverse relationship between lake area and methane ebullition. Lake perimeter 

(adj. R2 = 0.176) and temperature (adj. R2 = 0.157) are moderate predictors of 

lake ebullition, and soil organic carbon content, permafrost, lake depth, and 

greenness are weak predictors. The low adjusted R2 values are typical and 

informative for methane attribution studies. A multiple regression model 

combining LWF, area, and temperature performs best (adj. R2 = 0.325). Our 

results suggest landscape-scale geospatial analyses can complement smaller field 

studies, for attributing Arctic-Boreal lake methane emissions to readily available 

environmental variables. 

Keywords: methane emissions; geospatial analysis, Arctic-Boreal lakes; 

upscaling; spatial regression 

Introduction 

Northern lakes are a major source of methane (CH4), an important greenhouse gas 

shaping current and future climate change projections (AMAP 2015; Dhakal et al. 2022; 

Walter, Smith, and Chapin 2007). Currently, the global methane budget is estimated as 

+551-737 Tg CH4 yr-1 (Lu et al. 2021; Saunois et al. 2020), with northern high latitude 

lakes, wetlands, and coastal waters contributing ~15 to 112 Tg CH4 yr-1 (AMAP 2015; 

Bastviken et al. 2011; McGuire et al. 2009). High latitude lakes and ponds account for 
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~2.4-17.7 Tg CH4 yr-1 (Matthews et al. 2020; Saunois et al. 2020; Wik et al. 2016) 

despite occupying just 6% of northern landscapes (Olefeldt et al. 2021), thus comprising 

a particularly potent source of methane to the atmosphere. 

Lake methane emissions occur through at least four different pathways: 

diffusive flux, ebullitive flux, plant-mediated flux, and storage flux (Bastviken et al. 

2011; Sanches et al. 2019). Diffusive flux is the best studied of these pathways, due to a 

relative ease of measurements and more homogeneous production throughout a water 

body and over time. However, numerous studies indicate that ebullition may be the 

dominant emission pathway, with plant-mediated and storage fluxes accounting for only 

a small fraction of emissions (Bastviken et al. 2011; DelSontro et al. 2016; Walter, 

Smith, and Chapin 2007; Wik et al. 2016). Calculations of global methane emissions 

based only on diffusive flux therefore underestimate total lake CH4 flux, perhaps by as 

much as 277% (Sanches et al. 2019). Improved understanding of the drivers and spatial 

variability of lake ebullition processes is needed, particularly over landscape scales. 

Numerous studies identify lake area, and water, air, or sediment temperature as 

strong predictors of methane ebullition emissions. Lake area is readily obtained from 

remote sensing (e.g. Cooley et al. 2019; Kyzivat et al. 2019, 2022; Messager et al. 2016; 

Muster et al. 2017; Smith et al. 2005) and is often inversely proportional to CH4 

ebullition, with smaller lakes emitting more methane per unit area than large lakes (e.g. 

Bastviken et al. 2004; Engram et al. 2020; Kuhn et al. 2021; Sanches et al. 2019; Wik et 

al. 2016). However, this is not a universally accepted conclusion, with other studies 

finding little correlation between lake area and methane ebullition (e.g. DelSontro et al. 

2016; Kohnert et al. 2018). Nonetheless, many regression-based ebullition studies report 

lake area to be a leading predictor variable (Bastviken et al. 2004; Deemer and 

Holgerson 2021; Kuhn et al. 2021), along with temperature (air, water, and sediment 
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temperature are inherently correlated and thus variously used, e.g. Aben et al. 2017; 

Praetzel, Schmiedeskamp, and Knorr 2021; Sanches et al. 2019; Yvon-Durocher et al. 

2014).  

Other reported predictors of lake ebullitive flux include lake depth, organic 

carbon availability, precipitation input, trophic status, littoral zone fraction, and 

permafrost presence. Depth has a strong impact on ebullition, with shallower lakes 

having higher ebullitive fluxes than deeper lakes (e.g. Wik et al. 2016). Bastviken et al. 

(2004) find that the probability of ebullition decreases from ~80% at 0.5-1 m to ~10% at 

4-8 m depth, for example. Organic carbon availability, in the form of dissolved organic 

carbon (DOC) (Bastviken et al. 2004; Deemer and Holgerson 2021; Negandhi et al. 

2013; Sanches et al. 2019) and/or sediment carbon (Negandhi et al. 2013; Walter 

Anthony et al. 2021; Wik et al. 2018) is also an important factor in CH4 production and 

emissions. Wik et al. (2016) suggest that temperature is a driving factor in lake methane 

ebullition only if there is sufficient organic carbon available for CH4 production. 

Precipitation and water level sometimes correlate with lake CH4 emissions, likely due to 

increased organic carbon availability, turbidity and/or mixing (Liu, Xu, and Li 2018; 

Sanches et al. 2019). Trophic status is considered a significant factor in methane 

emissions (because eutrophic waters generally have higher emissions [Zhou et al. 

2020]), and can be estimated from remote sensing of lake chlorophyll-a or “greenness” 

(Bastviken et al. 2004; DelSontro et al. 2016). Other variables such as littoral and 

vegetated zone area (e.g. Kyzivat et al. 2022; Sanches et al. 2019) and permafrost 

presence (Walter Anthony et al. 2021) are also proposed as potential drivers of northern 

lake methane ebullition.  

It is challenging to compare the relative importance of environmental predictor 

variables spanning different studies, time scales, and geographic areas (Julian et al. 
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2013). Most of the preceding studies identify methane predictors through detailed, field-

based studies rather than broad-scale syntheses. Negandhi et al. (2013) and DelSontro et 

al. (2016), for example, consider few lakes but are detailed and field-intensive, 

including such variables as depth, DOC, chlorophyll concentration, and sediment 

temperature. Using individual regression models, DelSontro, Beaulieu, and Downing 

(2018) find chlorophyll-a to be the best of four predictors of methane ebullition (R2 = 

0.317, n = 65), and Kuhn et al. (2021) find DOC (adj. R2 = 0.14, n = 72) and surface 

area (adj. R2 = 0.08, n = 165) to be the best of 20 predictors. Deemer and Holgerson 

(2021) find a multiple regression model combining waterbody type, latitude, 

chlorophyll-a, and lake area to be the best predictor of methane ebullition (R2 = 0.29, n 

= 130). In general, all regression studies typically yield low R2 values, due to the 

inherent spatial heterogeneity of methane ebullition measurements and processes.  

Alternatively, other studies examine thousands of lakes with few variables (e.g. 

DelSontro, Beaulieu, and Downing 2018), or lakes in aggregate only (e.g Kohnert et al. 

2018). Kuhn et al. (2021) strike a balance between these two extremes by considering 

up to 20 variables for 1,247 lakes and ponds in one of the largest synthesis studies to 

date. However, ebullitive flux data are available for only 175 of these 1,247 lakes and 

ponds, limiting the study’s ability to evaluate environmental drivers of methane 

ebullition. This lack of ebullitive flux data is a commonly cited shortcoming of many 

global CH4 modeling studies (Sanches et al. 2019).  
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Figure 1. Remotely sensed wintertime methane ebullition flux (g CH4 m-2 yr-1) for 

5,143 Alaskan lakes as estimated by Engram, Walter Anthony, and Meyer (2020) 

for five study regions: (a) Atqasuk, (b) Barrow Peninsula, (c) Fairbanks, (d) 

Seward Peninsula, and (e) Toolik. 

 

Recently, Engram, Walter Anthony, and Meyer (2020) produced a remotely 

sensed, field-validated methane ebullitive flux dataset covering 5,143 Arctic-Boreal 

lakes in Alaska, vastly increasing current knowledge of geospatial variations in methane 

ebullition at the landscape scale. Here we use individual and multiple linear regression, 

as in previous studies (e.g. Deemer and Holgerson 2021; DelSontro, Beaulieu, and 

Downing 2018; Kuhn et al. 2021; Table SI1), to examine correlations between this 

novel lake ebullition product and widely available environmental variables. First, we 

compile 39 variables from 7 different datasets (Table SI2) and run individual regression 

models for each (Table SI3). Due to high multicollinearity between variables (Figs. SI 

1-5), we select 8 representative variables for further analysis: lake area, lake perimeter, 
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permafrost probability, lake wetland fraction (a measure of lake wetland and littoral 

zone area), temperature, soil organic carbon content (SOC), lake depth, and lake 

greenness. Our resulting analysis of 5,130 Alaskan lakes thus combines a broad-scale 

study domain with a fine-scale methane ebullitive flux dataset that is exceptional in both 

the number of lakes and predictor variables examined. Through individual and multiple 

linear regression models we identify lake wetland fraction and lake area as leading 

predictor variables for methane ebullition. We conclude with a discussion of our study’s 

broader implications and limitations, and some promising directions for future research. 

Data and Methods 

Our study domain is identical to the methane ebullitive flux dataset of Engram, Walter 

Anthony, and Meyer (2020), which contains ebullitive fluxes for 5,143 lakes in five 

dispersed regions of Alaska (Barrow, Fairbanks, Seward Peninsula, and Toolik regions, 

Figure 1). The ebullitive methane fluxes from this data product were derived from 

correlations between satellite-based synthetic aperture radar (SAR) backscatter and 

field-measured methane gas bubbles and flux trapped by lake ice and measured by on-

ice bubble surveys. The SAR backscatter data were obtained from the Phased Array 

type L-band Synthetic Aperture Radar (PALSAR) instrument on the Advanced Land 

Observing Satellite (ALOS-1) satellite (Engram, Walter Anthony, and Meyer 2020). 

Lake areas range from 0.00345 km2 to 58.1 km2 with a mean area of 0.176 +1.13 km2. 

Each lake was buffered inward by either 9 or 18 m to exclude high SAR backscatter 

returns from surrounding vegetation and shore (Engram et al. 2020). The inward 

buffering step renders the overall ebullition flux estimates conservative, as methane 

fluxes are typically higher near lake margins than centers (Juutinen et al. 2003; Kyzivat 

et al. 2022; Walter Anthony et al. 2016). These remotely sensed wintertime flux 
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estimates were then upscaled to annual values using year-round, semi-automated bubble 

traps submerged in a smaller subset of lakes for each of the five regions, and a region-

specific ice bubble methane fraction (Engram et al. 2020).  

Geospatial datasets of lake morphometry, climate, depth, SOC, greenness, 

landcover, and permafrost are compiled from various sources (Table 1, Table SI2). 

Lake areas and perimeters are obtained from the lake polygons provided by Engram, 

Walter Anthony, and Meyer (2020). Climate variables come from the NASA Daymet 

product, which provides daily 1 km gridded estimates of temperature, precipitation, 

vapor pressure, and other variables, informed by daily meteorological observations 

(Thornton et al. 2020). Lake depth estimates, calculated using regression analysis based 

on lake area and surrounding topography, are obtained from the HydroLAKES vector 

database for lakes 10 ha (0.1 km2) in area and larger (Messager et al. 2016). SOC 

estimates, based on interpolated field observations, are obtained at 250 m resolution for 

six depth intervals between 0 and 200 cm (Poggio et al. 2021). Summer lake greenness 

data, estimated for 1,063 Alaskan lakes using Landsat imagery, are obtained from Kuhn 

and Butman (2021). Owing to a 10 ha minimum lake area requirement in both the 

greenness and depth products, these two variables are only available for 965 of the 

5,143 lakes studied here. Annual Landsat-derived land cover maps spanning the NASA 

Arctic-Boreal Vulnerability Experiment (ABoVE) spatial domain at 30 m spatial 

resolution are obtained from Wang et al. (2019) and include eight terrestrial classes 

(evergreen forest, deciduous forest, shrubland, herbaceous, sparsely vegetated, barren), 

three wetland classes (fen, bog, shallows/littoral), and one water class. This dataset was 

not developed for purposes of wetland mapping and thus excludes certain wetland 

subcategories, such as forested wetlands, marshes, and shallow open-water wetlands. 

Based on inspection, the shallows/littoral class is rarer than expected for these shallow 
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arctic lakes (area-weighted average = 25% of buffered lakes), suggesting that this 

wetland class underreports true shallow or littoral areas. Nevertheless, it was developed 

for an overlapping Arctic-boreal domain and has an appropriate resolution to compare 

with the ebullition data so is included in our analysis. Near-surface (1 m) Permafrost 

probability estimates are obtained at 30 m resolution from Pastick et al. (2015). 

Table 1. Selected representative variables with sources, variable descriptions, 

shorthand variable names, data formats, and spatial resolutions. An expanded 

version of this table presenting all compiled variables is available in the 

Supplementary Information (Table SI2). 

Source Variable Description Variable Name Data Format Resolution n 

Engram, Walter 
Anthony, and Meyer 
2020 

Region (Atqasuk, Barrow, Fairbanks, 
Seward, or Toolik) 

Region Categorical 0.005 km2 5,143 

Methane ebullition flux (mg m⁻² d⁻¹) MassFlxCH4  Vector 0.005 km2 5,143 

Lake area (km²) AreaSqkm 

Derived from Engram, 
Walter Anthony, and 
Meyer 2020 

Lake perimeter (km) perimeter Tabular 0.005 km2 5,143 

Messager et al. 2016 Lake depth (m) Depth_avg Vector 0.1 km2 1,224 

Pastick et al. 2015 Mean permafrost probability within 
1 m of the surface 

Pfrst_mean Raster 30 m 5,143 

Wang et al. 2019 Fraction of combined wetland class 
(LWF) in lake and surrounding 
wetlands within 100m of lake 

lbf_100n Raster 30 m  5,139 

Thornton et al. 2020 Average winter temperature (˚C) Tavg_W Raster 1 km 5,141 

Poggio et al. 2021 Soil organic carbon content in the 
fine earth fraction (dg/kg) 

SOC Raster 250 m 5,130 

Kuhn and Butman 2021 Mean Landsat growing season 
surface reflectance (Rs) in the green 
wavelengths 

Greenness Tabular 0.1 km2  1,061 

 

Geospatial datasets were compiled and reprojected to a common equal-area 

reference system in ArcGIS Pro 2.8.3 for comparison with the lake ebullitive flux data. 

Each variable from Daymet was extracted to a separate raster using the Make NetCDF 

Raster Layer, then the Mosaic to New Raster tool was used to merge the tiles for each 

variable into a single raster for ease of processing. NoData values were removed from 
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the permafrost probability raster, leaving all values ranging from 0 to 100. The 

SoilGrids raster was clipped to the extent of Alaska and each band, representing a 

unique variable for the 0 to 5 cm depth interval, extracted as a new raster. All datasets 

were reprojected to the Alaska Albers Equal Area Conic projection (EPSG:3338). 

Finally, these datasets were spatially joined to the original shapefile of Engram, Walter 

Anthony, and Meyer (2020) to enable comparisons with their methane ebullition data. 

Lake perimeters were calculated from lake polygons of Engram, Walter 

Anthony, and Meyer (2020) using the Calculate Geometry tool in ArcGIS Pro 2.8.3, and 

the Field Calculator tool used to calculate perimeter-to-area (P/A) ratios. A unique 

identifier (LAKEID) was created for each lake, and the Zonal Statistics as Table tool 

used for each of the raster layers (excepting land cover variables, which are described 

next) to extract the mean raster values within each lake polygon. The LAKEIDs were 

then used to join these attribute tables containing information on permafrost, climate, 

and SOC to the original lake polygons. Where available, the vector datasets for lake 

depth and greenness were also spatially joined to the updated shapefile. Lake areas were 

already included as attribute information in Engram, Walter Anthony, and Meyer 

(2020). 

Figure 2. Schematic for LWF calculation. (a) Engram, Walter Anthony, and 

Meyer (2020) vector lake outline with a 100m buffer and Wang et al. (2019) water 

class, (b) 100m buffer and Wang et al. (2019) water, littoral, bog, and fen classes; 
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and (c) 100m buffer and Wang et al. (2019) water and combined wetlands classes. 

The two classes within the buffer in (c) are used to calculate LWF. 

 

Land cover data of Wang et al. (2019) were processed differently for terrestrial 

and wetland classes as follows: First, land cover data were extracted and clipped to the 

extent of Alaska, and binary true/false (1/0) rasters created for each of the ten land 

cover variables. Lake polygons of Engram et al. (2020) were buffered outward by 100 

m (Figure 2a) and for each of the 6 terrestrial classes, and pixels corresponding to that 

class falling within the buffer were summed and normalized by the total number of 

pixels of any land class within the buffer. The buffer distance of 100 m was chosen to 

include 3-4 adjacent 30 m land cover pixels, a distance deemed sufficient to robustly 

sample the surrounding land cover, but not so large as to extend beyond the lake’s 

immediate catchment area. Because lake shorelines commonly differ between raster and 

vector datasets (which were derived using different methods and time periods) 

terrestrial classes were normalized to exclude any wetland class pixels present in the 

buffer. The normalized areal fraction of each terrestrial class within the buffer was 

calculated as: 

𝐹𝑡 =
𝑝𝑡

∑ 𝑝𝑡
6
𝑡=1

     (1) 

Where pt is the number of pixels of an individual terrestrial class within the buffer (t: 

1=evergreen forest, 2=deciduous forest, 3=shrubland, 4=herbaceous, 5=sparsely 

vegetated, 6=barren) and the buffer is defined as the 100 m buffered ring plus the 

original lake. Wetland classes were normalized to exclude any terrestrial class pixels 

present within the buffer. The normalized fraction of each wetland class within the 

buffer was calculated as: 

𝐹𝑤 =
𝑝𝑤

∑ 𝑝𝑤
4
𝑤=1

     (2) 
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Where pw is the number of pixels of an individual wetland class within the buffer (w: 

1=fen, 2=bog, 3=shallows/littoral, 4=water). Given the relatively small areas of wetland 

classes within a 100 m buffer, an aggregated wetland class attribute was calculated for 

each lake as the sum of these three classes within the buffer (Fig 2c). This combined 

wetland class, which we call lake wetland fraction (LWF), was calculated as: 

𝐿𝑊𝐹 = ∑ 𝐹𝑤
3
𝑤=1         (3) 

A lake’s LWF as defined is highly dependent on the area of its buffer, 

irrespective of the presence of wetland classes. Therefore, any observed correlation 

between methane flux and LWF might be attributable to morphological effects (i.e. 

shallowness, shoreline development). To test the relative contribution of morphology, a 

buffer ratio (BR), defined as the ratio between the areas of the 100 m buffered ring and 

the sum of lake area plus ring area, was calculated as follows: 

𝐵𝑅 =
𝐴𝑏

𝐴𝑏+𝐴𝑙
           (4) 

Where Ab is the area of the buffered ring and Al is the area of the lake. For all classes, 

the normalized values were joined to the original lake polygons of Engram, Walter 

Anthony, and Meyer (2020) using the unique LAKEIDs, and attributes from this 

shapefile exported as a .csv file for further analysis. 

Correlations between environmental variables and the lake methane ebullition 

fluxes of Engram, Walter Anthony, and Meyer (2020) were tested and compared using 

both individual and multiple linear regression models. The Statsmodels package in 

Python was used to perform ordinary least squares regression on log transformed 

variables, with an individual regression model created for each variable (Table 2, Table 

SI3). Of the individual models that are not categorical variables, LWF (adj. R2 = 0.211) 

and lake area (adj. R2 = 0.201) had highest individual correlations so were also used to 

create multiple regression models (Table 3). LWF and lake area were included in all of 
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the multiple regression models, with a third predictor changed for each model. To avoid 

overfitting, no more than three variables were considered for each multivariate model 

(Deemer and Holgerson 2021). To avoid problems with multicollinearity (e.g. 

Murakami et al. 2018), only one representative variable from each dataset was selected 

for the multiple regression models, since variables from the same datasets were often 

highly correlated (Table SI3, Figure SI 1-5).  

A few multivariate models had some degree of multicollinearity, indicated by 

condition numbers >30 (Haslwanter 2016). For this reason, we assessed variable 

importance based on univariate regression metrics: highest adjusted R2, lowest Akaike 

Information Criterion (AIC), and low condition number. We also considered plausible 

physical causes of methane emission and did not consider spatially-autocorrelated 

variables, such as mean annual water vapor pressure or coverage of the sparse land 

cover class. In both of these cases, strong metrics likely indicate correlation with more 

important spatial variables, such as temperature. The categorical variable Region is not 

physically meaningful, so we excluded it from the multiple regression analysis. 

Furthermore, Region cannot be replicated, except with a spatially identical dataset, 

because regions are defined subjectively. All models were compared using adjusted R2 

due to its sensitivity to both the number of observations and the number of predictor 

variables. 

Results 

Individual regression models indicate that region, wetland fraction, area, perimeter, and 

temperature are the strongest individual predictors of lake methane ebullition (Table 2). 

Region alone has the highest predictive power (adj. R2 = 0.320) of all of the variables 

tested, but is categorical and does not explicitly distinguish physical characteristics so 
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we do not consider it further. LWF has the second-highest individual predictive power 

(adj. R2 = 0.211, Figure 3a), followed by lake area (adj. R2 = 0.201, Figure 3b). Of the 

remaining environmental variables perimeter has moderate predictive power (adj. R2 = 

0.176) but is highly correlated with area (adj. R2 = 0.899) so was excluded from 

subsequent multiple regression models. Temperature, both annual (adj. R2 = 0.147) and 

winter (adj. R2 = 0.157), is a moderately important variable in the individual regression 

models. The buffer ratio (adj. R2 = 0.166, Table SI3) does not correlate as strongly as 

LWF, demonstrating that LWF is a physically meaningful variable rather than simply a 

function of lake morphology. 

Table 2. Best-performing individual linear regression models for representative 

variables from each dataset, ordered by adjusted R2. Both adjusted R2 and Akaike 

Information Criterion (AIC) are measures of model quality used for model 

selection. Adj. R2 considers the number of observations (n) but AIC does not; a 

higher adj. R2 and lower AIC indicates a better model. 

 

 

 

 

 

 

*Depth and greenness datasets have much smaller sample sizes than other variables. 

 

SOC, permafrost, lake depth, and greenness are weak predictors of lake methane 

ebullition. These remaining representative predictor variables all have individual 

adjusted R2 < 0.15. In the case of SOC, other variables from the same dataset have 

higher adj. R2 values (Table SI3) but are less physically meaningful and thus were not 

selected for inclusion in multiple regression models. Depth and greenness were found to 

Variable Adj. R2 AIC n p-value 

Region 0.320 3845 5143 <0.001 

LWF 0.211 4562 5132 <0.001 

Lake area 0.201 4678 5143 <0.001 

Lake perimeter 0.176 4836 5143 <0.001 

Average winter temperature 0.157 4949 5141 <0.001 

SOC 0.059 5485 5129 0.001 

Permafrost 0.038 5630 5143 <0.001 

Lake depth* 0.029 838 1224 <0.001 

Lake greenness* 0.016 574 1061 <0.001 
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have low adjusted R2 values (0.029 and 0.016), but they are only available in smaller 

sample sizes and are biased towards large lakes. 

 

Figure 3. Methane ebullitive flux vs. (a) LWF and (b) lake area with corresponding 

individual regression models. 

 

A multiple regression model combining LWF, area, and temperature performs 

best, with an adjusted R2 of 0.325 (Table 3).  This model performs better than the 

model regressed solely on Region (adj. R2 = 0.320), which has the highest individual 

predictive power and accounts for numerous geographically-dependent variables. This 

suggests that the model may have higher predictive power than unmeasured variables 

for which Region is a proxy. Furthermore, for the model using lake area, LWF, and 

SOC, all variables are significant (p < 0.005) except for SOC. Multiple regression 

models using permafrost and SOC have adjusted R2 values less than that of Region 

alone (adj. R2 = 0.237 and 0.227, Table 2). The models including lake depth and 

greenness performed significantly worse than all other models (adj. R2 = 0.086 and 

0.037, Table 3).  
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Table 3. Multiple linear regression model results ordered by adjusted R2. Both 

adjusted R2 and Akaike Information Criterion (AIC) are measures of model 

quality used for model selection. Adj. R2 considers the number of observations (n) 

but AIC does not; a higher adj. R2 and lower AIC indicates a better model. All 

variables are log transformed. 

*Depth and greenness datasets have much smaller sample sizes than other variables. 
 

 

As anticipated (e.g. Murakami et al., 2018), some variables are spatially 

correlated with each other. Temperature is inherently correlated with Region (adj. R2 = 

0.989, Figure 4) and thus spatial correlation of temperature, along with other driving 

variables, likely accounts for the high predictive power of Region alone. Models that 

include temperature variables within a restricted domain yield high condition numbers 

(e.g. AIC=2670 and 2690 for Tavg_W or Tavg_yr, respectively, see Figure SI4, Table 

SI3), even in univariate models. Such high condition numbers in multivariate models 

are likely caused by strong correlation between temperature and region. Similarly, 

LWF, the best individual predictor, is highly correlated with lake area, with an adjusted 

R2 of 0.669. Perimeter is similarly correlated with LWF, with an adjusted R2 of 0.516.   

Discussion 

Our broad-scale results broadly agree with smaller regression-based studies 

reporting the importance of lake area and/or temperature to lake methane ebullition 

emissions. Bastviken et al. (2004) find that a model using both lake area and total 

phosphorus is best for predicting methane ebullition for 13 lakes in North America and 

Equation Adj. R2 AIC n 

Lake area + LWF + Average winter temperature 0.325 3765 5130 

Lake area + LWF + Permafrost 0.237 4397 5132 

Lake area + LWF + SOC 0.227 4434 5118 

Lake area + LWF 0.226 4467 5132 

Lake area + LWF + Lake depth* 0.086 767.2 1224 

Lake area + LWF + Lake greenness* 0.037 554.1 1061 
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Eurasia (adj. R2 = 0.89), and Praetzel, Schmiedeskamp, and Knorr (2021) find that 

temperature is a strong individual predictor (R2 = 0.53). DelSontro et al. (2016) find that 

a model using total phosphorus and sediment temperature is best for predicting 

ebullition (adj. R2 = 0.52) for 13 lakes and ponds in Québec, while Deemer and 

Holgerson (2021) find that combining lake area, latitude, waterbody type, and 

chlorophyll works best (adj. R2 = 0.29).  DelSontro, Beaulieu, and Downing (2018) find 

that while chlorophyll a (R2 = 0.317) is the best predictor of methane ebullition for 65 

lakes worldwide, a model combining surface area and total nitrogen is a stronger 

predictor for a subset of 47 lakes (R2 = 0.387). Kuhn et al. (2021) find that ebullitive 

fluxes from 70 lakes are best predicted by a model using lake area alone (adj. R2 = 

0.21). Similar to our own findings, these reported coefficients of determination do not 

exceed 0.4 for sample sizes of >100 lakes, suggesting that our regression models have 

predictive power approximately commensurate with other broad-scale studies. 

While lake area is a frequently cited predictor for methane ebullition, our 

individual regression results indicate that LWF is equally important and may even be an 

underlying driver for the importance of area. The observed collinearity between lake 

area and LWF indicates that smaller lakes tend to be shallower and contain a greater 

proportion of land-water interface habitat, which often supports wetlands (Figure 4). 

This high correlation is in part due to the littoral class, which scales with lake perimeter, 

itself a correlate of lake area. Furthermore, our method for calculating wetland fraction 

is scale-sensitive and yields larger values for smaller lakes. The classic Shoreline 

Development Index (SDI) has similar scale dependence (Seekell, Cael, and Byström 

2022). Thus, small and/or sinuous lakes have higher wetland fractions, regardless of 

land cover type. Although regression studies cannot determine causality between 

predictor variables, wetland presence is better supported as a mechanism for methane 
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production than lake area per se (Juutinen et al. 2003; Kyzivat et al. 2022). Studies 

reporting high correlations between lake area and area-normalized methane flux (e.g. 

Engram et al. 2020; Sanches et al. 2019; Stackpoole et al. 2017), may therefore be more 

appropriately interpreted as describing high correlations with unmeasured shallow and 

vegetated water. This interpretation is consistent with littoral zone studies reporting 

higher per unit flux from vegetated littoral zones than from open lake centers (Juutinen 

et al. 2003; Kyzivat et al. 2022; Walter Anthony et al. 2016). 

Like previous broad-scale studies, our regression analyses using widely 

available geospatial datasets spanning thousands of lakes yield modest but statistically 

significant empirical correlations, thus offering a complementary way to evaluate the 

conclusions of smaller field studies. Both lake area and temperature, for example, are 

commonly cited as correlates of methane ebullition flux in detailed field studies (e.g. 

Bastviken et al. 2004; Praetzel, Schmiedeskamp, and Knorr 2021), which is also 

consistent with the results of our broad-domain study. While the reported correlations 

are stronger than the ones presented here, they also consider far fewer lakes and smaller 

spatial domains. Studies with large sample sizes are generally expected to yield lower 

correlations than studies with small sample sizes, consistent with the formula for 

correlation, which has n in the denominator (Ali 1987; Haslwanter 2016). Furthermore, 

as wetlands and LWF are difficult to classify in remotely sensed imagery, the strength 

of their correlation can vary based on method. In a similarly broad-scale analysis, 

Kyzivat et al. (2022) found that statistically significant regional correlations between 

lake emergent vegetation coverage and lake area never exceeded non-adjusted R2 = 0.5, 

with a regionally aggregated R2 = 0.124 (considerably lower than our own finding of 

non-adjusted R2=0.669 for all sites combined, Figure 4). This discrepancy is very likely 

due to different methodologies and quantities being compared (i.e. lake emergent 
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vegetation coverage versus wetland fraction). Future work should consider more 

universally-applicable methods for estimating LWF, such as that for littoral area 

(Seekell et al. 2021). However, for environmental variables that are more readily 

quantifiable from remote sensing (e.g. lake area, wetland fraction, greenness) we 

conclude that broad-scale statistical studies such as presented here offer a powerful 

complement to more detailed field studies sampling smaller areas. 

 

Figure 4. Observed linear relationship between lake area and lake wetland fraction 

(LWF). 

 

Limitations of this study include a heterogeneous spatial domain and uncertain, 

multicollinear study variables. Ebullition observations are inherently noisy due to 

challenges associated with upscaling of field measurements and episodic bubbling 

events (Engram et al. 2020; Wik et al. 2016). SoilGrids-derived variables like SOC are 

highly interpolated, so may not correctly characterize the soil margins surrounding 

individual lakes. HydroLakes depths are modeled estimates, and ABoVE land cover and 

wetland classes are non-exhaustive. The forthcoming NASA-ISRO Synthetic Aperture 



 

20 

 

Radar (NISAR) (Kellogg et al. 2020) and Surface Water and Ocean Topography 

(SWOT) (Fu et al. 2012) satellite radar missions may improve Arctic-Boreal wetland 

mapping capability over Landsat-based approaches. From a statistical standpoint, the 

inherent correlations between certain variables, such as temperature and region or lake 

area and LWF, challenge the reliability of multiple linear regression models built from 

them. However, from an Earth science perspective, the latter collinearity suggests that 

LWF (which tends to increase in smaller, shallower lakes) is a likely physical driver of 

the widely reported correlation between methane flux and lake area (e.g. Sanches et al. 

2019; Stackpoole et al. 2017). Furthermore, the Engram, Walter Anthony, and Meyer 

(2020) dataset purposefully excludes a 9-18 m inner lake buffer, which may omit littoral 

methane production from the reported ebullitive flux data (Engram et al. 2020). Despite 

this exclusion, we find a strong, broad-scale regression relationship of LWF with 

ebullitive flux and speculate that if these buffered areas were included, an even stronger 

correlation might be expected. 

Regardless of these limitations, this study offers a straightforward demonstration 

of the value of using large environmental datasets to improve understanding of methane 

emissions over landscape-relevant scales. We conclude that that LWF is an 

underappreciated yet important predictor of lake methane ebullition, and that broad-

scale geospatial studies of known lake attributes can complement conclusions drawn 

from smaller, field-intensive studies. Future work should continue to accumulate field 

and/or remotely sensed datasets of other lake attributes such as DOC, CDOM, 

watershed attributes, topography, and vegetation phenology (Johnston et al. 2020), as 

the modest predictive power of current regression models suggest that spatial variations 

in ebullitive methane flux (and likely diffusive, plant-mediated flux, and storage fluxes 

as well) are not fully captured using existing geospatial datasets. Future ebullition 
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studies should also consider incorporating LWF in their analyses, as inclusion of this 

variable should improve landscape-scale assessments of Arctic-Boreal lake methane 

emissions to the atmosphere. 
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Table SI1. Compiled regression results from past ebullition regression studies. 

Reference Model R2 Adj. R rmse aic f n P<0.005? 

Bastviken et al. 2004 log(Area)  0.78    17 yes 

log(Area) + log(TP)  0.89    13 yes, no 

log(TP)  0.46    13 no 

DelSontro et al. 2016 Sediment temp (ponds) 0.59     77 yes 
Sediment temp (lakes) 0.015     83 no 

log(TP) + Sediment temp + 
log(TP)*Sediment temp 

0.52     89 yes 

Wik et al. 2016 Waterbody type 
Sediment type 
log(depth) 
waterbody type*sediment type 
waterbody type*log(depth) 
sediment type*log(depth) 

    8.857 
8.937 
0.047 
0.086 
8.491 
5.238 

51 yes 
yes 
no 
no 
no 
no 

Waterbody type 
Sediment type 
log(area) 
waterbody type*sediment type 
waterbody type*log(area) 
sediment type*log(area) 

    0.532 
0.946 
3.444 
3.405 
2.955 
0.444 

51 no 
no 
no 
no 
no 
no 

DelSontro, Beaulieu, and 
Downing 2018 

log(TP) 0.292  0.648   101 yes 

log(TN) 0.311  0.647   47 yes 

log(Chl a) 0.317  0.630   65 yes 

log(area) 0.013  0.775   137 no 

log(area)*log(TP) 0.292  0.648   101 yes 

log(area)*log(TN) 0.387  0.610   47 yes 

log(area)*log(chl a) 0.280  0.634   64 yes 

Sanches et al. 2019 Estimation method 
Climatic zone 
Min temp 
Avg. temp 
Estimation method*max temp 
Estimation method*avg temp 

0.85     78 yes 
yes 
no 
no 
no 
no 



Climatic zone*max temp 
Climatic zone*avg temp 
Climatic zone*year 
Precipitation 
Climatic zone*min precip 
Min temp*avg temp 
Min temp*min precip 
Max temp*avg temp 

no 
no 
no 
no 
no 
no 
no 
yes 

Area 
Landscape 
Min temp 
Avg temp 
Area*landscape 

0.98     46 no 
yes 
yes 
yes 
yes 

Max precip 
Avg temp 
Year precip*DOC 

0.91     19 no 
yes 
no 

Kuhn et al. 2021 DOC  0.14   12.25 72 yes 

Area  0.08   13.88 165 yes 

Latitude  0.03   5.38 161 no 

Water temp  0.06   5.55 68 no 
Depth     0.02 152 no 

Area  0.21   19.85 69 yes 

Deemer and Holgerson, 
2021 

Water temp 0.09     134 yes 

Latitude 0.04     218 yes 

ln(Area) 0.00     216 no 

ln(Max depth) 0.07     135 yes 

ln(Mean depth) 0.00     87 no 

ln(DOC) 0.00     85 no 

ln(Chl a) 0.18     143 yes 

Waterbody type + latitude + chl a + area  0.29  481.69  130  

Waterbody type*chl a + latitude + area  0.29  483.17  130  

 
  



Table SI2. All compiled environmental variables with sources, variable descriptions, shorthand 

variable names, data formats, and spatial resolutions. Selected representative variables which 

appear in Tables 1-3 of the main text are shown in bold.  Representative variable selection was 

based on the highest adj. R2 and lowest AIC within each dataset, except in the cases of the 

climate (Thornton et al. 2020) and soil carbon (Poggio et al. 2021) datasets, where variables were 

so highly correlated (Figures SI4 and SI5) that physical meaningfulness of the variables was also 

taken into account. 

Source Variable Description Variable Name Data Format Resolution n 

Engram, Walter 
Anthony, and Meyer 
2020 

Region (Atqasuk, Barrow, Fairbanks, 
Seward, or Toolik) 

Region Categorical 0.005 km2 5,143 

Methane ebullition flux (mg m⁻² d⁻¹) MassFlxCH4  Vector 0.005 km2 5,143 

Lake area (km²) AreaSqkm 

Derived from Engram, 
Walter Anthony, and 
Meyer 2020 

Lake perimeter (km) perimeter Tabular 0.005 km2  

Buffer ratio bf_pr_wi 

Perimeter-to-area (P/A) ratio p_a_ratio 

Messager et al. 2016 Shoreline development Shore_dev Vector 0.1 km2 1,224 

Lake volume (mcm) Vol_total 

Lake depth (m) Depth_avg 

Watershed area (km²) Wshd_area 

Pastick et al. 2015 Mean permafrost probability within 
1 m of the surface 

Pfrst_mean Raster 30 m 5,143 

Wang et al. 2019 Fraction of combined wetland class 
(LWF) in lake and surrounding 
wetlands within 100m of lake 

lbf_100n Raster 30 m  5,139 

Fraction of littoral zone in lake and 
surrounding wetlands within 100m 
of lake 

littoral_100n 

Fraction of bog in lake and 
surrounding wetlands within 100m 
of lake 

bog_100n 

Fraction of fen in lake and 
surrounding wetlands within 100m 
of lake 

fen_100n 

Fraction of sparsely vegetated land 
among land pixels within 100m of 
lake 

sparseveg_100n 

Fraction of deciduous forest among 
land pixels within 100m of lake 

decid_100n 



Fraction of evergreen forest among 
land pixels within 100m of lake 

evrgrn_100n 

Fraction of barren land among land 
pixels within 100m of lake 

barren_100n 

Fraction of shrubland among land 
pixels within 100m of lake 

shrub_100n 

Fraction of herbaceous land among 
land pixels within 100m of lake 

herb_100n 

Thornton et al. 2020 Average winter temperature (˚C) Tavg_W Raster 1 km 5,141 

Average annual temperature (˚C) Tavg_yr 

Average annual vapor pressure (Pa) Vpavg_yr 

Maximum annual temperature (˚C) Tmax_yr 

Minimum annual temperature (˚C) Tmin_yr 

Total annual precipitation (mm) Precip_yr 

Poggio et al. 2021 Organic carbon stocks (t/ha) SOCS Raster 250 m 5,130 

Soil organic carbon content in the 
fine earth fraction (dg/kg) 

SOC 

Proportion of silt particles (≥ 0.002 
mm and ≤ 0.05 mm) in the fine 
earth fraction (g/kg) 

Silt 

Proportion of sand particles (> 0.05 
mm) in the fine earth fraction (g/kg) 

Sand 

Soil pH (pHx10) Soil_pH 

Organic carbon density (hg/m³) OCD 

Total nitrogen (N) (cg/kg) Nitrogen 

Cation Exchange Capacity of the soil 
(mmol(c)/kg) 

Cat_Ex 

Bulk density of the fine earth 
fraction (cg/cm³) 

Bulk_Dens 

Proportion of clay particles (< 0.002 
mm) in the fine earth fraction (g/kg) 

Clay 

Volumetric fraction of coarse 
fragments (> 2 mm) (cm3/dm3 
(vol‰)) 

Co_Frag 

Kuhn and Butman, 2021 Mean Landsat growing season 
surface reflectance (Rs) in the green 
wavelengths 

Greenness Tabular 0.1 km2  1,061 

 
 

  



Table SI3. Individual regression results for all assembled variables sorted and shaded by dataset 

(colors indicate divisions between datasets). Selected representative variables which appear in 

Tables 1-3 of the main text are shown in bold.  Representative variable selection was based on 

the highest adj. R2 and lowest AIC within each dataset, except in the cases of the climate 

(Thornton et al. 2020) and soil carbon (Poggio et al. 2021) datasets, where variables were so 

highly correlated (Figures SI4 and SI5) that physical meaningfulness of the variables was also 

taken into account. 

Variable rs r2_adj aic n cond_no p < 0.005 

Region 0.321 0.320 3845 5143 5.99 yes 

AreaSqkm 0.201 0.201 4678 5143 5.47 yes 

perimeter 0.176 0.176 4836 5143 30.1 yes 

bf_per_wi 0.166 0.166 4895 5143 36.6 yes 

p_a_ratio 0.175 0.175 4838 5143 11.8 yes 

Shore_dev 0.002 0.001 873.2 1224 8.68 no 

Vol_total 0.009 0.008 864.5 1224 2.23 yes 

Depth_avg 0.026 0.026 842.9 1224 7.27 no 

Wshd_area 0.003 0.003 871.6 1224 1.42 no 

Pfrst_mean 0.038 0.038 5630 5143 32.3 yes 

lbf_100n 0.211 0.211 4564 5132 8.49 yes 

barren_100n 0.007 0.006 5794 5139 33.6 yes 

bog_100n 0.000 0.000 5826 5139 2760 no 

decid_100n 0.028 0.027 5684 5139 92.9 yes 

evrgrn_100n 0.000 0.000 5826 5139 24.0 no 

fen_100n 0.030 0.030 5672 5139 38.1 yes 

herb_100n 0.073 0.073 5438 5139 14.8 yes 

littoral_100n 0.112 0.112 5173 5132 13.9 yes 

shrub_100n 0.099 0.099 4964 5017 10.4 yes 

sparseveg_100n 0.163 0.163 4915 5139 11.2 yes 

Tavg_W 0.157 0.157 4949 5141 2670 yes 

Tavg_yr 0.147 0.147 5011 5141 2690 yes 



VPavg_yr 0.160 0.160 4934 5141 138 yes 

Tmax_yr 0.046 0.046 5586 5141 2340 yes 

Tmin_yr 0.043 0.042 5606 5141 6040 yes 

Precip_yr 0.132 0.132 5103 5141 39.1 yes 

SOCS 0.023 0.023 5679 5129 16.2 yes 

SOC 0.060 0.059 5485 5129 42.2 yes 

Silt 0.140 0.140 5028 5129 23.1 yes 

Sand 0.010 0.010 5747 5129 24.4 yes 

Soil_pH 0.075 0.075 5399 5129 14.2 yes 

OCD 0.080 0.080 5370 5129 28.7 yes 

Nitrogen 0.093 0.093 5297 5129 32.8 yes 

Cat_Ex 0.071 0.071 5422 5129 26.4 yes 

Bulk_Dens 0.116 0.116 5167 5129 12.3 yes 

Clay 0.052 0.052 5527 5129 20.7 yes 

Co_Frag 0.097 0.097 5278 5129 7.18 yes 

Greenness 0.017 0.016 574.4 1061 28.2 yes 

 
  



1. Supplementary Figures 
 

 

Figure SI1. Correlation matrix for lake morphometry variables derived from Engram, Walter 

Anthony, and Meyer (2020). 

 
 
 

 

Figure SI2. Correlation matrix for lake morphometry variables from Messager et al. (2016). 

 
 
 
 
 
  



Figure SI3. Correlation matrix for land cover variables from Wang et al. (2020). 

 
 

 

Figure SI4. Correlation matrix for climate variables from Thornton et al. (2020). 

 
  



Figure SI5. Correlation matrix for soil variables from Poggio et al. (2021). 

 
 
  



Figure SI6. Pair plots of volumetric and mass-based ebullitive methane fluxes for selected 

predictor variables. Histograms are shown on the diagonal elements and scatter plots on the 

lower diagonal elements. Figure is high-resolution and can be zoomed to view individual plots. 
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