
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
25
38
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Creating and evaluating uncertainty estimates with neural networks

for environmental-science applications

Ryan Lagerquist1, Katherine Haynes1, Marie McGraw1, Kate Musgrave1, and Imme
Ebert-Uphoff1

1Cooperative Institute for Research in the Atmosphere

November 23, 2022

Abstract

Neural networks (NNs) have become an important tool for prediction and classification tasks in environmental science appli-

cations. Since many such tasks inform life-and-death decision or policy making, it is crucial to not only provide predictions

but also gain an understanding of the uncertainty of these predictions. Until recently there were very few tools available to

provide uncertainty quantification (UQ) estimates for NN predictions, but over the last two years the computer science field

has developed numerous new methods for this purpose, and many research groups are exploring how to put these methods

into practice for environmental science applications. In this work we provide a brief, accessible introduction to four of these

UQ methods, then focus on tools for the next step, namely to answer the question: Once we obtain an uncertainty estimate

(using any method), how do we know whether it is good? To answer this, we highlight four different evaluation methods that

are particularly suitable to evaluate NN uncertainty estimates for environmental science applications. We demonstrate the UQ

evaluation methods for two real-world problems: (1) estimating vertical profiles of atmospheric dewpoint (regression task) and

(2) predicting convection over Taiwan based on Himawari-8 satellite imagery (classification task). We also provide accompany-

ing Jupyter notebooks with Python code for implementing the uncertainty estimation and UQ evaluation methods discussed

herein. This article provides the environmental-science community with the knowledge and tools to start incorporating the

large number of emerging UQ methods into their research.

1

Generated using the official AMS LATEX template v6.1.

Creating and evaluating uncertainty estimates with neural networks for

environmental-science applications

This article has been submitted to the AMS journal Artificial Intelligence for

the Earth Systems.

Katherine Haynesa , Ryan Lagerquista,b , Marie McGrawa , Kate Musgravea , Imme

Ebert-Uphoffa,c

a Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort

Collins, CO
b National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory

(ESRL) / Global Systems Laboratory (GSL), Boulder, Colorado
cDepartment of Electrical and Computer Engineering, Colorado State University, Fort Collins,

Colorado

Corresponding author: Katherine Haynes, katherine.haynes@colostate.edu

1

ABSTRACT: Neural networks (NNs) have become an important tool for prediction and classifi-

cation tasks in environmental science applications. Since many such tasks inform life-and-death

decision or policy making, it is crucial to not only provide predictions but also gain an under-

standing of the uncertainty of these predictions. Until recently there were very few tools available

to provide uncertainty quantification (UQ) estimates for NN predictions, but over the last two

years the computer science field has developed numerous new methods for this purpose, and many

research groups are exploring how to put these methods into practice for environmental science

applications. In this work we provide a brief, accessible introduction to four of these UQ methods,

then focus on tools for the next step, namely to answer the question: Once we obtain an uncertainty

estimate (using any method), how do we know whether it is good? To answer this, we highlight

four different evaluation methods that are particularly suitable to evaluate NN uncertainty esti-

mates for environmental science applications. We demonstrate the UQ evaluation methods for two

real-world problems: (1) estimating vertical profiles of atmospheric dewpoint (regression task)

and (2) predicting convection over Taiwan based on Himawari-8 satellite imagery (classification

task). We also provide accompanying Jupyter notebooks with Python code for implementing the

uncertainty estimation and UQ evaluation methods discussed herein. This article provides the

environmental-science community with the knowledge and tools to start incorporating the large

number of emerging UQ methods into their research.

SIGNIFICANCE STATEMENT: AI methods are used in many meteorological applications,

including for life-and-death decision making. New methods have been developed in recent years in

computer science to provide urgently needed uncertainty estimates for such methods. We seek to

accelerate adoption of these methods in the environmental science community with an accessible

introduction to 1) simple methods for calculating uncertainty estimates of AI methods, and 2)

methods for evaluating such estimates for environmental science applications.

1. Introduction

Neural networks (NNs) have become widely used tools for both prediction and classification

tasks in the environmental sciences. Many environmental science tasks (e.g., predicting ocean

wave heights, forecasting severe weather) are used in critical decision and policy making. These

2

decision makers need not only a prediction of an outcome, but also the uncertainty surrounding

that prediction.

Previously, tools to provide uncertainty quantification (UQ) estimates for NN predictions have

been scarcely available; however, over the last two years the field of computer science has seen a

surge in this area. This article aims to aid the environmental science community in applying these

tools.

To do this, we first provide background on what uncertainties the environmental sciences are

aiming to estimate in machine learning (ML) models (Section 2). Next,

we provide a brief, accessible introduction to four types of these UQ methods (Section 3):

1. Probabilistic Prediction Using Continuous Ranked Probability Score (CRPS),

2. Parametric Regression,

3. Quantile Regression, and

4. Monte Carlo Dropout (and pointers for Bayesian Neural networks).

In Section 4 we discuss tools for the next step, namely to answer the question: Once we obtain

an uncertainty estimate using any method, how do we evaluate the quality of this estimate for

our application? We highlight four different evaluation methods that are particularly suitable to

evaluate NN uncertainty estimates for environmental science applications. These are:

1. Attributes diagram,

2. Spread-skill plot,

3. Probability integral transform (PIT) histogram, and

4. Discard test.

In Sections 5 and 6 we demonstrate how to use the UQ evaluation methods for two real-world

problems:

• Estimating vertical profiles of atmospheric dewpoint (regression task);

• Predicting convection over Taiwan based on Himawari-8 satellite imagery (pixel-wise classi-

fication task).

3

Finally, in Section 7 we provide insights on these UQ methods and metrics.

This article is accompanied by several Jupyter notebooks for implementing the methods

discussed herein – both the UQ methods themselves and methods to evaluate the result-

ing uncertainty estimates (see https://github.com/thunderhoser/cira_uq4ml). For

classification tasks, a Monte Carlo Notebook (mc_dropout_for_classification.ipynb)

implements the Monte Carlo dropout method and a Quantile Regression Notebook

(quantile_regression_for_classification.ipynb) implements quantile regression with

a special NN architecture that prevents quantile-crossing. Both of these also implement the

spread-skill plot and discard test. For regression tasks, a CRPS Notebook (crps_loss.ipynb)

implements the continuous ranked probability score (CRPS) as a loss function. Additionally, a

Regression Notebook (uq_regression.ipynb) implements three of the UQmethods and demon-

strates all four metrics. Rather than providing the specific data for the regression task, we created

six different sample data sets that highlight the pros and cons of each method, allowing users to

compare and contrast between the various methods and metrics.

2. Background

a. Which uncertainties are we trying to capture?

The motivation for quantifying uncertainty in ML is to provide information as to how much

to trust the information provided by the model. To identify what uncertainties we can expect

ML models to provide, first we need to take a look at the components of the model, sources of

uncertainty, and pieces of information themodel can use to quantify uncertainty (Fig. 1). In theML

framework, data is passed into the ML model as features. During training, the ML model learns to

generate optimized predictions by minimizing differences between the predicted and target values

using a loss function. At runtime, deterministic ML models create single-value predictions per

input that correspond to each target value. This approach works in an idealized situation, where

each input has a unique target, the model can perfectly learn to predict the targets, and the input data

distribution during operational use never deviates from the training dataset. However, this is often

not the case: datasets include numerous sources of uncertainty causing there to be a scattering of

different output possibilities per input, different model structures and parameters may compromise

4

Dataset
(for training
and testing)

ML
Model

(Regression or
Classification)

Input Features
(x)

Sources of uncertainty inherent in data:
• Internal variability of physical process

(e.g., chaotic nature of processes)
• Observation error (if data is observed)

or Model error (if data is from a model)
• Sampling error

(e.g., biases in sampling strategy;
insufficient samples for certain regimes)

Central
Prediction

Ytrue spread
Uncertainty

Estimate

Target Mean
Target

Variability
(ytrue spread)

ML output
(ypred)

Target Data
(ytrue)

Sources of uncertainty contributed by ML
model:
• Structural error (incorrect ML model

structure)
• Parametric error (incorrect ML model

parameters)
• Out-of-regime error (e.g., creating

predictions outside of training data
regime)

Out-of-Regime
Uncertainty

Estimate

Bayesian models only
Probabilistic loss

function

Figure 1: To indicate how much users should trust ML model predictions, UQ approaches seek
to estimate the total uncertainty present in each model output. Currently, UQ methods provide
estimates for the 𝑦𝑡𝑟𝑢𝑒 spread and out-of-regime uncertainty.

model performance, and operational use may ask for predictions on input values that do not exist

in the training dataset.

While ideally model uncertainty estimates would include all the discrepancy contributions, the

only information with which to derive these estimates considered here are the data and the ML

model. Thus, we task the ML method with quantifying two sources of uncertainty as shown in Fig.

2. The first is an uncertainty estimate capturing the data uncertainty that results from the internal

variability of physical processes, which manifests as target discrepancies (Fig. 2 Error 1; Fig. 1

far right purple container). The model can learn the spread in the target data and quantify this

uncertainty per individual prediction. The second is to use the model itself to learn the training

data limits and to provide higher uncertainty estimates when the model is being tasked to create

predictions that are outside of the training data regime, which we refer to as out-of-regime error

(Fig. 2 Error 2; Fig. 1 far left purple container).

While we would like ML models to simultaneously make predictions and quantify the uncertain-

ties resulting from the errors discussed above, it should be emphasized that the first step is always

to seek to reduce these errors as much as possible.

5

Error 2: Out-of-
regime error
(insufficient #

training samples)

Error 1: Due to
randomness in y
(spread of ytrue)

x ∈ [0,2]: High density in x
(high sampling rate)

x ∈ [2,4]: Low density in x
(low sampling rate)

Training data
Model estimate (deterministic)••

y

x

Figure 2: Illustrative example using synthetic data, where 𝑦(𝑥) is normal distributed for 𝑥 ∈ [0,4]
with mean, 𝜇(𝑥) = sin(𝑥𝜋), and standard deviation, 𝜎(𝑥) = 0.1𝜇(𝑥). The training data has two
issues: (1) varying randomness in 𝑦 and (2) varying sampling rate in 𝑥. An estimate by a
deterministic NN is shown in red, and the two errors we are concerned about are stated in black.

Thus, it is essential to pre-process the data and to take care when creating the dataset to minimize

uncertainty sources. Similarly, it is essential to optimize the model architecture and hyperparame-

ters (options chosen by the user) to achieve the best performance possible.

b. Conveying uncertainty

There are many ways to convey uncertainty for an estimated value, 𝑦𝑝𝑟𝑒𝑑 , such as:

1. Estimating an ensemble of predictions (e.g., estimates for 𝑦𝑝𝑟𝑒𝑑 are {𝑦1, . . . , 𝑦𝑘 }).

2. Choosing a probability distribution type and estimating its parameters (e.g., N(𝜇,𝜎) with
estimated values for the mean, 𝜇, and the standard deviation, 𝜎).

3. Estimating specific points of a probability distribution (i.e., quantiles).

6

Key IdeasUQ Method Schematic

Monte Carlo Dropout

NN1

NN2

NNk

y1

y2

yk

… …

En
se

m
bl

e
of

 p
re

di
ct

io
ns

x NN
Stochastic
sample of
weights

• NN weights are probability distributions, not single numbers
• For every prediction call, the model randomly selects weights

- Each inference is different (i.e., a new ensemble drawn)
• Output: Ensemble of predictions

- Create k ensemble members by running the model k times
• Tasks: Classification and regression
• Pros: Requires no model changes (except the inclusion of

dropout layers), predicts out-of-regime uncertainty
• Cons: Monte Carlo required at runtime, does not capture ytrue

spread with traditional loss function
• Example: Monte Carlo Notebook, Regression Notebook

Dropout
Layers

x NN

q1

Quantile Regression

q2

qm

… Se
t o

f
qu

an
til

es

Quantile Loss
Function

Architecture that
avoids quantile

crossover

• Train NN to predict a set of quantiles
- Quantile loss function
- Architecture that avoids quantile cross over

• Output: Set of quantiles
• Tasks: Classification and regression
• Pros: Requires minimal model changes, predicts ytrue spread
• Cons: Number of quantiles must be specified a priori, requires

model architecture adjustment and custom loss function, does
not capture out-of-regime uncertainty

• Example: Quantile Regression Notebook

x NN

mu

sigma

tau Pa
ra

m
et

er
s o

f
pr

ob
ab

ili
ty

di

st
rib

ut
io

n

nu
Negative

Log-Likelihood
Loss Function

Architecture
with custom
output layer

• Train NN to predict parameters of a probability distribution
- Type of probability distribution selected a priori
- Negative log-likelihood loss function
- Architecture with custom output layer

• Output: Parameters of the specified probability distribution
• Tasks: Regression
• Pros: Requires minimal model changes, predicts ytrue spread
• Cons: Probability distribution must be specified a priori, requires

model architecture adjustment and custom loss function, does
not capture out-of-regime uncertainty

• Example: Barnes et al. (2021), Regression Notebook

NNx

y1

y2

yk

…

Continuous Ranked Probability
Score (CRPS) Loss

En
se

m
bl

e
of

pr

ed
ic

tio
ns

CRPS as Loss Function

Architecture with custom output layer
adding k ensemble members

• Train NN to predict an ensemble representing data distribution
- CRPS as loss function to minimize cumulative distribution (CDF)
- Architecture has custom output layer incorporating k members

• Output: Ensemble of predictions
• Tasks: Regression
• Pros: Fully represents the target distribution, useful for tasks

with different co-occurring target regimes because it predicts
the likelihood of the different outcomes, requires minimal
model changes, predicts ytrue spread

• Cons: Number of ensemble members must be specified a priori,
requires model architecture adjustment and custom loss

• Example: CRPS Notebook, Regression Notebook

Parametric Regression

Figure 3: Summary schematics and key ideas for the uncertainty quantification methods.
Bayesian techniques are yellow and non-Bayesian are blue.

7

All of these descriptions can be converted to an estimated probability distribution, which provides

an estimate of uncertainty. In the remainder of this article we refer to this estimated probability

distribution as predicted distribution.

If a scalar measure of uncertainty is desired, e.g. for visualization, we can calculate the standard

deviation, 𝜎, from the predicted distribution, which provides an intuitive uncertainty measure

for applications where the uncertainty is nearly normal distributed. Another useful quantity for

visualization is to display the 95% confidence bounds, which can also reveal where the uncertainty

is not normally distributed. For non-normal distributions, additional parameters such as skewness

might be useful to convey the characteristics of the estimated uncertainty in more detail.

3. Methods for Uncertainty Quantification (UQ) in Neural Networks

We briefly introduce four different methods to estimate NN uncertainty, namely probabilistic

prediction using the Continuous Ranked Probability Score (CRPS) as the loss function, Parametric

Regression, Quantile Regression, and Monte Carlo Dropout (and by extension, Bayesian Neural

Networks). All four methods are illustrated in the examples in Sections 5 and 6. While many

more methods exist, we selected these methods to provide an introduction to some of the simpler

UQ methods that are currently being used for environmental-science applications. Summary

schematics and key ideas for each of the UQ methods are provided in Fig. 3.

a. Probabilistic Prediction Using Continuous Ranked Probability Score: Training a NN to predict

a representative ensemble of predictions

The continuous ranked probability score (CRPS) is commonly used to evaluate probabilistic

forecasts, comparing an ensemble forecast to either observations (which are inherently determinis-

tic) or a deterministic "best guess" forecast by comparing their cumulative probability distributions

(CDFs) (e.g., Matheson and Winkler (1976), Hersbach (2000), Gneiting et al. (2005)).

The CRPS is essentially a generalization of the mean absolute error (MAE) for ensemble pre-

dictions,

𝐶𝑅𝑃𝑆(𝐹, 𝑦𝑡𝑟𝑢𝑒) =
∫ ∞

−∞

(
𝐹 (𝑦𝑝𝑟𝑒𝑑) −H (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)

)2
𝑑𝑦, (1)

8

where 𝑦𝑝𝑟𝑒𝑑 is the predicted value, 𝑦𝑡𝑟𝑢𝑒 is the observed value, 𝐹 is the predicted CDF, and H is
the Heaviside step function,

H := 1, if (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒) ≥ 0, (2a)

:= 0, if (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒) < 0. (2b)

H is 1 if the error is positive and 0 if the error is negative. Thus, Eq. 1 is essentially the error
between the predicted CDF, 𝐹 (𝑦𝑝𝑟𝑒𝑑), and the observed CDF, H(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒). An example of
the CRPS score for both a deterministic and a probabilistic model prediction is shown in Fig. 4.

Pr
ob

ab
ili
ty

Y

0.2

0.4

0.6

0.8

1.0

0.0

Deterministic Model

Probabilistic Model

Truth (Observations)

CRPS for
probabilistic
model

CRPS for
deterministic
model

Figure 4: An example of the CRPS score for a deterministic model (green) and a probabilistic
model (orange), where the truth is shown in blue. Adapted from Brey (2021).

For ML models, the CRPS plays a double role: (a) it can be used as a metric to evaluate UQ

estimates and (b) it can be used to generate UQ estimates by using CRPS as a loss function to train

a NN to produce an ensemble of predictions. To use the CRPS as a loss function, Gneiting and

Raftery (2007) made use of distribution theory and identities from Székely and Rizzo (2005) to

derive an analytical implementation of the CRPS, where

𝐶𝑅𝑃𝑆∗ (𝐹, 𝑦𝑡𝑟𝑢𝑒) = 𝐸𝐹
��𝑌 − 𝑦𝑡𝑟𝑢𝑒

��− 1
2
×𝐸𝐹

��𝑌 −𝑌 ′�� . (3)

9

In this equation,𝐶𝑅𝑃𝑆∗ is the negative orientation of𝐶𝑅𝑃𝑆 (𝐶𝑅𝑃𝑆∗ = −𝐶𝑅𝑃𝑆). 𝑌 is a randomly-
drawn sample of the distribution of 𝑦𝑝𝑟𝑒𝑑 , which corresponds to the predictions from all of the

ensemble members, and 𝑌 ′ is a transposed copy of the predictions. 𝐸𝐹 is an evaluation function in

order to reduce the dimensionality to a single value, and in practice implementations often use the

mean.

For normal predictive distributions, Eq. 3 can be solved directly using the mean and standard

deviation; however, this can be evaluated for any distribution using Monte Carlo techniques to

generate ensemble members representative of the distribution. The first term on the right side

corresponds to the MAE between the NN predictions and the actual 𝑦𝑡𝑟𝑢𝑒. The second term

corresponds to one half of the predicted spread, or the mean absolute value of the pairwise

differences between the different ensemble members. Note that for a single ensemble member, this

equation reduces to the MAE.

The negative orientation of CRPS enables the use of𝐶𝑅𝑃𝑆∗ as a loss function, since minimizing

this function corresponds to the optimal result. A NN can then be trained to produce an ensemble

of outputs, and the loss function directs the model to find an optimal distribution of the members

during training. This approach removes the requirement of choosing a probability distribution

a priori. This non-parametric formulation can be useful for meteorological applications such as

predicting precipitation, which is often characterized by a mix of distributions (i.e., a combination

of a point-mass distribution at zero for non-events, and a gamma distribution for precipitation

events).

The CRPS’s utility as a loss function has been demonstrated in several environmental-science

applications (e.g., Rasp and Lerch (2018), Brey (2021), Grönquist et al. (2021), Scher and Messori

(2021)).

An example of results from using the CRPS loss function is shown in Fig. 5. To demonstrate

the utility of ensemble predictions, we used a combined exponential and point mass distribution,

where the 𝑦-value for some of the data samples increases exponentially with 𝑥, while for other data

samples it remains at 0. A model trained with the traditional MAE loss performs poorly for the

higher 𝑥 values, splitting the difference between the two data regimes and not matching any of the

actual 𝑦 values. This is reflected in Fig. 5B, where the CRPS score is high. In contrast, a model

trained with the CRPS loss function performs much better, and the individual ensemble members

10

are able to predict both regimes of the data, capturing both the exponential increase associated

with higher 𝑥 values, as well as the portion of data that remains constant at 0. This is reflected

in Fig. 5B, where the CRPS score of the net CDF from the CRPS model is much lower. The

mean of the ensemble predictions is also shown in Fig. 5A (heavy orange line), and similar to the

MAE model, it does not match any of the data. This is important to keep in mind when evaluating

ensemble predictions and dealing with dispersive data, namely that larger-scale statistical metrics

are not always appropriate or the best tools to use when evaluating model performance.

MAE Model
CRPS (score)

CRPS Loss Model
CRPS (score)

A) B)

Figure 5: An example of the CRPS score for a data set drawn from exponential and point mass
distributions and modeled by two NN models. The first model is deterministic and trained with
the MAE as the loss. The second model is an ensemble model utilizing the CRPS as the loss
function. A) Sample test data (blue dots), corresponding MAE model predictions (green line),
and the corresponding CRPS model predictions for all ensemble members (light orange lines).
Note that numerous ensemble members are hidden beneath the point mass distribution for the
fraction of the data set where 𝑦 = 0. The CRPS ensemble mean is also shown (heavy orange). B)
The corresponding CDFs sampled at 𝑥 = 1.5 for the data (blue line), MAE model (green line), and
CRPS model (orange lines). The CRPS score for the MAE model and for the net CDF from the
CRPS model ensemble members is provided in the legend. Note that in the loss function

implementation, the score is the mean of the CRPS scores for each ensemble member, rather than
the score for the CDF resulting from combining the ensemble members. While this results in
higher (unfavorable) scores during training, this implementation allows for better optimization of

each ensemble member.

b. Parametric Regression: Training a NN to predict parameters for a predefined type of probability

distribution

A simple approach for adding uncertainty to regression predictions is to train a neural network

to predict a probability distribution of user-specified type (e.g., normal distribution). This results

11

in a probabilistic estimate for each input sample instead of a single number. Barnes et al. (2021)

implemented this method, using neural networks to predict both a normal distribution and a

sinh-arcsinh (SHASH) distribution. When choosing the normal distribution to represent local

uncertainty, the model predicts both the mean value as well as the standard deviation, with the

latter representing the uncertainty for the specific prediction (e.g., Fukushima and Miyake (2022)).

The SHASH distribution is a more general distribution that allows for representation of asym-

metrical and/or heteroscedastic data, and the model predicts four parameters to determine the

distribution’s location, scale, skewness, and tailweight. Python code demonstrating this technique

is provided in the Regression Notebook.

Rather than explicitly predicting the parameters, another way to implement this approach is to

directly predict a distribution, which is now supported with the TensorFlow Probability library

(Dillon et al. 2017). In addition to providing the parameters, TensorFlow distributions include

methods to create samples and calculate statistical metrics. When doing this, the loss function is

the negative log-likelihood of the distribution (Salama 2021).

To demonstrate this approach, Fig. 6 demonstrates NNs predicting the normal and SHASH

distributions on a sample dataset. From Fig. 6B and C, both NNs are able to predict the

mean, larger uncertainties where the data spread is larger (i.e., 𝑥 < 2 and 6 < 𝑥 < 8, and smaller

uncertainties when the data spread is small (i.e., 𝑥 ≈ 3). Zooming in on predictions centered on
𝑥 = 1, Fig. 6D shows the true data spread and the predicted distributions. Since the spread is

normally distributed for this value of 𝑥, both models capture the true distribution well and create

nearly identical predictions. This is also the case looking at 𝑥 = 3 (Fig. 6E), where both models

accurately predict smaller uncertainty spread.

Differences between the two models appear when looking at the predicted uncertainty ranges for

data spread that is not normally distributed. To demonstrate this, focus on the region 6 < 𝑥 < 8,

where the data spread is skewed. For the Normal NN, the confidence intervals are symmetrical

about the mean, causing the confidence bounds to mismatch the true data spread (Figs. 6B and

F). In contrast, because the SHASH NN has more degrees of freedom, it is able to more closely

match the data spread by predicting a skewed distribution (Fig. 6C and F). This example shows

that predicting a SHASH distribution can be advantageous in places where the data spread does not

follow a normal distribution; however, in practice, we found that due to data limitations and small

12

learning rates, the normal distribution should be used instead of SHASH unless the distribution is

known to be non-normal 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖.

A) B)

C)

E)
F)

D)

Figure 6: An example of uncertainty estimates from models trained to predict normal distribution
parameters (Normal NN) and SHASH distribution parameters (SHASH NN). A) Sample dataset.
B) The Normal NN model mean predictions and 95% confidence bounds. C) The SHASH NN
model median predictions and 95% confidence bounds. D) Sample distributions for 𝑥 = 1. The
histogram of the test values is shown in the blue bars, the predicted normal distribution by the
Normal NN is shown in the green line, and the predicted distribution by the SHASH NN is shown

in the orange line. E) Same as D, but for 𝑥 = 3. F) Same as D, but for 𝑥 = 7.

13

c. Quantile regression: Directly predicting quantiles

Quantile regression (QR) involves directly predicting the quantiles of a probability distribution.

This means that for each data sample, instead of predicting a single number (the mean or “expected

value” or “maximum-likelihood estimate”), we predict several numbers (quantile-based estimates).

Recently, QR has gained wide popularity for NNs (e.g., Taylor 2000; Cannon 2011; Yu et al.

2020). The “trick” is to train the NN with the quantile loss function:

L =


𝑞 |𝑦true− 𝑦𝑞pred | , if 𝑦true > 𝑦

𝑞

pred;

(1− 𝑞) |𝑦true− 𝑦𝑞pred | , if 𝑦true ≤ 𝑦𝑞pred.
(4)

Here, 𝑞 is the desired quantile level, ranging from [0,1]; 𝑦true is the correct value; and 𝑦𝑞pred is the
estimated value at quantile level 𝑞. Large values of 𝑞 penalize underprediction (𝑦𝑞pred < 𝑦true) more

than overprediction (𝑦𝑞pred > 𝑦true), encouraging the model to output large 𝑦
𝑞

pred. Conversely, small

values of 𝑞 encourage the model to output small 𝑦𝑞pred.

To estimate multiple quantiles with NNs, a common approach is to train a separate NN for each

quantile. Because the different NNs are trained independently, this approach does not prevent the

problem of quantile-crossing, where the estimated value 𝑦𝑞pred decreases as the quantile level 𝑞

increases (e.g., the 25th-percentile rainfall prediction is 30 mm but the 75th-percentile prediction

is 20 mm). Thus, we have developed a novel NN architecture that prevents quantile-crossing. For

any consecutive pair of quantile levels, 𝑞𝑖−1 and 𝑞𝑖, the estimate 𝑦
𝑞𝑖
pred must be ≥ 𝑦

𝑞𝑖−1
pred. To satisfy

this condition, we express 𝑦𝑞𝑖pred as the sum of the previous quantile-based estimate, 𝑦
𝑞𝑖−1
pred, and a

positive term. Specifically, we implement the following equation:

𝑦
𝑞𝑖
pred = 𝑦

𝑞𝑖−1
pred +ReLU(Δ𝑦

𝑞𝑖
pred), (5)

where ReLU is the rectified linear unit (Nair and Hinton 2010), an activation function commonly

used for NNs, defined as ReLU(𝑤) =max(0,𝑤).
Instead of estimating 𝑦𝑞𝑖pred directly, we train the NN to estimate Δ𝑦

𝑞𝑖
pred, then implement Eq. 5

inside the NN architecture to obtain 𝑦𝑞𝑖pred. For Python code, see the Quantile Regression Notebook.

For a schematic representation, see Fig. 16b and the accompanying discussion in Section 6a.

14

d. Monte Carlo Dropout and Bayesian Neural Networks: Stochastic NNs Utilizing Ensemble

Learning

Dropout was invented as a regularization method (Hinton et al. 2012) to prevent overfitting in

NNs. Dropout is applied to one NN layer at a time (though it may be applied to multiple layers in

the same NN). During each NN forward pass, letting the dropout rate be 𝑑 and number of neurons

in the layer be 𝑁 , 𝑁𝑑 neurons are randomly dropped out, leaving the remaining 𝑁 (1− 𝑑) neurons
to represent useful features of the input data. The specific neurons dropped out are different for

each forward pass. Thus, any subset of 𝑁 (1− 𝑑) neurons must be able to represent input features
adequately, i.e., in a way that yields a skillful prediction. This forces the neurons to learn more

independently of each other, creating a pseudo-ensemble. In common practice, dropout is used

only during training; at inference time all neurons are used, making the NN deterministic. However,

dropout can also be used at inference time, making the NN stochastic and producing a predictive

distribution by running the NN many times, which is called Monte Carlo (MC) dropout (Gal and

Ghahramani 2016).

The main advantage of MC dropout is ease of implementation – Seoh (2020) described it

as "shockingly simple". Dropout is a pre-defined layer in Keras, and passing the argument

training=True during model construction ensures that dropout will be used at inference time,

as shown in the Monte Carlo and Regression Notebooks. Disadvantages of MC dropout are that

brute-force sampling (i.e., running the NN many times in inference mode) is computationally

expensive and the correct hyperparameters (which dropout rates to use and in which layers) are

unclear. Furthermore, although it is a good way to estimate out-of-regime uncertainty, MC dropout

alone does not capture the full spread in 𝑦true (Bihlo 2021; Klotz et al. 2021; Garg et al. 2022).

However, MC dropout can easily be combined with other UQ methods to provide uncertainty

estimates for both data spread and out-of-regime errors (e.g., Sato et al. (2021) and Yagli et al.

(2022)).

Bayesian Neural Networks (BNNs) are quite complex - both conceptually and computationally -

and beyond the scope of this introductory article. Jospin et al. (2022) provide an excellent tutorial

for BNNs, and Orescanin et al. (2021) and Ortiz et al. (2022) demonstrate their use for remote

sensing tasks.

15

Despite their complexity, BNNs may provide a more robust estimate of the out-of-regime uncer-

tainty and are more flexible than MC dropout (Jospin et al. 2022; Salama 2021). While Bayesian

methods, such as MC dropout and BNNs, are necessary to capture out-of-regime error estimates,

how well they do in practice remains on open research question.

4. Methods for evaluating uncertainty estimates

From an estimated probability distribution, one can derive the central prediction (or “best guess”;

usually the mean) and uncertainty (or “spread”; often the standard deviation or 95% confidence

interval). Although our main focus is on evaluating uncertainty estimates, one should not forget to

evaluate the central prediction. This section discusses four evaluation methods, among which one

(the attributes diagram) pertains to the central prediction and the other three pertain to uncertainty.

This section concludes with Table 1, which summarizes the information each evaluation method

conveys and provides situations where it may be used. While single-number summaries like the

CRPS discussed in Section 3a make useful loss functions, they are less useful for evaluating a

trained model, where richer information is desired.

a. The attributes diagram for binary classification

Figure 7: Attributes diagram for binary classification. The inset histogram shows how often each
probability is predicted. The {diagonal, horizontal, vertical} grey dashed line is the
{perfect-reliability, no-resolution, climatology} line; the polygon shaded in blue is the

positive-skill area; and the red line is the reliability curve.

16

The attributes diagram (Fig. 7) is a reliability curve with additional information. The reliability

curve plots model-predicted event probability1 (henceforth, just “event probability”) on the 𝑥-axis

versus conditional observed event frequency (henceforth, just “conditional event frequency”) on

the 𝑦-axis. Each point corresponds to one bin of event probabilities. For example, suppose that

the event is tornado occurrence; the reliability curve uses 10 probability bins, equally spaced from

0.0 to 1.0; and one point on the curve is (𝑥 = 0.15, 𝑦 = 0.4). This means that in cases where the
model predicts a tornado probability between 10% and 20%, a tornado actually occurs 40% of the

time. The reliability curve is used to identify conditional model bias, i.e., bias as a function of

the event probability. Points below (above) the 1-to-1 line show probabilities at which the model

overpredicts (underpredicts). For a perfectly reliable model, the reliability curve follows the 1-to-1

line. In other words, when the event probability is 𝑝%, the actual event occurs 𝑝% of the time2.

The full attributes diagram (Hsu and Murphy 1986) contains the reliability curve plus four

additional components. The first is the perfect-reliability line, or 1-to-1 line. The second is the

no-resolution line, a horizontal line at 𝑦 = 𝑦climo, where 𝑦climo is the event frequency computed over

the full dataset, called “climatology”. If the reliability curve follows the no-resolution line, the

conditional event frequency is always 𝑦climo, regardless of the event probability; thus, the model

is completely uninformative on the expected observation. The third is the climatology line, a

vertical line 𝑥 = 𝑦climo. For the climatological model (which always predicts probability = 𝑦climo),

the reliability curve is a single point at 𝑥 = 𝑦 = 𝑦climo, or the intersection of the climatology and

no-resolution lines. The fourth is the positive-skill area, a polygon defining where the Brier skill

score (BSS) is positive. The BSS is defined as BSclimo−BSBSclimo , where BS and BSclimo are the Brier scores

of the model of interest and the climatological model. The BSS ranges from (−∞,1], and values
> 0 signal an improvement over climatology.

b. The attributes diagram for regression

Although the attributes diagram is typically used for binary classification, it can also be adapted

for regression (Fig. 8). Letting the target variable be 𝑧, the 𝑥-axis is the predicted 𝑧-value and the

𝑦-axis is the conditional mean observed 𝑧-value, both real numbers that in general can range from

1When ML models are used for classification, by default they produce confidence scores ranging from [0, 1], which are not true probabilities.
However, in this paper we adopt common parlance and refer to confidence scores as probabilities.

2The reliability curve uses only the central prediction – i.e., the 𝑥-coordinate is the mean of the predictive distribution, not a measure of
uncertainty. However, UQ studies commonly employ the reliability curve to evaluate the central prediction (e.g., Delle Monache et al. 2013; Jospin
et al. 2022; Chapman et al. 2022), so we include it in this paper.

17

(−∞,+∞). The perfect-reliability line is still the 1-to-1 line; the no-resolution line is at 𝑦 = 𝑧climo;
and the climatology line is at 𝑥 = 𝑧climo. The interpretation of the perfect-reliability, climatology,

and no-resolution lines is the same. The positive-skill area shows where the mean squared error

(MSE) skill score (MSESS) is positive.

Figure 8: Attributes diagram for regression – in this particular case, for predicting radiative flux
in W m-2. The inset histogram shows how often each flux is predicted. The {diagonal, horizontal,
vertical} grey line is the {perfect-reliability, no-resolution, climatology} line; the polygon shaded

in blue is the positive-skill area; and the red line is the reliability curve.

c. The spread-skill plot

The spread-skill plot (for which we owe much of our understanding to Delle Monache et al.

2013) evaluates uncertainty estimates, thus it may be used only for models that include uncertainty.

Conceptually, the spread-skill plot answers the question: “For a given predicted model spread,

what is the actual model error?” The spread-skill plot shows the predicted model spread on the

𝑥-axis versus the actual model error on the 𝑦-axis (Fig. 9). Specifically, the 𝑥-axis is the mean

standard deviation (SD) of the model’s predictive distribution, while the 𝑦-axis is the root mean

squared error (RMSE) of the model’s mean prediction. Each red point corresponds to one bin of

spread values. For a regression problem, letting the target variable be 𝑧, the two quantities are

18

defined as follows for the 𝑘 th bin:

RMSE𝑘 =
[
1
𝑁𝑘

𝑁𝑘∑
𝑖=1

(𝑧𝑖 − 𝑧𝑖)2
] 1
2

;

SD𝑘 = 1
𝑁𝑘

𝑁𝑘∑
𝑖=1

[
1

𝑀−1
𝑀∑
𝑗=1

(𝑧𝑖 − 𝑧𝑖 𝑗)2
] 1
2

;

𝑧𝑖 =
1
𝑀

𝑀∑
𝑗=1
𝑧𝑖 𝑗 .

(6)

where 𝑧𝑖 is the observed value for the 𝑖th example; 𝑧𝑖 is the mean prediction for the 𝑖th example;

𝑧𝑖 𝑗 is the 𝑗 th prediction for the 𝑖th example; 𝑁𝑘 is the total number of examples in the 𝑘 th bin;

and 𝑀 is the total number of predictions per example3. The spread-skill plot can also be used for

classification, replacing 𝑧 with 𝑦 (a binary label) and 𝑧 with 𝑝 (a probability).

Figure 9: Spread-skill plot. The dashed line represents a perfect spread-skill plot, and the
histogram shows how often each spread value occurs.

For a model with perfectly calibrated uncertainty estimates, the spread-skill plot follows the 1-

to-1 line. At points below the 1-to-1 line (SD values where SD > RMSE), the model is overspread

or “underconfident”; at points above the 1-to-1 line (SD values where SD < RMSE), the model is

underspread or “overconfident”. The overall quality of the spread-skill plot can be summarized by

3Eqs. 6 assume that the model explicitly provides an ensemble of 𝑀 predictions. Some models quantify uncertainty in other ways, e.g.,
by specifying the quantiles or parameters of a probability distribution. However, in the latter two cases – and in general – there is still a way to
compute the mean and standard deviation of the predictive distribution, regardless of how the model quantifies uncertainty.

19

mean distance from the 1-to-1 line, which we call the spread-skill reliability (SSREL). SSREL is

defined as:

SSREL =
𝐾∑︁
𝑘=1

𝑁𝑘

𝑁
|RMSE𝑘 −SD𝑘 |, (7)

where 𝑁 is the total number of examples; 𝐾 is the total number of bins; and all other variables are

as in Eq. 6.

d. The probability integral transform (PIT) histogram

The PIT is the cumulative distribution function (CDF) of the predictive distribution, evaluated

at the observed value. Mathematically, letting the target variable be 𝑧, the observed value be 𝑧obs,

a single prediction be 𝑧, and the CDF be CDF(𝑧), the PIT is defined as:

PIT = CDF(𝑧obs) = probability(𝑧 ≤ 𝑧obs). (8)

This can also be interpreted as the quantile of the predictive distribution where the observed value

occurs. A few examples are shown in Fig. 10a. Note that the PIT is meaningful only for regression

problems, not for binary classification. For binary classification the only possible observations are

0 and 1, while predictions (event probabilities) must range from [0,1]. Thus, 𝑧obs always occurs at
one extreme of the predictive distribution, so the only possible PIT values are 0 and 1. Intermediate

PIT values do not occur, which makes for a trivial PIT histogram.

A) B)

Figure 10: [a] Schematic explaining the probability integral transform (PIT). [b] Example of PIT
histogram. The dashed line represents a perfect PIT histogram.

20

The PIT histogram plots the distribution of PIT over many examples, with one PIT value per

example (Fig. 10b). For a perfectly calibrated model, all PIT values occur equally often, so the

histogram is uniform. If the histogram has a hump in the middle (as seen in Fig. 10b), there are too

many examples with intermediate PIT values (where 𝑧obs occurs near the middle of the predictive

distribution) and too few examples with extreme PIT values (where 𝑧obs occurs near the end of the

predictive distribution), so the extremes of the predictive distribution are generally too extreme.

In other words, the predictive distribution is generally too wide, so the model is overspread or

“underconfident”. If the histogram has humps at the ends, the predictive distribution is generally

too narrow, so the model is underspread or “overconfident”. The PIT histogram is a generalization

of the rank histogram (or “Talagrand diagram”), which is more familiar to atmospheric scientists

(Hamill 2001) and can be interpreted the same way.

e. The discard test

Figure 11: Sample results for discard test.

The discard test, inspired by Barnes and Barnes (2021) and similar to the filter experiment in

Fig. 8.18 of Dürr et al. (2020), compares model error versus the fraction of highest-uncertainty

cases discarded. For a model with well calibrated uncertainty estimates, error should decrease

monotonically as the discard fraction increases. The overall quality of the discard test can be

21

Table 1: Methods used to evaluate the central prediction (attributes diagram) and uncertainty (all
others). A check mark under “Class?” indicates whether the evaluation method can be used for
classification models, and “Reg?” indicates whether it can be used for regression models.

Method Class? Reg? What it tells us
Attributes
diagram

✓ ✓ Class: observed event frequency as a function of pre-
dicted event probability, Brier score, Brier skill score
Reg: mean observed target value as a function of pre-
dicted target value, mean squared error (MSE), MSE
skill score
If central prediction is perfectly calibrated, this plot
follows the 1-to-1 line. (Regression Notebook)

Spread-skill plot ✓ ✓ Model error as a function of predictedmodel spread. If
uncertainty is perfectly calibrated, this plot follows the
1-to-1 line. (Monte Carlo, QR, and Reg. Notebooks)

PIT histogram ✓ Distribution of PIT values. If uncertainty is perfectly
calibrated, this distribution is uniform, so the PIT his-
togram is flat. (Reg. Notebook)

Discard test ✓ ✓ Model error vs. discard fraction.
For well-calibrated uncertainties, the error decreases
monotonically as the discard fraction increases (i.e., as
more high-uncertainty samples are dropped). (Monte
Carlo, QR, and Reg. Notebooks)

summarized by the monotonicity fraction (MF):

MF =
1

𝑁 𝑓 −1

𝑁 𝑓−1∑︁
𝑖=1

I(𝜖𝑖 ≥ 𝜖𝑖+1), (9)

where 𝑁 𝑓 is the number of discard fractions used; 𝜖𝑖 is the model error with the 𝑖th discard fraction

(i.e., if this fraction is 𝑟, model error without the 100𝑟% of highest-uncertainty cases); and I() is
the indicator function, which evaluates to 1 if the condition is true and 0 if the condition is false.

We note a crucial difference between evaluation methods: the discard test is concerned with

the ranking quality of uncertainty estimates, whereas the spread-skill plot is concerned with the

value-estimate quality of uncertainty estimates. In high-MF/high-SSREL cases (good discard test

but poor spread-skill plot), the model’s uncertainty estimate is well correlated with its error but

not with the actual spread; in low-MF/low-SSREL cases, the opposite is true.

22

5. Illustration of UQ and evaluation for a regression task

a. Predicting dewpoint profiles for severe weather nowcasting

Vertical profiles of dewpoint are extremely useful in predicting deep convection that can lead

to severe weather. These storms pose a lightning threat and may be accompanied by heavy

rain, high winds, large hail, and tornados, all of which pose threats to both property and lives.

Currently, forecasters rely on a relatively temporally and spatially sparse network of observations

from radiosonde launches and numerical weather prediction (NWP) models. The goal of this work

is to use ML techniques to combine information from NWP models with satellite data in order to

improve dewpoint vertical profiles.

For this task, we use a 1D Convolutional Neural Network (CNN) configured as a fully-

convolutional U-net (Ronneberger et al. 2015) to predict dewpoint at 256 vertical levels in the

atmosphere. The predictors (input features) are initial profile predictions from the Rapid Refresh

(RAP) model (Benjamin et al. 2016) and satellite data from the Geostationary Operational Envi-

ronmental Satellite (GOES)-16 Advanced Baseline Imager (Schmit et al. 2017). The target data

for this study are vertical profiles from radiosonde observations (RAOBs) collected over the central

United States between January 1, 2017 and August 31, 2020. We use 75% of the data for training,

10% for validation, and 15% for testing. The model and experimental setup are described fully in

Stock (2021), and the model architecture used in this study is shown in Fig. 12.

In
iti

al
 R
AP

Pr
of

ile

D
Bl

oc
k

1

D
Bl

oc
k

2
D

Bl
oc

k
3

D
Bl

oc
k

4

Downsample

Bottleneck

GOES

U
 B

lo
ck

 1
U

 B
lo

ck
 2

U
 B

lo
ck

 3
U

 B
lo

ck
 4

Upsample

Ta
rg

et
 R
AO

B
Pr

of
ile

Stacked Connections

Conv1D
Activation

Conv1D
Activation

Upsample1D

U Blocks

Concatenate

Conv1D
Activation

Conv1D
Activation

MaxPool1D

D Blocks

Pr
of

ile
 U
nc
er
ta
in
ty

+

Normal Distribution
SHASH Distribution

CRPS Loss
MC-Dropout

Uncertainty Methods

Figure 12: U-net architecture using the RAP temperature and moisture profiles as inputs and
concatenating the GOES ABI (satellite) data at the bottleneck of the network. The output is the
reconstructed dewpoint profile, which can be directly compared to the radiosonde observations.
Additionally, uncertainty information is predicted for each layer in the profile. Adapted from

Stock (2021), which did not include uncertainty estimates.

23

To quantify uncertainty, we train the model using four approaches. The first two are using

parametric regression to predict normal and SHASH distributions (Section 3b). The third is to

create probabilistic predictions using the CRPS loss function (Section 3a), and the last approach

is to use MC dropout with a mean squared error (MSE) loss (Section 3d). For both the CRPS loss

and MC dropout approaches, we used 60 ensemble members. For MC dropout, we used a dropout

rate of 0.1 and placed dropout layers between all of the D Blocks, all of the U Blocks, and just prior

to the output layer (Fig. 12). We tested dropout rates varying from 0.01 to 0.5, as well as including

dropout in the D Blocks (not shown) and only saw minimal changes from the results shown.

b. Sounding profiles

Fig. 13 shows three example dewpoint profiles, as well as the mean predicted profiles. As seen

in Fig. 13A-C, the uncertainty estimates from predicting normal distribution parameters appear

to do a reasonable job at capturing the mismatch between the model (blue) and the observations

(black). Near the surface, the predicted dewpoint has minimal uncertainty coinciding with low

errors. Depending on the specific sounding, the errors increase at different levels in the profiles,

and the uncertainty correspondingly increases. In addition to looking at individual profiles, it is

also possible to aggregrate the results to show the mean vertical profile and uncertainty, which

is shown in Fig. 13D. Here we see that on average the dewpoint profile is more certain near the

surface and most uncertain in the mid- to upper-atmosphere around 500-300 mb.

c. UQ results

Here we evaluate the predictions from these methods using the different metrics in this paper

(Fig. 14). Starting with the central predictions, we see in the attribution diagram (Fig. 14A) that

each U-net model - regardless of the UQ method used - does a reasonable job at capturing the

central dewpoint, as all of the model results overlap near the 1:1 line, with RMSEs of ∼5 C. For
the coldest predictions, the MC dropout has a slight high-bias, and the SHASH model may have

a slight low bias around -30 C. However, overall the diagram indicates that all methods perform

similarly for the dewpoint central predictions.

Moving on to evaluating the predicted uncertainty, the three different metrics in this study

highlight differences between the different UQ methods. Looking at the spread-skill diagram (Fig.

24

A) B)

C) D)

Figure 13: Sample vertical profiles of observed (black) and modeled dewpoint (TD, blue). The
horizontal gray lines are the uncertainty estimates predicted using the parametric regression

method. A), B), and C) Individual soundings. For these, the uncertainty shown is the 95% range
of uncertainty. D) Mean vertical profiles for the testing data, where the uncertainty is the standard

deviation since the profiles have been aggregated.

14B), for the vast majority of the vertical profiles, the two parametric regression methods and the

CRPS model predict uncertainties matching the corresponding skill (RMSE) and fall along the 1:1

for the majority of predictions, with the spread and skill values coinciding up to predictions within

8 C. Above this, all three methods are underconfident for these relatively few soundings, and both

parametric regression methods underestimate the uncertainty by ∼40%. These three methods also
have nearly identical frequencies as seen in the inlay, with the majority of soundings having errors

< 8 C. For errors larger than 8 C, these three methods overestimate the uncertainty compared to

the skill, with the CRPS model being the most underconfident.

25

A) B)

C) D)

Figure 14: Dewpoint uncertainty analysis, showing results of a U-net trained with four different
UQ methods, namely Normal/SHASH distribution methods from Section 3b, CRPS method from
Section 3a, and MC dropout from Section 3d. A) Attribution diagram, B) Spread-Skill plot, C)

PIT diagram, and D) Discard test results.

For the CRPSmethod, the error actually drops for the predictions with the highest spread, making

the model appear to be highly underconfident. However, it is important to keep in mind that this

method does not predict distribution parameters, but instead creates ensembles of predictions. For

applications where all of the values fall within a given range of values, using bulk metrics such

as the standard deviation to capture the spread are appropriate; however, in circumstances where

it is known that a small fraction of the data largely deviates from the mean value, the evaluation

becomes more complicated or even misleading. For these cases with a high spread, this diagram

indicates that some of the ensemble members actually have much lower errors than the mean values

26

from the distribution methods. This highlights an important distinction in the CRPS method that

the ensemble members are not trained to just capture a distribution around the central value, but

rather are trained to encapsulate all data values. While this characteristic is certainly a benefit of

the method, it also adds an additional complexity to its evaluation. For tasks with rare events, it

may be more appropriate to show histograms (or probabilities) of the ensemble members or to

select the less-probable ensemble members and to use this, rather than including all members;

however, this may be difficult to do in an operational setting. In this application, the cases with

discrepant observations are rare, which is why the distribution methods have such a success and

also why the central predictions of the CRPS method do not suffer nor reflect the change in mean

from the deviant ensemble members (Fig. 14A).

When using the MC dropout method to quantify uncertainty, the model is overconfident. As

seen in the inlay in Fig. 14B, the spread histogram is quite different from the other three methods,

with the majority of predictions falling in the first bin with the lowest spread. Since most of the

predictions have this low value of uncertainty, the mean errors are actually larger because the bin

includes predictions with higher errors, making the model overconfident.

Looking at the PIT histogram (Fig. 14C), the Normal, SHASH, and CRPSmethods fall relatively

near the 0.1 line for all of the bins. There is a slight tendency for the predictions to fall into the

central bins, which coincides with the models underconfidence for the predictions with the highest

uncertainty. In contrast, the MC-dropout method shows that the majority of the predictions fall in

the extremes of the distribution, further suggesting the model is overconfident. The RMSE values

given in the labels are the RMSE errors between each bin and the expected 0.1 value. Here we

see that while the model using the Normal distribution has the most uniform PIT, the SHASH and

CRPS loss models perform similarly. In contrast, the RMSE for the MC-dropout model is large

since the majority of the predictions fall in the outer bins.

Finally, the discard test (Fig. 14D) shows that for the Normal, SHASH, and CRPS methods the

errors are reduced as the most uncertain predictions are removed, indicating that the uncertainty

estimates are indeed well-calibrated. However, this is not the case for the MC-dropout method,

where the error only slightly decreases. This adds further support to the previous two diagrams that

for this application the MC-dropout model is not predicting well-calibrated, helpful uncertainty

values for this application.

27

6. Demonstration of UQ and evaluation methods for a classification task

In this section we introduce the classification task (predicting convection), apply MC dropout

and quantile regression to obtain uncertainty estimates, then evaluate the uncertainty estimates and

show case studies.

a. Predicting convection from satellite imagery

Figure 15: Input data for predicting convection at 2200 UTC 2 Jun 2017. Shown are three of the
seven predictors: band 8 (6.25 𝜇m), band 11 (8.6 𝜇m), and band 16 (13.3 𝜇m). [a-c] Predictors at
lag time of 40 minutes; [d-f] predictors at lag time of 20 minutes; [g-i] predictors at lag time of 0
minutes. All predictors use the colour bar next to panel i. [j] Composite (column-maximum)
radar reflectivity. [k] Convection mask. The black dots are pixels with true convection. Grey

circles in panels h-i show the 100-km range ring around each radar.

28

The task is to predict the occurrence of thunderstorms (henceforth, “convection”) at 1-hour lead

time at each pixel in a grid. As predictors, we use gridded brightness temperatures from the

Himawari-8 satellite at seven wavelengths and three lag times (0, 20, and 40 minutes before the

forecast-issue time 𝑡0), as shown in Fig. 15. The target is a binary convection mask at 𝑡0 +1 hour,
created by applying an algorithm called Storm-labeling in 3 Dimensions (SL3D; Starzec et al.

2017) to radar data. Both the predictor and target variables are on a latitude-longitude grid with

0.0125◦ (∼1.25-km) spacing. We train and evaluate the NNs only at pixels within 100 km of the
nearest radar (grey circles in Figs. 15h-i), where radar coverage is sufficient to detect convection.

See Lagerquist et al. (2021, henceforth L21) for complete details.

OurNNarchitecture is aU-net specially designed to predict gridded variables – here, the presence

of convection at 𝑡0 +1 hour. Details on our particular architecture are in L21. The U-net in L21 is
deterministic; in this paper we use either MC dropout or QR to make the U-net probabilistic. For

MC dropout, we use the architecture in Fig. 16a. For QR, we replace the single output layer in

Fig. 16a with 𝑁 +1 output layers, where 𝑁 is the number of quantile levels estimated (Fig. 16b).
We use Eq. 5 to prevent quantile-crossing, as represented schematically in the rightmost column

of Fig. 16b.4

Because convection is a rare event (occurring at only 0.75% of pixels), we need to use an

aggressive loss function (one that rewards true positives more than true negatives). Traditional

loss functions, like the traditional quantile loss (Eq. 4), which reward true positives and true

negatives equally, would result in a model that almost never predicts convection. Thus, we use a

hybrid between the fractions skill score and traditional quantile loss, which we call the “aggressive

quantile loss”. See the Appendix for details.

b. UQ results

For this application we evaluate results from two different methods, MC dropout and QR. For

MC dropout we tune three hyperparameters, specifically dropout rates for the last three layers. For

QR we tune two hyperparameters: the set of quantile levels and the weight 𝑤 in Eq. A2, which

affects the importance of deterministic vs. probabilistic predictions in the loss function. Details are

in Section 1 of the Supplemental Material. We run the MC-dropout models 100 times in inference

4For a regression problem, Eq. 5 alone is sufficient. For a classification problem like this one, quantile-based estimates 𝑦̂𝑖 must range from
[0, 1], allowing them to be interpreted as probabilities. This is why, as shown in Fig. 16b, we apply the sigmoid activation function to the output
of Eq. 5.

29

Figure 16: U-net architecture for predicting convection from satellite imagery, using either [a]
MC dropout or [b] quantile regression to estimate uncertainty. In each set of feature maps, the
numbers are dimensions: 𝑁rows×𝑁columns×𝑁channels. The 21 input channels are the raw predictor
variables, i.e., gridded brightness temperatures at 7 wavelengths and 3 lag times. In panel a, the
last 3 convolutional layers are marked with dashed lines (either orange or black), indicating that
these layers may include MC dropout. In panel b, to be brief, we assume that there are only 3
quantile levels to estimate. When there are more quantile levels (which is the case for every U-net
involved in this study), the pattern on the right side of panel b repeats. Specifically, estimates for
quantile level 𝑞𝑖 are created by applying 1-by-1 convolution with ReLU to the feature maps

marked “205 × 205 × 2,” adding the result to pre-sigmoid estimates for quantile level 𝑞𝑖−1, then
applying the sigmoid activation function. The sigmoid activation function constrains the final
estimates to the range [0,1], so that they may be interpreted as probabilities of convection.

mode, yielding 100 estimates in each predictive distribution. We use the validation data to select

hyperparameters and the independent testing data to show results for the selected models.

30

Monte Carlo dropout

As discussed in the Supplemental Material, as dropout rates increase, the uncertainty estimates

improve but the mean predictions deteriorate. Hence, there is a trade-off between the quality of

probabilistic and deterministic predictions. We judge that the best model has a dropout rate of

0.250 for the last layer, 0.125 for the second-last, and 0.375 for the third-last.

Fig. 17a shows the spread-skill plot for the best model. Themodel is overconfident (underspread)

for all bins; this problem is typical for MC dropout, including atmospheric-science applications

(Scher and Messori 2021; Clare et al. 2021; Garg et al. 2022). Also, the model rarely produces

spread values > 0.04, as shown in the histogram in Fig. 17a. The skewed histogram is explained

by the inset in Fig. 17a: model spread increases almost linearly with convection frequency (the

mean target value), and since convection is a rare event, we should therefore expect high model

spread to be a rare event.

Fig. 17b shows the discard test for the best model. Model error decreases every time the discard

fraction increases (18 of 19 times), yielding an MF of 94.74%. Thus, the ranking quality of the

model’s uncertainty estimates is high. As shown in the Fig. 17b inset, event frequency decreases

from 0.75% to 0.2% after 10% of the highest-uncertainty predictions are discarded. In other words,

most convection is associated with very high uncertainty, consistent with the Fig. 17a inset.

Quantile regression (QR)

As discussed in the Supplemental Material, results of the hyperparameter experiment are noisy.

We judge that the best model has 17 quantile levels and a weight of 6 (𝑤 = 6 in Eq. A2). To

compute the model spread, defined as the standard deviation of the predictive distribution, we use

Eq. 15 of Wan et al. (2014).

The spread-skill plot for the best model shows that it is almost perfectly calibrated for spread

bins ≤ 0.06 and underconfident (overspread) for spread bins > 0.06 (Fig. 17c). However, spread
rarely exceeds 0.06 (only for 22.7% of examples, as shown by the histogram), so the model is

generally well calibrated. The spread-skill plots reveal two advantages of the QR model (Fig. 17c)

over the MC-dropout model (Fig. 17a). First, the QR model is better-calibrated overall, which

manifests in a substantially lower SSREL (0.025 versus 0.035); the difference is significant at

the 95% confidence level5 Second, the QR model’s spread histogram is less skewed, i.e., the QR

5Determined by a one-sided paired bootstrap test with 1000 iterations.

31

Figure 17: [a] Spread-skill plot and [b] discard test, measured on testing data, when using MC
dropout to predict convection. [c] Spread-skill plot and [d] discard test, measured on testing data,
when using quantile regression to predict convection. “SSREL” is spread-skill reliability, and
“MF” is monotonicity fraction. The histogram in the spread-skill plot shows the percentage of

testing examples in each bin of spread values; the bins have a spacing of 0.01.

model produces high spread values (> 0.04) more often. However, the QR model is not much

better-calibrated at these high spread values. As mentioned above, the overconfidence problem for

MC dropout (which occurs for all 125 models we trained) is well documented in the literature.

However, to our knowledge, the underconfidence problem for QR (which occurs for all 90 models

32

we trained) has not been noted previously. Thus, we are unsure whether this is a problem with QR

in general or specific to our application.

Fig. 17d shows the discard test for the best QR model. Error decreases monotonically as

high-uncertainty predictions are discarded, yielding an MF of 100%, compared to 94.74% for the

MC-dropout model. Also, error decreases more smoothly with discard fraction for the QR model

than for the MC-dropout model (Fig. 17b).

Case study

Figure 18: Case study for MC-dropout model, during Tropical Depression Luis. All data
(predictions, radar reflectivity, and convection mask) are valid at 0830 UTC 23 Aug 2018. The
predictions were made with 1-hour lead time (initialized at 0730 UTC). [a] Mean convection
probability, [b] spread, [c] median convection probability; [d] 75th-percentile convection

probability; [e] 97.5th-percentile convection probability; [f] composite (column-maximum) radar
reflectivity; [g] true convection mask, with black dots showing convective pixels. “S” indicates an
area of strong convection west of the center of Luis, while “W” indicates an area of weak

convection east of the center.

Figs. 18-19 show a case study created by applying the best MC-dropout model and best QR

model to selected time steps in the testing data. Each figure summarizes the predictive distribution

with five numbers: the mean, standard deviation, and three percentiles of convection probability.

We do not show percentiles below the 50th, because estimates corresponding to these percentiles

33

Figure 19: Same as Fig. 18 but for QR model.

are usually very small; most of the variation in the predictive distribution is between the 50th and

97.5th percentiles.

Figs. 18 and 19 show a case during Tropical Depression Luis. This case features two large areas

of convection: strong (“S”) and weak (“W”). We make six observations from these figures. First,

in terms of the mean and any percentile below the 97.5th, both models produce higher probabilities

for strong convection than for weak convection (panels a and c-e), which is a desired property6.

Second, both models are more uncertain for the strong convection than the weak convection (panel

b). This is not a desired property, because weak convection (borderline cases) is more difficult

to identify and should have higher uncertainty. The third conclusion counteracts the second: the

standard deviation is not the full story on uncertainty, and sometimes it is necessary to look at the

full predictive distribution. The MC-dropout model has almost no difference between the 50th-

and 97.5th-percentile estimates in area W (Fig. 18c-e), consistent with the low standard deviations

(Fig. 18b). However, the QR model has large differences between the 50th- and 97.5th-percentile

estimates in area W (Fig. 19c-e), despite the standard deviations here being smaller than elsewhere

in the domain (Fig. 19b). Fourth, probability maps produced by the MC-dropout model contain

6For the 97.5th percentile the MC-dropout model also produces higher probabilities for strong convection (Fig. 18e), but the QR model
produces nearly equal probabilities, around 100%, over the full domain (Fig. 19e).

34

checkerboard artifacts (Fig. 18a-c); these are caused by using dropout in the last layer, which sets

some probabilities to zero. Fifth, the overconfidence (underspread) problem with the MC-dropout

model is obvious in area W, where there is almost no difference between the 50th- and 97.5th-

percentile estimates (Fig. 18c-e). Sixth, the underconfidence (overspread) problem with the QR

model is also obvious, where the 97.5th-percentile estimate is essentially 100% everywhere in the

domain (Fig. 19e).

For an additional case study during the winter, see Section 2 of the Supplemental Material.

7. Discussion and Conclusions

Uncertainty predictions are an important tool for understanding ML models, as these estimates

can provide valuable information as to when to trust the model predictions. For tasks that involve

critical decisions, these estimates are invaluable. In recent years, there has been a surge in research

focusing on developing different methods for quantifying uncertainty in ML models; however, it is

essential that along with developing the methods themselves there are helpful and useful ways to

evaluate uncertainty predictions.

To this end, we have demonstrated four different evaluation techniques for two different ap-

plications, a binary classification task and a regression task. To summarize our thoughts and

findings:

• The Reliability Diagram provides an excellent way to evaluate the central predictions for

both binary and regression tasks. By providing a comparison of the predicted and observed

values along with their histograms, this single diagram reveals where the predictions are

performing poorly and indicates any biases. In addition to providing a visual for the prediction

quality across the entire range of observed values, it also provides the Brier score for binary

predictions.

• The Spread-Skill Plot provides a single, comprehensive figure for how the model error

compares to the model uncertainty prediction. Ideally, the uncertainty should match the error,

and this plot is an easy way to visualize this information and show whether or not the model

is well-calibrated. Additionally, by including the histogram of spreads, this plot also provides

information regarding the performance of the model. Since a low error is desirable, we want

most of the counts to be in the bins with the lowest spread and lowest error, and this can

35

quickly be seen from the histogram. Additionally, numerous different models can be plotted

on a single diagram, making it helpful in model comparison tasks.

• The PIT Histogram provides information as to whether the uncertainty spread is appropriate

for regression tasks, producing a quick metric for whether a model is over- or underconfident.

However, the information from this plot can also be gleaned from the spread-skill diagram,

where points above the 1:1 line indicate the model is underconfident and points below the 1:1

line indicate the model is overconfident. The spread-skill diagram also provides information

regarding whether the mismatched uncertainties correspond with low- or high-error cases;

however, the PIT histogram is useful for quickly determining if themodel uncertainty estimates

appropriately match the model error.

• The Discard Test provides information on whether the overall error is correlated with the

uncertainty. For most tasks we can improve model performance by removing the cases with

the highest uncertainty. This figure quickly identifies if this is the case. If this is not the case,

then one of two scenarios may be occurring. The first possibility is that the model uncertainty

is not well-calibrated, thus removing the uncertain predictions is not helpful in reducing the

error. The second possibility is that removing uncertain predictions is not appropriate because

the true data spread is constant and there are no cases that can be more-reliably predicted.

Although the information in this figure is included in the spread-skill plot, this figure provides

a quick and easy-to-interpret check on whether the most uncertain predictions are indeed

performing the worst.

The information in the discard test can be deduced from the spread-skill plot with some

analysis. If the spread-skill line lies on the 1:1 line and the counts are highest for the lower

errors, then removing the predictions with the highest spread will remove the cases with the

higher error. In contrast, if the spread-skill diagram indicates the model spread is not well-

matched to the skill (e.g., a flat spread-skill line) then prediction skill is not correlated with

the uncertainty spread and removing the predictions with high uncertainty will not reduce the

overall error. In a separate scenario, if the bins used in the spread-skill diagram are very close

together or if the counts are localized to minimal spread bins, this is an indication that there

are no cases that have higher uncertainty than others.

36

In evaluating model performance, the above metrics are designed for circumstances where

distribution parameters, such as the mean and standard deviation, are appropriate. It should be

kept in mind that evaluating the broad-scale statistics of the uncertainty may not be appropriate

for all tasks and models. For tasks where the target may have more than one primary outcome,

such as identifying the likelihood of precipitation or ensemble UQ methods, these metrics may be

misleading. In these circumstances, the model may appear to be performing poorly even if all of

the ensembles are representative of the data, particularly in the reliability diagram. Additionally,

the discard test may show amplified improvements for these circumstances. For example, if there

is more than one probable target for some cases in a data set, these cases will always have a

higher error with the simple discard test used here and will be removed, even though they may

be well-captured with an ensemble-based uncertainty method. In these situations, we have found

that the best way to evaluate overall model performance is either to analyze figures that include the

testing data and all of the model ensemble predictions or to evaluate cases on an individual basis;

however, even with ensemble approaches, the metrics here still provide useful information as long

as they are interpreted correctly.

Although it was not a primary goal of this study, evaluating the central predictions and uncertainty

estimates on the two tasks here allowed us to compare the different uncertainty methods. During

our analysis, we came to some findings on the different UQ methods that may be of use to the

community.

• QR, although typically used for regression tasks, can be useful for classification tasks. Com-

pared to MC dropout on the convection application, QR produces a better spread-skill plot, a

better discard test, and more useful uncertainty estimates in the case studies shown.

• Parametric regression methods (i.e., predicting normal or SHASH distribution parameters)

and using the CRPS as the loss function to create ensemble predictions are useful approaches

to predicting well-calibrated uncertainties for regression tasks.

• QR, parametric regressions, and CRPS loss perform well for the majority of cases, but all

appear to be underconfident for high-error cases.

37

• MC dropout does not appear to work well, particularly for regression tasks. Rather than

creating reliable uncertainty estimates, this method appears to predict uncertainties that are

overconfident and not well-calibrated.

Acknowledgments. This work was funded in part by NSF AI institute grant ICER-2019758 (MM,

IE), NSF HDR grant OAC-1934668 (IE), and NOAA Grant NA19OAR4320073 (all authors). We

thank Dr. Steven Brey for providing his expertise on the CRPS method and making his CRPS-Net

code available.

Data availability statement. The Jupyter notebooks referenced throughout this article are available

in a GitHub repository, which you can find at https://github.com/thunderhoser/cira\

_uq4ml. Additionally, we have created a frozen release of the notebooks for this article at

https://doi.org/10.5281/zenodo.6915051.

38

APPENDIX

Aggressive quantile loss for predicting convection

The fractions skill score (FSS; Roberts and Lean 2008) rewards true positives more than true

negatives, making it well suited for rare-event prediction. The U-net for QR (Figure 16b) has 𝑁 +1
outputs, where 𝑁 is the number of quantile levels estimated. The last output is the deterministic

prediction, and its loss function is the pixelwise FSS (i.e., FSS without a neighbourhood filter).

The 𝑖th output (𝑖 ≤ 𝑁) is the estimate for quantile level 𝑞𝑖, and its loss function is a hybrid between
the traditional quantile loss (Eq. 4) and the pixelwise FSS:

L𝑖 =


(1− 𝑞𝑖)

(𝑦−𝑦̂𝑞𝑖)
2

𝑦2+𝑦̂2𝑞𝑖
, 𝑦 ≤ 𝑦̂𝑞𝑖 ;

𝑞𝑖
(𝑦−𝑦̂𝑞𝑖)

2

𝑦2+𝑦̂2𝑞𝑖
, 𝑦 > 𝑦̂𝑞𝑖 .

(A1)

𝑦 is the true value from the convection mask, and 𝑦̂𝑞𝑖 is the estimate for quantile level 𝑞𝑖, ranging

from [0,1]. You might ask: why use the FSS without a neighbourhood filter? After all, a key
benefit of the FSS is that it uses a neighbourhood filter to solve the double-penalty problem, where a

model is punished too harshly for a small (e.g., 1-pixel) offset between the predicted and observed

event. The answer is that (a) convection is a rare event, occurring at only 0.75% of pixels on

average; (b) to obtain a U-net that predicts substantial probabilities for a rare event, it is necessary

to use a loss function that rewards true positives more than true negatives; (c) the FSS, even without

a neighbourhood filter, has this desired property; (d) including a filter in the loss function requires

the inclusion of a filter in the UQ evaluation metrics, which is more complication than we wanted.

We call the loss function in Eq. A1 the “aggressive quantile loss”.

To compute the total loss for the 𝑖th output (𝑖 ≤ 𝑁), we average Eq. A1 over all pixels and valid
times, yielding L𝑖. To compute the total loss for the U-net, we use the equation:

Lmodel = 𝑤Ldeterministic +
1
𝑁

𝑁∑︁
𝑖=1

L𝑖, (A2)

where Ldeterministic is the loss for the deterministic prediction (pixelwise FSS) and 𝑤 > 1 is a user-
selected weight. When there are many quantile levels (i.e., 𝑁 is large), this weight emphasizes the

deterministic predictions, ensuring that both deterministic and probabilistic predictions are skillful.

39

References

Barnes, E., and R. Barnes, 2021: Controlled abstention neural networks for identifying skillful

predictions for regression problems. Journal of Advances in Modeling Earth Systems, 13 (12),

e2021MS002 575, URL https://doi.org/10.1029/2021MS002575.

Barnes, E., R. Barnes, and N. Gordillo, 2021: Adding uncertainty to neural network regression

tasks in the geosciences. arXiv e-prints, 2109 (07250), URL https://arxiv.org/abs/2109.07250.

Benjamin, S., and Coauthors, 2016: A North American hourly assimilation and model forecast

cycle: The Rapid Refresh. Monthly Weather Review, 144 (4), 1669–1694, URL https://doi.org/

10.1175/MWR-D-15-0242.1.

Bihlo, A., 2021: A generative adversarial network approach to (ensemble) weather prediction.

Neural Networks, 139, 1–16, URL https://doi.org/10.1016/j.neunet.2021.02.003.

Brey, S., 2021: Ensemble. GitHub, URL https://github.com/TheClimateCorporation/ensemble.

Cannon, A., 2011: Quantile regression neural networks: Implementation in R and application

to precipitation downscaling. Computers and Geosciences, 37 (9), 1277–1284, URL https:

//doi.org/10.1016/j.cageo.2010.07.005.

Chapman, W., L. D. Monache, S. Alessandrini, A. Subramanian, F. Ralph, S. Xie, S. Lerch, and

N. Hayatbini, 2022: Probabilistic predictions from deterministic atmospheric river forecasts

with deep learning. Monthly Weather Review, 150 (1), 215–234, URL https://doi.org/10.1175/

MWR-D-21-0106.1.

Clare, M., O. Jamil, and C. Morcrette, 2021: Combining distribution-based neural networks to

predict weather forecast probabilities. Quarterly Journal of the Royal Meteorological Society,

147 (741), 4337–4357, URL https://doi.org/10.1002/qj.4180.

Delle Monache, L., F. Eckel, D. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather

prediction with an analog ensemble. Monthly Weather Review, 141 (10), 3498–3516, URL

https://doi.org/10.1175/MWR-D-12-00281.1.

Dillon, J. V., and Coauthors, 2017: Tensorflow distributions. arXiv, URL https://arxiv.org/abs/

1711.10604, https://doi.org/10.48550/ARXIV.1711.10604.

40

Dürr, O., B. Sick, and E. Murina, 2020: Probabilistic deep learning: With python, keras and

tensorflow probability. Manning Publications.

Fukushima, K., and S. Miyake, 2022: Incorporating uncertainty into a regression neural network

enables identification of decadal state-dependent predictability. Geophysical Research Letters,

submitted, URL https://doi.org/10.1002/essoar.10510836.1.

Gal, Y., and Z. Ghahramani, 2016: Dropout as a Bayesian approximation: Representing model

uncertainty in deep learning. International Conference on Machine Learning, 48, 1050–1059,

URL http://proceedings.mlr.press/v48/gal16.html?ref=https://githubhelp.com.

Garg, S., S. Rasp, and N. Thuerey, 2022: WeatherBench Probability: A benchmark dataset for

probabilistic medium-range weather forecasting along with deep learning baseline models. arXiv

e-prints, 2205 (00865), URL https://arxiv.org/abs/2205.00865.

Gneiting, T., and A. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation.

Journal of the American Statistical Association, 102 (477), 359–378, URL https://doi.org/10.

1198/016214506000001437.

Gneiting, T., A. Raftery, A. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecast-

ing using ensemble model output statistics and minimum CRPS estimation. Monthly Weather

Review, 133 (5), 1098–1118, URL https://doi.org/10.1175/MWR2904.1.

Grönquist, P., C.Yao, T. Ben-Nun, N.Dryden, P. Dueben, S. Li, andT.Hoefler, 2021: Deep learning

for post-processing ensemble weather forecasts. Philosophical Transactions of the Royal Society

A, 379 (2194), 20200 092, URL https://doi.org/10.1098/rsta.2020.0092.

Hamill, T., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Monthly

Weather Review, 129 (3), 550–560, URL https://doi.org/10.1175/1520-0493(2001)129%

3C0550:IORHFV%3E2.0.CO;2.

Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble

prediction systems. Weather and Forecasting, 15 (5), 559–570, URL https://doi.org/10.1175/

1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2.

41

Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2012: Improving

neural networks by preventing co-adaptation of feature detectors. arXiv e-prints, 1207 (0580),

URL https://arxiv.org/abs/1207.0580.

Hsu, W., and A. Murphy, 1986: The attributes diagram: A geometrical framework for assessing

the quality of probability forecasts. International Journal of Forecasting, 2 (3), 285–293, URL

https://doi.org/10.1016/0169-2070(86)90048-8.

Jospin, L., H. Laga, F. Boussaid, W. Buntine, andM. Bennamoun, 2022: Hands-on Bayesian neural

networks –A tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17 (2),

29–48, URL https://doi.org/10.1109/MCI.2022.3155327.

Klotz, D., F. Kratzert, M. Gauch, A. Keefe Sampson, J. Brandstetter, G. Klambauer, S. Hochreiter,

and G. Nearing, 2021: Uncertainty estimation with deep learning for rainfall–runoff modelling.

Hydrology and Earth System Sciences Discussions, 1–32.

Lagerquist, R., J. Stewart, I. Ebert-Uphoff, and C. Kumler, 2021: Using deep learning to nowcast

the spatial coverage of convection from Himawari-8 satellite data. Monthly Weather Review,

149 (12), 3897–3921, URL https://doi.org/10.1175/MWR-D-21-0096.1.

Matheson, J., and R. Winkler, 1976: Scoring rules for continuous probability distributions. Man-

agement Science, 22 (10), 1087–1096, URL https://doi.org/10.1287/mnsc.22.10.1087.

Nair, V., and G. Hinton, 2010: Rectified linear units improve restricted Boltzmann machines.

International Conference on Machine Learning, Haifa, Israel, International Machine Learning

Society, URL https://openreview.net/forum?id=rkb15iZdZB.

Orescanin, M., V. Petković, S. Powell, B. Marsh, and S. Heslin, 2021: Bayesian deep learning for

passive microwave precipitation type detection. IEEE Geoscience and Remote Sensing Letters,

19, 1–5, URL https://doi.org/10.1109/LGRS.2021.3090743.

Ortiz, P., M. Orescanin, V. Petković, S. Powell, and B. Marsh, 2022: Decomposing satellite-based

classification uncertainties in large earth science datasets. IEEE Transactions on Geoscience and

Remote Sensing, 60, 1–11, URL https://doi.org/10.1109/TGRS.2022.3152516.

42

Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather

forecasts. Monthly Weather Review, 146 (11), 3885–3900, URL https://doi.org/10.1175/

MWR-D-18-0187.1.

Roberts, N., and H. Lean, 2008: Scale-selective verification of rainfall accumulations from high-

resolution forecasts of convective events. Monthly Weather Review, 136 (1), 78–97, URL https:

//doi.org/10.1175/2007MWR2123.1.

Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical

image segmentation. International Conference on Medical Image Computing and Computer-

assisted Intervention, Munich, Germany, Technical University of Munich, URL https://doi.org/

10.1007/978-3-319-24574-4_28.

Salama, K., 2021: Probabilistic Bayesian Neural Networks. Keras, URL https://keras.io/examples/

keras_recipes/bayesian_neural_networks/.

Sato, S., M. Takanashi, K. Indo, N. Nishihara, H. Ichikawa, and H. Watanabe, 2021: Two-Stage

probabilistic short-term wind power prediction using neural network with MC dropout and

control information. International Exhibition and Conference for Power Electronics, Intelligent

Motion, Renewable Energy and Energy Management, 1–8, URL https://ieeexplore.ieee.org/

abstract/document/9472407.

Scher, S., and G. Messori, 2021: Ensemble methods for neural network-based weather fore-

casts. ournal of Advances in Modeling Earth Systems, 13 (2), URL https://doi.org/10.1029/

2020MS002331.

Schmit, T., P. Griffith, M. Gunshor, J. Daniels, S. Goodman, and W. Lebair, 2017: A closer look

at the ABI on the GOES-R series. Bulletin of the American Meteorological Society, 98 (4),

681–698, URL https://doi.org/10.1175/BAMS-D-15-00230.1.

Seoh, R., 2020: Qualitative analysis of monte carlo dropout. arXiv preprint arXiv:2007.01720.

Starzec, M., C. Hometer, and G. Mullendore, 2017: Storm Labeling in Three Dimensions (SL3D):

A volumetric radar echo and dual-polarization updraft classification algorithm.Monthly Weather

Review, 145 (3), 1127–1145, URL https://doi.org/10.1175/MWR-D-16-0089.1.

43

Stock, J., 2021: Using machine learning to improve vertical profiles of temperature and moisture

for severe weather nowcasting. M.S. thesis, Computer Science, Colorado State University, URL

https://hdl.handle.net/10217/233704.

Székely, G., and M. Rizzo, 2005: A new test for multivariate normality. Journal of Multivariate

Analysis, 93 (1), 58–80, URL https://doi.org/10.1016/j.jmva.2003.12.002.

Taylor, J., 2000: A quantile regression neural network approach to estimating the conditional

density of multiperiod returns. Journal of Forecasting, 19 (4), 299–311, URL https://doi.org/

10.1002/1099-131X(200007)19:4%3C299::AID-FOR775%3E3.0.CO;2-V.

Wan, X., W. Wang, J. Liu, and T. Tong, 2014: Estimating the sample mean and standard devi-

ation from the sample size, median, range and/or interquartile range. BMC Medical Research

Methodology, 14 (1), 1–13, URL https://doi.org/10.1186/1471-2288-14-135.

Yagli, G., D. Yang, and D. Srinivasan, 2022: Ensemble solar forecasting and post-processing

using dropout neural network and information from neighboring satellite pixels. Renewable and

Sustainable Energy Reviews, 155, 111 909, URL https://doi.org/10.1016/j.rser.2021.111909.

Yu, Y., X. Han, M. Yang, and J. Yang, 2020: Probabilistic prediction of regional wind power based

on spatiotemporal quantile regression. IEEE Transactions on Industry Applications, 56 (6),

6117–6127, URL https://doi.org/10.1109/TIA.2020.2992945.

44

Supplemental Material:
Creating and evaluating uncertainty estimates with neural networks for

environmental-science applications

This article has been submitted to the AMS journal Artificial Intelligence for
the Earth Systems.

1. Hyperparameter experiments for classification task

To reiterate, the classification task is predicting convection from satellite imagery. We perform

one hyperparameter experiment per UQ method used for this task: MC dropout and QR.

a. Monte Carlo dropout

We attempt five dropout rates per layer (0, 0.125, 0.25, 0.375, 0.5) and use a grid search to

attempt all 53 = 125 possible combinations. To limit the size of the hyperparameter experiment,

we do not attempt dropout for shallower layers (before the last three). All other hyperparameters,

which we do not tune for this paper, are documented in L21. As in L21, we use the year 2016 for

training, 2017 for validation, and 2018 for testing. We run the U-nets 100 times with MC dropout,

yielding 100 estimates in each predictive distribution (i.e., for each pixel at each valid time). To

evaluate deterministic predictions (the mean of the distribution), we use the pixelwise FSS; to

evaluate probabilistic predictions (the full distribution), we use SSREL (Eq. 7 in main body) and

monotonicity fraction from the discard test (MF; Eq. 9 in main body).

Figs. S1-S3 show all three scores, computed on the validation data, for all 125 models. From

these figures we make three general conclusions. First, MF improves (increases) as dropout rate

for the last layer increases. Second, SSREL improves (decreases) as dropout rates for the last

two layers increase. Third, FSS deteriorates (decreases) as dropout rates for the last two layers

increase. Hence, there is a trade-off between the quality of probabilistic predictions (measured by

1

MF and SSREL) and deterministic predictions (measured by FSS). Based on Supplemental Figs.

S1-S3, we judge that the best model has a dropout rate of 0.250 for the last layer, 0.125 for the

second-last, and 0.375 for the third-last. This model achieves the 35th-best FSS (0.222), 44th-best

SSREL (0.037), and 65th-best MF (0.895).

2

Figure S1: Pixelwise (1-by-1) fractions skill score (FSS), measured on validation data, when
using MC dropout to predict convection. Each panel corresponds to a different dropout rate for the
last layer, which is one hyperparameter in the experiment. The other hyperparameters are dropout

rate for the second-last layer (x-axis in each panel) and third-last layer (y-axis in each panel).

3

Figure S2: Spread-skill reliability (SSREL), measured on validation data, when using MC
dropout to predict convection. Formatting is the same as in Figure S1.

4

Figure S3: Monotonicity fraction, measured by running discard test on validation data, for models
that use MC dropout to predict convection. Formatting is the same as in Figure S1.

5

b. Quantile regression (QR)

We attempt nine sets of quantile levels (Table S1) and ten weights (1, 2, 3, 4, 5, 6, 7, 8, 9, or 10)

and use a grid search to attempt all 9×10 = 90 possible combinations. These weights (w in Eq. A2

of the appendix) affect the importance of deterministic vs. probabilistic predictions (i.e., the mean

prediction vs. quantile-based estimates) in the loss function. For all other hyperparameters, we

use the settings documented in L21, including no dropout. To compute the model spread, defined

as the standard deviation of the predictive distribution, we use Eq. 15 of Wan et al. (2014). As for

the MC-dropout experiment, we use FSS to evaluate deterministic predictions, SSREL and MF to

evaluate probabilistic predictions.

Table S1: Sets of quantile levels used in hyperparameter experiment. Every set also includes six
special quantiles: 0.025 and 0.975 (used to compute the 95% confidence interval), 0.25 and 0.50

and 0.75 (used to compute the interquartile range and mean), and 0.99 (used to compute the
psuedo-maximum, which is more robust than the actual maximum). These special quantiles are
not listed in the table. “Increment” is the increment between successive quantile levels that are
not in the special set; ”Total number” is the number of quantile levels, including those in the

special set.

Increment Quantile levels Total number
0.01 0.01, 0.02, 0.03, . . ., 0.99 101
0.02 0.01, 0.03, 0.05, . . ., 0.99 53
0.03 0.01, 0.04, 0.07, . . ., 0.97 38
0.04 0.01, 0.05, 0.09, . . ., 0.97 30
0.05 0.01, 0.06, 0.11, . . ., 0.96 26
0.06 0.01, 0.07, 0.13, . . ., 0.97 22
0.07 0.01, 0.08, 0.15, . . ., 0.99 19
0.08 0.01, 0.09, 0.17, . . ., 0.97 18
0.09 0.01, 0.10, 0.19, . . ., 0.91 17

Figs. S4-S6 show all three scores computed on the validation data, for all 90 models. All three

figures are noisy, indicating little correlation between predictive quality and the hyperparameters.

In our judgement, the best model is that with 17 quantile levels and a weight of 6 (w = 6 in Eq.

A2 of the appendix), which achieves the 3rd-best FSS (0.264), the 7th-best SSREL (0.025), and a

perfect MF (1.0).

6

Figure S4: Pixelwise (1-by-1) fractions skill score (FSS), measured on validation data, when
using QR to predict convection. The x-axis is the number of quantiles, and the y-axis is the weight
used to emphasize the deterministic prediction in the loss function (w in Eq. A2 of the appendix).

7

Figure S5: Spread-skill reliability (SSREL), measured on validation data, when using QR to
predict convection. Formatting is the same as in Fig. S4.

8

Figure S6: Monotonicity fraction, measured by running discard test on validation data, for models
that use QR to predict convection. Formatting is the same as in Fig. S4.

9

2. Extra case study for classification task

Figure S7: Winter case study for QR model. All data (predictions, radar reflectivity, and
convection mask) are valid at 2230 UTC 25 Jan 2018. The predictions were made with 1-hour

lead time, thus initialized at 2130 UTC. All formatting is discussed in the caption of Fig. 18 in the
main body.

Fig. S7 shows a winter case for the QR model only1. There is only one thunderstorm in

the domain and some scattered non-convective precipitation, mainly north and west of the one

thunderstorm. This case illustrates two properties of the QR model. First, for the mean prediction

(Fig. S7a) and lower percentiles of the predictive distribution (Fig. S7c-d), the model can produce

very low probabilities over large areas. In other words, the model has sharpness at both low and

high probabilities (the latter is shown in Fig. 19 in the main body, particularly panel e). The second

property is a caveat to the first: at higher percentiles like the 97.5th (Fig. S7e), the QR model

still produces very high probabilities, even in areas that are obviously2 non-convective, due to the

aforementioned overspread problem.

1The same case for the MC-dropout model is trivial, as the MC-dropout model produces almost no probabilities > 0.05, even at the 97.5th

percentile.
2Based on visual analysis of the predictors (satellite brightness temperatures), not shown here.

10

References

Wan, X., W. Wang, J. Liu, and T. Tong, 2014: Estimating the sample mean and standard devi-

ation from the sample size, median, range and/or interquartile range. BMC Medical Research

Methodology, 14 (1), 1–13, URL https://doi.org/10.1186/1471-2288-14-135.

11

