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Abstract

The most recent generation of climate models exhibits an alarming increase in high climate sensitivity models compared to

previous generations. Because the calculation of equilibrium climate sensitivity (ECS) requires simulations of a thousand years

or more, most studies estimate ECS using shorter model integrations. However, the most widely used method for estimating

ECS from shorter simulations underestimates ECS. Previous studies attributed this underestimate to the time-dependence of

climate feedbacks. Here we demonstrate that it actually arises from an underestimate of the radiative forcing. We present

a modified method that corrects for this underestimate and is shown to better agree with ECS calculated from “long run”,

millennium-scale simulations. This method reveals that the actual number of “too hot” models is roughly double that previously

diagnosed, with one out of every three CMIP6 climate models having an ECS greater than 5K - the “very likely” upper bound

on ECS.
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Key Points:

• The underestimate of ECS by the Gregory method arises from an under-
estimate of the radiative forcing.

• The effective feedback parameter estimated from the Gregory method
agrees well with the equilibrium feedback parameter.

• Approximately one-third of CMIP6 models fall within the “hot model”
category with the true ECS greater than 5K.

Abstract

The most recent generation of climate models exhibits an alarming increase
in high climate sensitivity models compared to previous generations. Because
the calculation of equilibrium climate sensitivity (ECS) requires simulations of
a thousand years or more, most studies estimate ECS using shorter model in-
tegrations. However, the most widely used method for estimating ECS from
shorter simulations underestimates ECS. Previous studies attributed this un-
derestimate to the time-dependence of climate feedbacks. Here we demonstrate
that it actually arises from an underestimate of the radiative forcing. We present
a modified method that corrects for this underestimate and is shown to better
agree with ECS calculated from “long run”, millennium-scale simulations. This
method reveals that the actual number of “too hot” models is roughly double
that previously diagnosed, with one out of every three CMIP6 climate models
having an ECS greater than 5K - the “very likely” upper bound on ECS.

Plain Language Summary

Equilibrium climate sensitivity (ECS) defines the susceptibility of the climate
to external forcing. The most recent generation of climate models exhibits an
alarming increase in high climate sensitivity models (i.e., ECS > 5K) compared
to previous generations. If such high sensitivities are correct, the impacts on
civilization would be devastating and keeping global warming below the 2 °C
threshold set by the Paris Agreement would require even more rapid reductions
in CO2 emissions than already proposed. Unfortunately, such concerns are
based on a methodology that underestimates ECS. In this study, we present
a modified method that corrects for this underestimate and reveals that the
actual number of “too hot” models is double that previously diagnosed, with
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one out of every three climate models having an ECS greater than 5K – the
IPCC estimated upper bound on ECS, suggesting a potentially appalling future
if without major action to reduce emissions.

1 Introduction

Equilibrium climate sensitivity (ECS) is formally defined as the change in global-
mean surface air temperature required to restore radiative equilibrium in re-
sponse to a doubling of CO2 and is the most widely used metric to quantify the
susceptibility of the climate to external forcing; i.e., ECS = −F2×/�eq, where
F2× is the effective radiative forcing (ERF) from a doubling of CO2, and �eq
is the equilibrium feedback parameter, the efficiency at which radiative equi-
librium is restored per unit change in surface air temperature (Rugenstein &
Armour, 2021). The �eq is calculated from radiative anomalies between two
equilibrated climate states and represents the integration of all processes that
brought the climate system to the new equilibrated state.

It is already known that climate models from the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6; Eyring et al., 2016) show, on average, a notably
higher ECS than CMIP5 (Taylor et al., 2012) models (Zelinka et al., 2020). Most
of the increase is attributed to the increase in the radiative feedback parameter,
especially a stronger cloud feedback (Zelinka et al., 2020).

The larger ECS also contributes to a “hot model” problem. According to previ-
ous estimates, approximately one-sixth (10 out of 58) of CMIP6 models possess
an ECS of 5 K or greater, which considerably exceeds the upper limit of the range
projected by CMIP5 models and the ‘very likely’ ECS range of IPCC AR6 re-
port, i.e., 2–5 K (Forster et al., 2021). If such high sensitivities are correct, the
impacts on civilization could be devastating and keeping global warming below
the 2 °C threshold set by the Paris Agreement (UNFCCC, 2015) would require
even more rapid reductions in CO2 emissions than already proposed.

However, many believe these models are unrealistic and that their projections
exaggerate the impact of global warming (Forster et al., 2020; Tokarska et al.,
2020; Zhu et al., 2020). To reduce the influence of these “too hot” models, an
emerging literature recommends that future projections should exclude models
with an ECS that lies outside the estimated likely range (Hausfather et al.,
2022).

Ideally, the ECS can be estimated from equilibrium states in climate models
forced by an abrupt doubling or quadrupling of CO2, after millennial-length
or “long run” integrations (Rugenstein et al., 2020). Due to the computational
burden of such long integrations, only a handful of models have performed such
simulations. In practice, the ECS shown in most studies (Andrews et al., 2012,
2019; Flato et al., 2013; Forster et al., 2021; Gettelman et al., 2019; Hausfather
et al., 2022; Meehl et al., 2020; Wyser et al., 2020; Zelinka et al., 2020) is ex-
trapolated from a linear regression of global-mean energy imbalance (N) at the
top-of-atmosphere (TOA) against surface air temperature anomalies (�T) for
the first 150 years of abrupt-4×CO2 simulations (Gregory et al., 2004; referred
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to as Gregory method hereafter). It has been established that the Gregory
method generally underestimates the true ECS by around 15% compared to
more accurate “long run” integrations (Dunne et al., 2020; Rugenstein et al.,
2020; Rugenstein & Armour, 2021). Taking a CMIP6 model as an example
(Figure S1), the ECS of CESM2 has previously been reported as 5.3 K (Gettel-
man et al., 2019), obtained using the Gregory method. However, the surface
air temperature anomaly at year 999 after a quadrupling of CO2 is around 12
K, suggesting the true ECS from a doubling of CO2 is at least 6 K and likely
greater, since the model is still far from reaching equilibrium at year 999. Pre-
vious studies attribute the ECS underestimate to a time dependence of climate
feedbacks (Dunne et al., 2020; Rugenstein et al., 2020), owing to time-evolving
surface warming patterns (Andrews et al., 2015; Armour et al, 2013; Dong et al.,
2020), and nonlinear state-dependence of radiative feedbacks (Bloch-Johnson et
al., 2021; Caballero & Huber 2013).

In this study, we demonstrate that the ECS underestimate actually arises from
its underestimate of the ERF, which is 15% lower on average compared to the
ERF diagnosed from the recommended method (Forster et al, 2016) of using
fixed-SST simulations and correcting for land-warming effects. In contrast, the
effective feedback parameter estimated from the Gregory method agrees well
with the equilibrium feedback parameter obtained from fixed-SST ERFs and
“long run” coupled integrations. We develop a modified method to correct for the
ERF bias that provides estimates of ECS in much better agreement with “long
run” integrations. Because it only uses the standard 150-yr-long abrupt-4×CO2
integrations, this modified method can still be applied to the full suite of CMIP6
models. When applied to the CMIP6 models, we find that approximately one-
third of models fall within the “hot model” category (i.e., ECS > 5K). The
preponderance of such high sensitivities has important implications both for
the interpretation and application of model projections, as well as for mitigating
climate change under such high sensitivity scenarios.

2 Materials and Methods

2.1 LongRunMIP and CMIP5 / 6 model simulation output

The millennial-length abrupt-4×CO2 simulations of 11 models taking part in
the LongRunMIP (Rugenstein et al., 2019) and two CMIP6 models (999-yr-long
simulation of CESM2 and 900-yr-long simulation of IPSL-CM6A-LR) are com-
prehensively used in proposing and evaluating the modified method. Meanwhile,
the fixed-SST simulations [sstClim / sstClim4×CO2 of CMIP5 and piClim-
control / piClim-4×CO2 of Radiative Forcing Model Intercomparison Project
(Pincus et al., 2016) endorsed by CMIP6] are used to provide the most accurate
ERF estimations. In addition, the piControl and abrupt-4×CO2 simulations of
CMIP5 / 6 models, including 29 CMIP5 models and 58 CMIP6 models, are used
to revisit the differences in both the effective climate sensitivity and equilibrium
climate sensitivity between CMIP5 and CMIP6 ensembles.

2.2 Land-warming correction of the ERF
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The two land-warming correction methods (Forster et al, 2016) recommended
by Andrews et al. (2021) are used: 1. A modified version of the tropospheric
and surface correction method (TROP) by Tang et al. (2019) that assumes
various “adjustments” from the fixed-SST experiment are related to the land
warming; 2. The surface temperature method (SFC) applied in Smith et al.
(2020a) assumes that the radiative effect of surface temperature change (i.e.,
the surface Planck “adjustment”) is the only radiative effect of land warming
in fixed-SST experiments. The only modification of the former method to that
of Tang et al. (2019) is that all relative humidity (RH) radiative responses are
ascribed to rapid adjustments, since the RH feedback is close to zero (He et al.,
2021) and furthermore as the limited land warming of order -1 (K) is in no way
able to trigger the RH radiative response of order -1 (W m-2).

Here, all the radiative responses which are assumed to be related to land warm-
ing are calculated with the radiative kernel methods, following Soden et al.
(2008) and Held and Shell (2012). To minimize the uniqueness of the single ra-
diative transfer model used to derive radiative kernels, multi-kernels ensemble
mean radiative responses, obtained from results using CESM1-CAM5 (Pender-
grass et al., 2018), GFDL (Soden et al., 2008), HadGEM3 (Smith et al., 2020b),
and RRTM-ERAI (Huang et al., 2016) radiative kernels, are used. The ERF
from method TROP is the difference between the time-mean global-mean en-
ergy imbalance at the TOA and the sum of surface Planck responses, RH-fixed
Planck responses and surface albedo responses, while the ERF from method
SFC is the difference between the time-mean global-mean energy imbalance
and surface Planck responses only. Most of ERFfixed-SST diagnoses shown in
the manuscripts are the results obtained from method TROP, except for those
shown in Figures S3b and S4.

2.3 The equilibrium temperature change

Following Rugenstein et al. (2020), the equilibrium temperature change to
a quadrupling of CO2 is determined by regressing global-mean annual-mean
energy imbalance at the TOA against surface air temperature anomaly over the
final 15% of warming period of more than 1000-year simulation, although this
method is also adopted for 999-yr-long simulation of CESM2 and 900-yr-long
simulation of IPSL-CM6A-LR.

3 A modified method

Here we use the recommended estimates of ERF obtained from fixed-SST exper-
iments that correct for the effects of land warming (ERFfixed-SST) and equilib-
rium temperature change (�Teq) obtained from a large collection of millennial-
length abrupt-4×CO2 simulations from LongRunMIP to investigate the cause
for the underestimated ECS by the Gregory method. We then propose a simple
modification to correct for this bias that is shown to provide better agreement
with the best estimates of ECS obtained from “long run” integrations.

Consider Figure 1 which shows a Gregory plot of N vs. �T for the 999-yr-
long abrupt-4×CO2 simulation of CESM2. The traditional Gregory method
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regresses N on �T using the first 150 years (solid black line) with the slope
providing an estimate of the climate feedback parameter (�1–150) and the y-
intercept providing an estimate of the ERF (ERF1–150). Additional regressions
are shown for select time periods over the 999-yr integration (colored lines).
As expected, the radiative feedback parameter increases for each sub-period as
the climate approaches the equilibrium state (Andrews et al., 2015; Ceppi &
Gregory, 2017; Dong et al., 2020; Geoffroy et al., 2013; Proistosescu & Huybers,
2017; Rugenstein et al., 2020).

Figure 1. Gregory plot for CESM2: Global-mean annual-mean energy imbal-
ance at the TOA against surface air temperature anomaly from its 999-yr-long
abrupt-4×CO2 simulation. Open circles in blue, green, and brown represent
each year during years 1–20, 21–150 and 151–999, respectively. The correspond-
ing lines show regression fits for the three periods. The black solid line indicates
the regression fit for years 1–150 (or the Gregory method), while the black
dashed line is made by using the recommended ERF diagnosis (Forster et al,
2016) and inferred equilibrium temperature change (Rugenstein et al., 2020).
The slope of each solid line represents the radiative feedback parameter dur-
ing each period, while the slope of black dashed line represents the equilibrium
feedback parameter, derived by �eq = −ERFfixed-SST/�Teq.

However, the slope from years 1–150 (�1–150) agrees very well with the best es-
timate of the equilibrium feedback parameter, �eq = −ERFfixed-SST/�Teq (black
dashed line). This is true in all 7 models for which both fixed-SST ERF and
“long run” coupled abrupt-4×CO2 simulations are available (Figures S2a–g) and
suggests that the underestimate of ECS from the Gregory method is not at-
tributable to errors in estimating the feedback parameter �.
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In contrast, the ERF estimated from the Gregory method (upward blue tri-
angle in Figure 1) is ~2.5 W m-2 smaller than the more accurate estimate of
ERFfixed-SST (upward red triangle). Similar low biases in ERF1–150 relative to
ERFfixed-SST are noted for the other 6 models (Figures S2b–g), indicating a sys-
tematic low bias in ERF estimated using the Gregory method. This suggests
that it is the bias in ERF1–150, not �1–150, that causes the low bias in ECS from
the Gregory method.

While all CMIP5 / 6 models provide the standard 150-yr-long abrupt-4×CO2
simulations necessary to derive �1–150 from the Gregory method, only a small
subset of them also provide the necessary simulations to diagnose ERFfixed-SST.
Below we outline a modification to the Gregory method that enables a more
accurate estimation of ERF, and thus ECS, from standard 150-yr-long abrupt-
4×CO2 simulations. Since the climate feedback parameter becomes less negative
as the climate approaches equilibrium (Rugenstein et al., 2020), we can expect
more accurate ERF estimations from regressions on shorter periods. Following
Qin et al. (2022), we calculate regressed ERFs using all possible windows of
10–30 yr duration with starting at year 1 and then diagnose the correlation and
root-mean-square deviation (RMSD) between every regressed ERF value and
corresponding recommended ERFfixed-SST diagnosis (Figure S3a).

Although ERFs from first 10-yr and 14-yr regressions have the lowest RMSD and
the highest correlation with the ERFfixed-SST, they are not much different than
the ERF diagnosed by regressing years 1–20 (ERF1–20) (Figure S3a), a more
conventional record length used previously by Forster et al. (2016). We therefore
use the ERF1–20 hereafter. Compared to the uniform ~15% underestimation of
ERF by ERF1–150, the first 20-yr regressions provide the ERF estimations much
closer to the ERFfixed-SST in almost all models (Figures 2a, 2b and S4). We
emphasize that the results discussed below are insensitive to either the above-
mentioned first 10–30 yr time window used in the regression or the method
chosen to correct for land-warming effect when deriving ERFfixed-SST (Figure
S3).
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Figure 2. Evaluation of coupled ERF and feedback parameter estimates. (a)
Comparisons between coupled ERF estimates using years 1–150 and 1–20 and
the ERFfixed-SST diagnosis, obtained from sstClim4×CO2 and piClim-4×CO2
simulations. (b) Histogram displaying number of models that fall within 0.5
W m-2 bins of biases in coupled ERF estimates, relative to the ERFfixed-SST
diagnosis. The markers which lie on axes in (a) are multi-model ensemble means
of corresponding estimates. The thin and thick dots in (b) indicate the biases in
coupled ERF estimates of each model and corresponding multi-model ensemble
means. Note the ERFfixed-SST diagnoses shown here are obtained using the
tropospheric and surface correction method (TROP). (c) A comparison between
the estimates of the effective feedback parameter (�1–150) and the equilibrium
feedback parameter (�eq). The �eq is derived by �eq = −ERF/�Teq, where the
ERF is either ERFfixed-SST or ERF1–20, depending on the availability of fixed-
SST ERF experiments. The solid circles with cross inside in (c) indicate the
models with fixed-SST ERF experiments available.

As expected, the effective feedback estimates from standard 150-yr regressions
(�1–150) agree well with the equilibrium feedback estimates (Figures 2c and S2),
derived by �eq = −ERF/�Teq, where the ERF is either ERFfixed-SST or ERF1–20,
depending on the availability of fixed-SST ERF experiments. In this case, we
propose a modified method to estimate the true ECS in short-integration simu-
lations using the ERF1–20 and �1–150, ECSModified = −ERF1–20/2�1–150.

Compared to the underestimated ECS by the original Gregory method, the
modified method replicates the true ECS diagnosed from the “long run” coupled
simulations (Figure 3), providing an easy and effective way to diagnose the true
ECS. As expected, the impact of a forcing bias on ECS increases as the climate
feedback parameter increases, and is largest for the two models with the largest
feedback parameter (i.e., CESM2 and FAMOUS). Even if we exclude the two
high ECS models, the ECS estimates from this modified method still have a
better performance than the original Gregory estimates.
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Figure 3. Evaluation of coupled ECS estimates. (a) Comparisons between
coupled ECS estimates from the Gregory method (ECS1–150) and the modified
method (ECSModified) and the true ECS estimate using Rugenstein et al. (2020)
with millennial-length abrupt-4×CO2 simulations. (b) Histogram displaying
number of models that fall within 0.2 K bins (except for first two bins with 1.0
K) of biases in coupled ECS estimates, relative to the true ECS estimate. The
markers which lie on axes in a are multi-model ensemble means of corresponding
estimates. The thin and thick dots in (b) indicate the biases in coupled ECS
estimates of each model and corresponding multi-model ensemble means.

There have been several other previously proposed regression-based methods
that attempt to provide more accurate estimates of ECS by capturing the slow-
pattern responses of climate models; e.g., using years 21–150 (Andrews et al.,
2015) and years 51–150 (Dunne et al., 2020; Winton et al., 2013). We provide
a comprehensive evaluation of our proposed method along with each of these
approaches in Table S1. The modified method is superior in all respects to the
previously proposed methods. The bias in ECS is reduced to −2.5% ± 7.9%
with the modified method, close to the highest accuracy we can acquire from
400-yr-long coupled simulations by regressing years 100–400 (−2.2% ± 2.8%;
Rugenstein & Armour, 2021).

Since many modeling centers are unable to provide millennial climate perturba-
tion simulations for the ECS evaluations due to their large computational ex-
pense, our proposed method provides an easy and effective way to diagnose the
true ECS using the standard, widely-available 150-yr-long abrupt-4×CO2 sim-
ulation. Note that the method does not improve the estimate of ECS for fewer
than a tenth of the climate models (BNU-ESM and CNRM-CM5 of CMIP5;
CNRM-ESM2-1, CNRM-CM6-1-HR, GISS-E2-2-G, GISS-E2-2-H and MIROC-
ES2L of CMIP6). In contrast to typical behavior, all of these models have a
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decrease in the radiative feedback between years 1–20 and 21–150, so barely any
mitigation can be expected in the ERF underestimations, even with the years
1–20 regression (Tables S2 and S3). A preliminary analysis suggests that this
decrease in the radiative feedback parameter is due to overly strong variation
in radiative responses at interannual timescales. In the case of CNRM-ESM2-1,
the CO2 concentrations are relaxed towards the quadrupling level below 560 hPa
and then allowed to propagate throughout the atmosphere (Michou et al, 2020),
therefore taking around 15 years to reach an approximate uniform atmospheric
concentration (Smith et al., 2020a), leading to a time-evolving stratospheric tem-
perature adjustment and contaminating the initial feedback estimations. There-
fore, these models are dismissed in the following discussions (Figures 4, S5 and
S6), although our conclusions are insensitive to whether these models are re-
tained in the analysis or not (results including these models shown in Figures
S7–S9).

4 Analysis of ECS in CMIP5 and CMIP6

Equipped with both the Gregory method and the modified method, we revisit
the effective climate sensitivity (referred to as EffCS hereafter for distinction)
from the traditional Gregory method and the best estimate of ECS for both
CMIP5 and CMIP6 ensembles computed using the modified method proposed
here (referred to hereafter as ECS) in Figure 4. CMIP6 models not only pos-
sess higher EffCS and ECS values than CMIP5 models, but have a much larger
inter-model spread in both the EffCS and ECS than CMIP5 models. The larger
uncertainties arise from the larger uncertainty in the �1–150, although more con-
sistent ERF estimates are obtained in CMIP6 models (Figure S5).

Figure 4. Climate sensitivity distributions. Histograms displaying number of
(a) CMIP5 and (b) CMIP6 models that fall within 1 K EffCS and ECS bins.
The thin and thick dots indicate the EffCS and ECS values of each model and
corresponding multi-model ensemble means.
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In contrast to previous statements based on the EffCS (Forster et al., 2021;
Meehl et al., 2020; Zelinka et al., 2020), our results show there are also “hot
models” with ECS greater than 5K in CMIP5 and that more than one-third
of CMIP6 models fall within the “hot model” category. This is roughly dou-
ble the previous estimate of high ECS models and further amplifies concerns
surrounding the tendency for the CMIP6 generation of climate models to be
“too hot”. Hausfather et al. (2022) argue that such high ECS models are incon-
sistent with the observational record and bias both the multi-model ensemble
mean and inter-model uncertainty range in CMIP6. They caution that such
“hot models” should be restricted from conventional warming projections or lim-
ited to assessments that focus on the most extreme projections. These results
also bring into question arguments that the “hot tail” models are inconsistent
with the historical record (Hausfather et al., 2022), since the number of such
models is now twice the previous estimate.

Since the underestimate of ERF is largely responsible for the bias in ECS, this
suggests that the higher ERF in CMIP6 (Smith et al., 2020a; Figure S5) con-
tributes to the greater number of “hot models” in CMIP6. Therefore, we diag-
nose the relative importance of ERF in causing both the multi-model ensemble
mean EffCS and ECS to increase. Following Zelinka et al. (2020), we shift the
ERF of each CMIP5 model by the multi-model mean difference in ERF between
CMIP6 and CMIP5 and do the same transformation but in reverse for CMIP6
models, and then average the two results (Figure S6). Shifting the ERF1–150
(ERF1–20) changes the EffCS (ECS) by 16.8% (19.5%) of the actual CMIP5-
to-CMIP6 mean difference in the EffCS (ECS), respectively. In contrast, the
change in EffCS (ECS) by shifting the �1–150 for the full suite of CMIP6 models
is 73.5% (71.5%) of the actual CMIP5-to-CMIP6 mean EffCS (ECS) difference.
This is consistent with the results of Zelinka et al. (2020), confirming the dom-
inant role of the �1–150 change in causing the higher mean EffCS and ECS in
CMIP6 ensemble. However, if one uses the underestimated ERF1–150 from the
Gregory method instead of the more accurate ERF1–20, then only 10 out of the
actual 18 “hot models” in CMIP6 with ECS > 5K could be identified. This
again underscores the importance of accurately calculating radiative forcing in
ECS estimates, especially at the high end of the ECS spectrum, further em-
phasizing the importance of the available ERFfixed-SST diagnoses (Pincus et al.,
2016).

5 Conclusions

In this study, we demonstrate that the ECS underestimate actually arises from
its underestimate of the ERF, which is 15% lower on average compared to
the ERF diagnosed from the recommended method (Forster et al, 2016) of
using fixed-SST simulations and correcting for land-warming effects. In contrast,
the effective feedback parameter estimated from the Gregory method agrees
well with the equilibrium feedback parameter obtained from fixed-SST ERFs
and “long run” coupled integrations, suggesting the underestimate of ECS from
the Gregory method is not attributable to errors in estimating the feedback
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parameter �. Therefore, we propose a modified method to correct for the ERF
bias that provides estimates of ECS in much better agreement with “long run”
integrations. The modified method is superior in all respects to the previously
proposed methods that attempt to provide more accurate estimates of ECS by
capturing the slow-pattern responses of climate models. The ECS estimates
by the modified method are close to the highest accuracy we can acquire from
400-yr-long coupled simulations. Because it only uses the standard 150-yr-long
abrupt-4×CO2 integrations, this modified method can still be applied to the
full suite of CMIP6 models, providing an easy and effective way to diagnose the
true ECS. When applied to the CMIP6 models, we find that the actual number
of “too hot” models is roughly double that previously diagnosed, with one out
of every three CMIP6 climate models having an ECS greater than 5K - the
“very likely” upper bound on ECS. The preponderance of such high sensitivities
has important implications both for the interpretation and application of model
projections, as well as for mitigating climate change under such high sensitivity
scenarios.
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