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Abstract

Bayesian model selection (BMS) and Bayesian model justifiability analysis (BMJ) provide a statistically rigorous framework

to compare competing conceptual models through the use of Bayesian model evidence (BME). However, BME-based analysis

has two main limitations: (1) it’s powerless when comparing models with different data set sizes and/or types of data and

(2) doesn’t allow to judge a model’s performance based on its posterior predictive capabilities. Thus, traditional BME-based

approaches ignore useful data or models due to issue (1) or disregards Bayesian updating because of issue (2). To address these

limitations, we advocate to include additional information-theoretic scores into BMS and BMJ analysis: expected log-predictive

density (ELPD), relative entropy (RE) and information entropy (IE). Exploring the connection between Bayesian inference

and information theory, we explicitly link BME and ELPD together with RE and IE to indicate the information flow in BMS

and BMJ analysis. We show how to compute and interpret these scores alongside BME, and apply it in a model selection

and similarity analysis framework. We test the methodology on a controlled 2D groundwater setup considering five competing

conceptual models accompanied with different data sets. The results show how the information-theoretic scores complement

BME by providing a more complete picture concerning the Bayesian updating process. Additionally, we present how both

RE and IE can be used to objectively compare models that feature different data sets. Overall, the introduced Bayesian

information-theoretic framework helps to avoid any potential loss of information and leads to an informed decision for model

selection and similarity.
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Abstract14

Bayesian model selection (BMS) and Bayesian model justifiability analysis (BMJ) pro-15

vide a statistically rigorous framework to compare competing conceptual models through16

the use of Bayesian model evidence (BME). However, BME-based analysis has two main17

limitations: (1) it’s powerless when comparing models with different data set sizes and/or18

types of data and (2) doesn’t allow to judge a model’s performance based on its poste-19

rior predictive capabilities. Thus, traditional BME-based approaches ignore useful data20

or models due to issue (1) or disregards Bayesian updating because of issue (2). To ad-21

dress these limitations, we advocate to include additional information-theoretic scores22

into BMS and BMJ analysis: expected log-predictive density (ELPD), relative entropy23

(RE) and information entropy (IE). Exploring the connection between Bayesian infer-24

ence and information theory, we explicitly link BME and ELPD together with RE and25

IE to indicate the information flow in BMS and BMJ analysis. We show how to com-26

pute and interpret these scores alongside BME, and apply it in a model selection and27

similarity analysis framework. We test the methodology on a controlled 2D groundwa-28

ter setup considering five competing conceptual models accompanied with different data29

sets. The results show how the information-theoretic scores complement BME by pro-30

viding a more complete picture concerning the Bayesian updating process. Additionally,31

we present how both RE and IE can be used to objectively compare models that feature32

different data sets. Overall, the introduced Bayesian information-theoretic framework33

helps to avoid any potential loss of information and leads to an informed decision for model34

selection and similarity.35

1 Introduction36

Environmental modelling allows researchers to reproduce physical systems under37

different conditions, be they current or future, for design, management or decision mak-38

ing purposes. Due to the high complexity involved in environmental modelling, simpli-39

fications and assumptions are necessary to consider the different processes that interact40

with each other (Wainwright & Mulligan, 2013). Consequently, different sources of un-41

certainty arise in environmental modelling, including parameter, model input and mea-42

surement uncertainty (Refsgaard et al., 2007). Additionally, there is uncertainty asso-43

ciated with the model itself, referred to as conceptual uncertainty, which has been proven44
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to be a main source of uncertainty (Bredehoeft, 2005; Neuman, 2003; Rojas et al., 2008;45

Gupta et al., 2012).46

Due to incomplete knowledge on the real system, there is not one single way of rep-47

resenting a given physical phenomenon. Therefore, multiple models can be used to re-48

produce it, with different levels of detail and complexity (J. Smith & Smith, 2007). Con-49

sequently, subjectively limiting the number of possible models to only one can result in50

an underestimation of the chosen model’s uncertainty or in an overconfidence in its pre-51

dictive capabilities. This, in turn, can lead to biased results, especially with regards to52

parameter values, which could be compensating for errors regarding the model selection53

(Neuman, 2003; Rojas et al., 2008; Ye et al., 2004).54

Therefore, the problem becomes centered around the question which model to use55

to represent the true, unknown system, given the current, limited knowledge on it. A56

widely accepted method to tackle conceptual uncertainty is through multi-model approaches57

(Neuman et al., 2003; Bredehoeft, 2005; Refsgaard et al., 2006). Here, a group of com-58

peting conceptual models are either generated or selected, and then tested against some59

acceptance criteria regarding, e.g, model fit, model complexity, consistency or multi-objective60

criteria (Neuman, 2003). Enemark et al. (2019) present a list of publications where con-61

ceptual uncertainty in groundwater systems was considered through multi-model approaches,62

showing the importance this topic has been given in previous years. Deterministic ap-63

proaches to multi-model selection use model performance criteria, such as mean square64

error (MSE), Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970) and cross validation meth-65

ods (Stone, 1974; Jung, 2018) as model comparison criteria (Gupta et al., 2009). Nev-66

ertheless, these do not allow to account for parameter uncertainty, unlike a Bayesian ap-67

proach.68

Bayesian multi-model approaches, such as Bayesian model selection (BMS, (Raftery,69

1995)) are based off of Bayes’ theorem (Kolmogorov & Bharucha-Reid, 2018). They pro-70

vide a rigorous stochastic framework to rank and select among competing models, while71

also considering parameter, input and measurement uncertainty (Draper, 1995). In BMS,72

a prior belief with regard to model adequacy is updated to posterior model weights, based73

on observed data (Schöniger, Illman, et al., 2015). Traditionally, model ranking in the74

BMS framework is based on the values of Bayesian model evidence (BME), which are75

defined as the probability of a model of reproducing the available data (Raftery, 1995;76
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Draper, 1995). Such BME-based model selection approaches have been used in many fields77

for model ranking, and/or selection purposes, for example: Schöniger, Illman, et al. (2015)78

and Elshall and Ye (2019) for groundwater modelling, Wöhling et al. (2015) for crop mod-79

elling, Marshall et al. (2005) for hydrological models, Brunetti et al. (2017) in hydrogeo-80

physical modelling and Schäfer Rodrigues Silva et al. (2020) in reactive groundwater trans-81

port models, to name a few. Additionally, Mohammadi et al. (2018) and Scheurer et al.82

(2021) apply BMS using surrogate models for sediment transport in rivers and to bio-83

chemical processes in the subsurface, respectively.84

BME is also referred to as the marginal likelihood, since it is computed by estimat-85

ing the average of the model likelihood over the entire prior parameter space (Kass &86

Raftery, 1995). Thus it often requires multidimensional integration, which can come at87

high computational costs. Consequently, several approximations for the calculation of88

BME exist to avoid said integration, including the harmonic mean estimate (Newton &89

Raftery, 1994), marginal likelihood calculations by Gelfand and Dey (1994) and Chib90

and Jeliazkov (2001) (see Liu and Liu (2012) for an overview), the Bayesian information91

criterion (BIC) (Schwarz, 1978) and the Kayshap information criterion (KIC) (Kashyap,92

1982), to name a few. These, however, require assumptions which can lead to biased re-93

sults (Schöniger et al., 2014). The Monte Carlo sampling technique (Hammersley, 1960)94

provides a bias-free framework to approximate BME, given that it allows to sample from95

the entire prior parameter space. In spite of presenting high computational costs, it has96

shown to provide the best results based on a benchmark test by Schöniger et al. (2014).97

In addition to BMS, Schöniger, Illman, et al. (2015) apply a model comparison method-98

ology based not on the true observation data but on an inter-model comparison, and called99

it Bayesian justifiability analysis (BMJ). In BMJ, each competing model takes turns be-100

ing the true data generator and is compared against all other models, including itself,101

in a Bayesian setup. The results, composed of BME-weights, are then summarized in a102

model confusion matrix (MCM). The term confusion matrix is borrowed from machine103

learning, where it is used for classification-type problems (see Tharwat, 2020). Similar104

as with the machine learning application, the MCM allows to visualize similarities be-105

tween the considered models and to justify model complexity, given the available data.106

It can therefore complement the model selection analysis. Recently, the BMJ framework107

has been extended to computationally demanding models applying surrogates (Schäfer108
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Rodrigues Silva et al., 2020; Scheurer et al., 2021) and for model uncertainty quantifi-109

cation (Reuschen et al., 2021).110

Even though traditional BME-based BMS analysis does provide a statistically rig-111

orous methodology for considering uncertainties, it does present some limitations, which112

also extend to the BMJ methodology. The first limitation of the BME-based frameworks113

consists in BME being powerless when comparing models that can only work with dif-114

ferent data sets sizes and/or types of data. This can be the case for models with differ-115

ent space discretization, which use a different subset of the available data, or models with116

different levels of complexity, e.g. solely flow or flow-transport models, that can repro-117

duce different types of data. BME, through the likelihood function, is dependent on data118

set properties, such as data set size and measurement error. When comparing models119

with different data sets, this influence can be independent on model fit. Therefore com-120

paring models with different data sets can lead to biased results. This implies that any121

extra, potentially informative data associated to a subset of models cannot be used, and122

would therefore be wasted. Several studies have addressed the impact of measurement123

error, data type and data set size on model rankings (see Rojas et al., 2010; Schöniger,124

Wöhling, & Nowak, 2015; Wöhling et al., 2015), and have shown that one can obtain sig-125

nificantly different BME weights depending on the number and/or type of data used for126

the comparison. These studies, however, have focused on model sets within the tradi-127

tional BMS framework (comparing all models against the same data) and have not, to128

the best of our knowledge, addressed the subject of comparing models based on differ-129

ent data sets and the direct effect of the likelihood function.130

Indeed, BME, through the likelihood function, depends on the data set properties,131

including measurement quality (error) and data set size. Schöniger, Wöhling, and Nowak132

(2015) and Wöhling et al. (2015) mention that one could get significantly different model133

selection scores (or model weights) depending on the data set chosen for calibration or134

testing. Consequently, the methodology is limited to comparing models with the exact135

same calibration/testing data set to avoid bias in the results.136

The second limitation of the existing BME-based approaches is that BME does not137

allow to judge the performance of a model based on its posterior predictive capabilities.138

Basically, in the Bayesian theory (see Kolmogorov & Bharucha-Reid, 2018; Gelman et139

al., 1995), BME is considered as a normalization factor that can be obtained via the in-140
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tegration of the likelihood over the prior parameter space. Therefore, BME values con-141

tain only partial information required for the Bayesian updating of a model via the ob-142

servation data. Additionally, they are highly sensitive to prior selection (Raftery, 1995).143

In other words, BME-based approaches fail to give an idea of the posterior predictive144

capabilities or how much the model was able to learn from the data, which are integral145

steps within the Bayesian framework.146

One way to deal with the problems posed by BME is through the use of informa-147

tion theory, which has close ties to Bayesian inference, given that the latter is linked to148

maximum entropy quantification and is efficient in terms of information content (Zellner,149

1988). Information theory scores include the expected-log posterior likelihood (ELPD),150

relative entropy (RE), also known as Kullback-Leibler divergence (Kullback & Leibler,151

1951), and information entropy (IE), which stem from Shannon’s definition of entropy152

(Shannon, 1948). They have been widely used in probability theory applications to quan-153

tify the uncertainty and amount of information (Murari et al., 2019), for model selec-154

tion purposes (Gelman et al., 2014; Murari et al., 2019; Cliff et al., 2018; Vecer, 2019)155

and optimal experimental design (Nowak & Guthke, 2016; Lindley, 1956).156

Many applications use approximations of entropy, such as the Akaike information157

criteria (AIC) (Akaike, 1974), WAIC (Watanabe, 2010), AICc and the multivariate Gaus-158

sian posterior estimate (Oladyshkin & Nowak, 2019) due to the difficulty to calculate159

entropy values for high-dimensional problems. These, however, require the use of assump-160

tions, which can cause bias in the results (Oladyshkin & Nowak, 2019). To overcome this,161

Oladyshkin and Nowak (2019) present a connection between Bayesian inference and in-162

formation theory and propose methods to compute BME in combination with ELPD,163

RE and IE, to measure information content in Bayesian updating and for model selec-164

tion purposes.165

Based on the methods proposed in this study, some of these information-theoretic166

scores remain meaningful when comparing models with different data sets, given that167

they tend to be less dependent on data set properties. Moreover, as suggested in Oladyshkin168

and Nowak (2019), the relation between Bayesian inference and computing certain information-169

theoretic scores avoids any additional assumptions and skips any multidimensional in-170

tegration or density estimation, which is why we have chosen to follow said methodol-171

ogy. Overall, the Bayesian information-theoretic scores allow to obtain information on172
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the updating process within the Bayesian inference framework, which is ignored in tra-173

ditional BME-based BMS and BMJ analysis. The approach proposed in (Oladyshkin &174

Nowak, 2019) has been applied in active learning techniques for surrogate model gen-175

eration (Oladyshkin et al., 2020), but not, to the authors’ knowledge, for model selec-176

tion or similarity analysis as in the context of the current paper.177

The current paper proposes to complement the traditional BME-based BMS method-178

ology with information-theoretic scores. The goal is to overcome the two aforementioned179

limitations surrounding BME. We focus mainly on the addition of ELPD as a measure180

of information between the likelihood and the posterior (posterior model fit), RE between181

the prior and the posterior (updatability conditioned on the data) and IE of the poste-182

rior for model selection and comparison purposes. To avoid additional assumptions due183

to the novelty of the methodology, we make use of the prior-based Monte Carlo sampling184

approach (Hammersley, 1960; Gelman et al., 1995). Additionally, and building on the185

work by Schöniger, Illman, et al. (2015), we seek to further complement the BMS pro-186

cedure with a model similarity analysis, using model confusion matrices based on BME187

and the different information-theoretic scores, to determine in which step of the Bayesian188

updating process do the models present similarities, or differences.189

We apply and test the methodology on a synthetic groundwater model setup, made190

up of five competing models and based on the setup in Schöniger, Illman, et al. (2015).191

Here, four flow-transport models and one flow-only model, with different spatial hydraulic192

conductivity distribution, are compared against each other (model similarity analysis)193

and against a set of synthetically generated data (BMS). This setup will allow to test194

our proposed methodology on environmental models with different complexity, represented195

by their priors, as well as with different data sets. With this study and its application196

case, we seek to 1) present the behavior of the information-theoretic scores within the197

BMS and model similarity frameworks, and how they can be interpreted to complement198

BME; 2) determine which scores can be used to select and compare between models with199

different data sets, and the limitations associated to them.200

The remainder of the paper is organized as follows: in Section 2 we present an overview201

of traditional BME and BMJ frameworks. We then introduce the synthetic setup in Sec-202

tion 3. We briefly present the different information scores, as well as a computationally203

simple way to calculate them in Section 4. Here, we also show how these scores overcome204
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the current limitations of BME-based BMS and BMJ approaches and we guide the reader205

in how to interpret them within both frameworks. Lastly, the results and discussion are206

presented in Section 5.207

2 Bayesian Model Assessment Framework208

2.1 Bayes’ Theorem209

In Bayes’ theorem (see Kolmogorov & Bharucha-Reid, 2018), current knowledge210

associated with the set of uncertain parameters, for a given model Mk, is encoded in a211

so-called prior distribution. This distribution can be the result from previous experience212

or field measurements (Moore & Doherty, 2005). The current beliefs are then updated213

based on how well the model can reproduce historically observed data to obtain a pos-214

terior distribution (Raftery, 1995), which should be more, or just as, informative as the215

prior (Oladyshkin & Nowak, 2019). Bayes’ theorem can therefore be summarized by the216

following equation:217

p(ωk,Mk|yo) =
p(yo|ωk,Mk)p(ωk,Mk)

p(yo|Mk)
, (1)

where p(ωk,Mk) is the prior distribution of modeling parameters ωk from the param-218

eter space Ω, p(yo|ωk,Mk) is the likelihood function, p(ωk,Mk|yo) is the updated pos-219

terior distribution and the denominator p(yo|Mk) is the probability of data given Mk.220

The latter could be seen as a normalizing factor to obtain the posterior distribution and221

is referred to as Bayesian model evidence (BME).222

The likelihood function (see Aldrich, 1997) serves as the connection between the

prior and posterior distributions by incorporating the observed data (Press, 2009). Specif-

ically, the term p(yo|ωk,Mk) in equation (1) states how likely it is that a given model

Mk, with parameter set ωk, can fit the observed data set yo within the tolerance implied

by the data’s measurement error. If one assumes Gaussian-distributed independent er-

rors, as we do for the purpose of this paper, a multivariate Gaussian distribution can be

used as a likelihood function:

p(yo|ω,Mk) = (2π)
−No

2 |R|−1/2 exp

[
−1

2
(yk − yo)

TR−1(yk − yo)

]
, (2)

where R is the (here diagonal) covariance matrix of measurement errors of size No x No,223

with No being the number of observations in the calibration data set, yo is the vector224
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of calibration data (observations) and yk is the vector of corresponding model results225

from model Mk. The term to the left of the exponent is a normalizing factor, such that226

the area under the likelihood function integrates to one over the distribution of measure-227

ment error. The goodness of fit to the data is encoded in the exponential term on the228

right. Extended approaches exists that account for auto-correlated and/or non-Gaussian229

error, or that include statistical representations of model inaccuracies. As we will not230

exploit specific properties of equation (2), our assumption does not induce any loss of231

generality.232

The equation for BME can be rewritten as follows:233

p(yo|Mk) = BMEk =

∫
Ω

p(yo|ωk,Mk)p(ωk,Mkdωk), (3)

or, shortly, using the prior-based expectation Eprior[·]:

BMEk = Eprior[p(yo|ωk,Mk)], (4)

where the BME value is expressed as an integral over the total parameter space ωk and,234

for that reason, also known as the marginal likelihood (Kass & Raftery, 1995). Based235

on this formulation, BME values are sensitive to prior selection (Kass & Raftery, 1995)236

and, therefore, tend to favor models with the best compromise between model flexibil-237

ity and model fit (Schöniger, Illman, et al., 2015). There are several alternative approaches238

to estimate BME using posterior marginalization or additional approximations (see Schöniger239

et al., 2014; Oladyshkin & Nowak, 2019). However, equation (3) is often employed us-240

ing the prior-based brute Monte Carlo (MC) sampling (Hammersley, 1960), yielding to241

the following estimate:242

BMEk ≈ 1

NMC

NMC∑
i=1

p(yo|Mk, ωi). (5)

It is well-known that MC sampling in equation (5) requires a large number of model243

realizations (NMC) and can therefore become computationally prohibitive. Neverthe-244

less, this sampling technique, compared to others, avoids additional assumptions (see de-245

tails in Schöniger, Illman, et al., 2015; Oladyshkin & Nowak, 2019). Therefore, in the246

current paper, we follow the MC sampling strategy to avoid additional assumptions and247

biased results, given the novelty of the framework we are suggesting.248
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2.2 Bayesian Model Selection249

In a similar manner as with parameter uncertainty, Bayes’ theorem can be used to250

quantify conceptual uncertainty associated to model choice through BMS. Here, both251

the prior parameter and model adequacy beliefs of model Mk are updated based on the252

observed data to obtain posterior parameter distributions and posterior model weights253

(Chipman et al., 2001). Considering a finite number of competing models NM , the BMS254

formulation for a given model Mk can be summarized by the following equation (Hoeting255

et al., 1999):256

W (Mk|yo) =
p(yo|Mk)W (Mk)∑NM

i=1 p(yo|Mi)W (Mi)
, (6)

where W (Mk) and W (Mk|yo) are the model prior and posterior weights associated to257

a given competing model Mk, respectively. The use of a uniform distribution of 1/NM258

is often used as a prior model assumption, since it allows for the updated model weight259

to depend solely on the model’s fit to the data, and not on subjective prior distributions260

(Chipman et al., 2001; Press, 2009). The denominator in equation (6) is a normalizing261

factor, such that the sum of all model posterior probabilities is equal to 1. This denom-262

inator is the same across all models. Therefore, the only term which has an effect on the263

posterior model weight is p(yo|Mk), which is the BME for model Mk, that quantifies the264

goodness of fit of model Mk against the available data.265

As BME is a relative measure of model fit associated to a model, a strategy for model266

selection is to choose the model with the highest posterior model weight (Chipman et267

al., 2001; Oladyshkin & Nowak, 2019), given that a higher BME indicates the best com-268

promise between the model fit and the model’s flexibility, where the latter is represented269

by the prior distribution. Importantly, BME values are valid only for the current state270

of knowledge, and are dependent on the data and the set of models being analyzed. This271

implies that, if more knowledge is gained on the real values (additional measurements)272

or additional models are considered, the BMS weights (W) could change.273

2.3 Bayesian Justifiability Analysis274

In a BMJ setup, as applied by Schöniger, Illman, et al. (2015), the goal is to test275

whether the complexity (e.g. parameter number and spread of their prior) of models would276

be justifiable when facing a limited data set, under the assumption that the models could277
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actually be true. To this end, the models are not compared against observed data (as278

in BMS) but against each other, in a synthetic setup. Here, each competing model takes279

turns in being the data-generating model and is then compared against all competing280

models, including itself, within the Bayesian modelling framework. As a result, BME weights281

are obtained for each data-generating/competing model combination.282

In BMJ, Nd realizations from the parameter prior of each data-generating model

Mj are sampled and evaluated in the model. Noise is then added to each data set to ac-

count for the measurement error associated to real observations (Reuschen et al., 2021).

Each model data set y*l,j , with l = 1 : Nd, then takes turns being the ”true” data

for model Mj , and the Bayesian framework is applied for each competing model Mk. The

BME weights (BMEk,l) are then averaged over all Nd realizations, to obtain an aver-

aged BMEk,j value, as summarized by the following equation:

BMEk,j =
1

Nd

Nd∑
l=1

BMEk,l , (7)

where BMEk,j is the averaged BME of model Mk given Nd realizations of model Mj .283

The results for all BMEk,j are then summarized in a so-called model confusion matrix284

(MCM) (Schöniger, Illman, et al., 2015). The MCM has the size NM x NM , where the285

columns represent the data-generating models, Mj , and the rows represent the compet-286

ing models Mk. Confusion matrices, also referred to as contingency or error matrices,287

are often used in machine learning applications, e.g. classification problems (see Lind-288

holm et al., 2022).289

Figure 1 shows a schematic illustration of generating the MCM. Following the or-290

der set by equation (7), each y*l,j (each column in Figure 1) takes turns in being the291

true data and the Bayesian framework is applied for each competing model Mk. The red-292

highlighted box in Figure 1 represents the likelihood value obtained when comparing each293

individual realization Mk,i of model Mk for i = 1...NMC , against a single synthetic data294

set Mj,l generated by model Mj . Expectation over NMC realizations of the competing295

model Mk is schematically displayed by each row in Figure 1 (blue highlighted boxes),296

which results in BMEk,l. The averaged weights for each realization of model Mk given297

Mj,l are represented by the entries along the green cells in Figure 1. Lastly, these BMEk,l298

values are averaged to obtain the MCM entries, represented by the yellow area in Fig-299

ure 1.300
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Figure 1. Schematic illustration how to construct a model confusion matrix. Red box: likeli-

hood of a single realization drawn from model Mk=1, given a single realization drawn from model

Mj=2. Blue boxes: average likelihood (BME) of model Mk=1 given a single realization of model

Mj=2. Green boxes: Average BME values for model Mk=2 given all realization of model Mj=2.

The diagonal boxes (e.g. yellow box) correspond to the average BMEk,j for a model Mk given

data-generating model Mj .

Similar to the confusion matrices in classification problems, the diagonal values in301

the resulting MCM correspond to how much a model measures up against itself as the302

data generator, while the off-diagonal values correspond to how the models measure up303

against each other. Therefore, diagonal weights close to 1 indicate that the model can304

identify itself as the true data generator, and does not confuse its results (Schöniger, Ill-305

man, et al., 2015). On the other hand, diagonal values close to 1/NM indicate that a model306

confuses its predictions with those of other models. This can be caused by either mod-307

els being very similar in their predictions, or the available data set size not being big enough308

for a model to identify itself (Schöniger, Illman, et al., 2015). Therefore, “the [MCM] re-309

veals whether two models are actually very similar in their predictions, while the con-310

ventional BMS analysis cannot distinguish this case from the case of two models that311

by chance achieve a similar overall goodness of fit” (Schöniger, Illman, et al., 2015).A312
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similar type of analysis, but with the main focus on off-diagonal values was used by Schäfer313

Rodrigues Silva et al. (2020) to reveal and discuss similarities within a set of models.314

2.4 Effect of Different Calibration Data Sets315

BME’s dependence on calibration data set properties, such as data set size, infor-316

mativeness and measurement error, comes from the likelihood function in equation (2).317

When the same data set is used for all competing models, the normalization factor (2π)
−No

2 |R|−1/2
318

in equation (2) is the same for all models and therefore cancels out when applying equa-319

tion (6) to calculate W (Mk|yo). In this case, the effect of data set size and measurement320

error is concentrated inside the exponential term, in the values and size of R, where it321

is combined with model fit.322

Canceling the normalization factor is not possible if models with different data sets323

(including different data set sizes and/or measurement errors) are considered. Thus, their324

effect on the normalization factor must be taken into account and will directly affect the325

BME value, independent on model fit. Indeed, from equation (2), one can see that the326

first term, (2π)
−No

2 , decreases with increasing data set size, decreasing likelihood values,327

and thus BME. In the second term, |R|−1/2, the value of the determinant of R depends328

on both data set size and the magnitude of the measurement error. Consequently, BME329

becomes powerless when comparing models with different data sets, since the models would330

not be under equal conditions and thus BME would lead to biased results. We will fur-331

ther explore this scenario using a groundwater case study, in which we compare mod-332

els with different data sets. We will use this example to expose the problems with BME333

in these cases, and how we can use information-theoretic scores to potentially overcome334

them. We describe the groundwater case study in Section 3, followed by a description335

of the information-theoretic scores in Section 4.336

3 Description of Groundwater Case Study337

There is a high uncertainty associated to subsurface modelling, especially with re-338

gard to the spatially variable parameters and the different processes involved (James &339

Oldenburg, 1997). Therefore, there is not a unique conceptual/mathematical represen-340

tation of such systems that satisfies all applications. This topic has been tackled in many341

studies, including in Schöniger, Illman, et al. (2015), where the problem of choosing a342
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spatial parametrization for hydraulic conductivity (heterogeneity) given a set of possi-343

ble models is addressed. Additionally, one could also be confronted with the problem of344

choosing which processes to consider as relevant, for example whether we use a flow-only345

or a flow-and-transport model to represent our system. A reason to do so is that addi-346

tional transport-related data can be highly informative on details in hydraulic conduc-347

tivity fields, but only if a corresponding upgrade of models to include transport (and transport-348

related parameters) is done (Nowak & Cirpka, 2006). If one considers both flow-and-transport349

and flow-only models, the competing models would therefore depend on different data350

sets. Consequently, it poses a challenge for the traditional BME-based BMS approach351

described in the previous section. To overcome this challenge, we propose to test this352

scenario, considering models with different data sets, with the Bayesian and information-353

theoretic methodology.354

We set up a synthetic groundwater model comparison, where the challenge of mod-355

elling subsurface heterogeneity is examined by comparing four models with different spa-356

tial distributions of hydraulic conductivity (K). This setup is loosely based on the one357

presented in Schöniger, Illman, et al. (2015). We build on this work by additionally con-358

sidering both flow and transport models, which depend on different data sets. Conse-359

quently, the following five competing models are considered in our setup:360

1. transport, homogeneous model (hm)361

2. transport zoned model, with five zones (zm5)362

3. flow zoned model, with five zones (zm5 f)363

4. transport, zoned model, with nine zones (zm9)364

5. transport, geostatistically distributed model (gm).365

We will compare the models against a synthetic run of one of the competing models, as366

opposed to an experimental laboratory setting, as was the case in Schöniger, Illman, et367

al. (2015). This provides a controlled setup, where we know beforehand both the syn-368

thetically true observations and the synthetically true K distribution.369

Through this application, we seek to demonstrate the behavior of the additional370

Bayesian information-theoretic scores for models with different conceptual representa-371

tions (prior flexibility) and with different data sets. We also plan to address how the mod-372

els with different data sets could be assessed against each other using MCM. To do so,373
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we will first summarize the simulation setup as well as the competing models in the fol-374

lowing sections, followed by the results obtained for both the model selection and model375

similarity analysis in Section 5.376

3.1 Synthetic Groundwater Model Setup377

For generating the groundwater models, we use a MATLAB-based finite element378

method (FEM) code, based on the program used in Schöniger (2010). The program solves379

the steady state, 2D groundwater transport equations for a 50 m x 50 m confined aquifer,380

discretized every 1 m. A Dirichlet boundary condition of 1 m and 0 m were set on the381

west and east boundaries, respectively, and impermeable Neumann boundary conditions382

were assigned to the north and south boundaries. Additionally, a tracer plume was lo-383

cated in the middle of the west boundary. For all competing models, the boundary con-384

ditions and the different transport parameters were kept constant. The model constants385

are summarized in Table 1. More information on the model setup can be found in Schöniger386

(2010) and Nowak and Cirpka (2006).387

Table 1. Boundary conditions and constant aquifer and transport parameters

Parameter Value

Domain size [50 m, 50 m]

Grid size [1 m, 1 m]

West BC∗ 1 m

East BC∗ 0 m

North BC∗ 0 m/s

South BC∗ 0 m/s

Porosity 0.35

Longitudinal dispersivity 2.5 m

Transverse dispersivity 0.5 m

Diffusion coefficient 1x10−9 m/s

∗BC = Boundary condition.
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We consider four different hydraulic conductivity (K) models to generate five com-388

peting groundwater models, following the logic presented in Schöniger, Illman, et al. (2015).389

The homogeneous model represents the simplest model, since it consists of a single K390

value assigned to all cells in the grid. The controlled nature of the experiment allows for391

two informed, zoned models, one divided into five independent K zones, and one divided392

into nine zones, with the latter therefore being more flexible. For these three models, we393

assume that the ln(K) values follow a normal distribution with a mean of ln(1x10−5) and394

a variance of 1. Lastly, the most flexible model is represented by an isotropic geostatis-395

tical model, in which ln(K) follows a multivariate Gaussian distribution with an expo-396

nential covariance function, with a mean of ln(1x10−5), a variance of 1 and correlation397

length of [10 m.,10 m.]. This results in 2500 uncertain parameters, which are all depen-398

dent on each other. A summary of the different ln(K) parametrization models can be399

seen in Table 2.400

For this test case, the synthetically true ln(K) distribution was generated from a401

realization of the geostatistical model, which can be observed in Figure 2. The synthetic402

setup and the synthetic observation data generated from it will be discussed further in403

Section 3.2. The informed zone classification for both the 5-zoned and the 9-zoned mod-404

els were based on this ln(K) distribution to simulate a prior knowledge of the real ln(K)405

field. Both zone classifications can be seen in Figure 3.406

Table 2. Summary of hydraulic conductivity parametrization models

Model Number of parameters Parameters’ distribution

Homogeneous (hm) 1 N [ln(1x10−5), 1]

5-zoned (zm5) 5 N [ln(1x10−5), 1]

9-zoned (zm9) 9 N [ln(1x10−5), 1]

geostatistical (gm) 2500 N [ln(1x10−5), Σ∗]

∗Σ = Exponential covariance function, with correlation length (x, y) = [10 m, 10 m].

We evaluate the model outputs in five, arbitrarily-located observation wells within407

the study area, which are shown in Figure 2. We take the four previously-mentioned ln(K)408

models as flow-and-transport models, with hydraulic head (h) and concentration (co) mea-409
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surements. Thus, they count with a calibration data set size of 10. To include a model410

with a different data set size, we additionally consider the 5-zoned model as a flow-only411

model, which only considers hydraulic head observations and thus has a calibration data412

set size of five.413
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Figure 2. True ln(K) spatial distribution, synthetically generated through the geostatistical

model. The black dots correspond to the location of the measurement points.

3.2 Synthetic Setup414

For the controlled setup, we use a random realization of the geostatistical model415

as the synthetic, true observed data, since it represents the most flexible model, from both416

a number of parameters and an output space perspective. The true spatial h and co dis-417

tribution can be seen in Figures 4a and 4b, which represent the data that the compet-418

ing models will be compared against in a BMS setup.419

If one had an infinite number of model realizations, the geostatistical model would420

be able to reproduce data generated from itself perfectly. To properly account for mea-421

surement noise in this synthetic setup for BMS and BMJ analysis, noise was added to422

the synthetic data set, to account for measurement error (Reuschen et al., 2021). For the423

noise, we consider a standard deviation of herror = 0.06m and cerror = 0.06 + 0.2co,424
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Figure 3. Zone classification for a) 5-zoned model and b) 9-zoned model, based on syntheti-

cally true ln(K) distribution.

assuming a relative error for co dependent on the measured value. Therefore, the flow425

and transport models have not only different data set sizes, but also observations with426

different measurement errors.427

4 Bayesian Information-Theoretic Model Assessment Framework428

The topic of information theory, in the context of communication theory, was ad-429

dressed by Shannon (1948), and has paved the way to information theory in the context430

of probability and statistics. More information on the development of information the-431

ory can be seen in the works by Kullback (1997) and Commenges (2015), to name a few.432

This field focuses on quantifying of the amount of information or uncertainty in data,433

referred to as information entropy. Originally, information theory was introduced for dis-434

crete probabilities (Shannon, 1948) and then expanded to continuous distributions. Dif-435

ferences with regards to discrete and continuous entropy are further detailed in Marsh436

(2013) and Santamaŕıa-Bonfil et al. (2016). In the current work, we will explore the con-437

nection between information theory for continuous distributions and Bayesian inference438

as presented in Oladyshkin and Nowak (2019) to enhance the BMS and BMJ concepts439

presented in Section 2.440

We begin with a brief overview of information-theoretic scores, including informa-441

tion entropy (IE), cross entropy (CE) and relative entropy (RE) within the Bayesian frame-442
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Figure 4. Spatial distribution of hydraulic head (left) and concentration (right) for the true

synthetic run, generated with the geostatistical model

work. This is followed by a computationally simple way to calculate and interpret them443

within both BMS and BMJ frameworks.444

4.1 Definitions of Information-Theoretic Scores445

Information entropy describes the quantification of the expected uncertainty, or the

missing information required to remove uncertainty from a random variable (Shannon,

1948). In the context of Bayesian theory, the IE of a parameter set ωk can be calculated

for its prior or posterior probability distribution. In this work, we limit ourselves to quan-

tifying the IE for the posterior to determine the remaining uncertainty after updating

the prior based on the observed data. IE of the posterior is formulated as follows:

IE ≡ H[p(ωk,Mk|yo)] = −
∫
Ω

p(ωk,Mk|yo) ln [p(ωk,Mk|yo)] dωk, (8)

where H[·] is the entropy according to

H[p(x)] = −
∫

p(x) · ln[p(x)]dx. (9)

Cross entropy (CE) (Shannon & Weaver, 1949) quantifies the expected missing in-

formation to get one distribution from another (Good, 1956; Shore & Johnson, 1980).

For the Bayesian framework, one can calculate the information needed to get the pos-
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terior p(ωk,Mk|yo) from the prior p(ωk,Mk as follows:

CE ≡ H[p(ωk,Mk|yo), p(ωk,Mk)] = −
∫
Ω

p(ωk,Mk|yo) ln [p(ωk,Mk] dωk, (10)

where H[·, ·] is the general cross entropy according to

H[p(x), q(x)] = −
∫

p(x) · ln[q(x)]dx. (11)

Similar to the CE in equation (10), the expected missing information to get the pos-

terior from the likelihood could also be assessed using a non-normalized cross entropy

(NNCE) (Oladyshkin & Nowak, 2019):

NNCE ≡ Ĥ[p(ωk,Mk|yo), p(yo|ωk,Mk)] = −
∫
Ω

p(ωk,Mk|yo) ln [p(yo|ωk,Mk)]dωk.

(12)

The NNCE is non-normalized since the likelihood is considered a proper probability dis-

tribution with respect to the measurement errors for which the likelihood is determined,

and not with respect to the model parameters (Oladyshkin & Nowak, 2019). If one elim-

inates the negative sign in equation (12), the formulation can be reinterpreted as the ex-

pected log-predictive density (ELPD) (see Gelman et al., 2014; Vehtari & Ojanen, 2012),

given that the integral in equation (12) represents a posterior-based expectation of the

log-likelihood over the entire parameter space:

ELPD = −NNCE. (13)

ELPD, in its different approximations, has been used to compare and check model446

fit based on posterior predictive capacities within the Bayesian framework (Gelman et447

al., 2014; Höge et al., 2019; Schöniger et al., 2014). It can be used to describe the ac-448

curacy with which a model can predict not only the data used for calibration, but also449

all potential other data, including those used for testing or those not even available yet450

(Gelman et al., 2014; Nicenboim et al., 2021).451

Another score used to compare two probability distributions in terms of uncertainty452

is RE, also known as the Kullback-Leibler divergence (DKL). Kullback and Leibler (1951)453

mention that this term can be used as a measure of how different two distributions are,454

or the amount of information needed to discriminate between them. Various authors re-455

mark that relative entropy may seem like a measure of distance between two distribu-456

tions, since RE ≥ 0 and RE = 0 only if both distributions are the same. Nevertheless,457
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it is not a proper measure of distance (Commenges, 2015) since it is not symmetric and458

thus RE[A,B] ̸= RE[B,A]. In the Bayesian context, we will use RE to assess the ex-459

pected gain, or reduction in uncertainty, in going from the prior to the posterior as fol-460

lows:461

RE ≡ DKL[p(ωk,Mk|yo), p(ωk,Mk] =

∫
Ω

ln

[
p(ωk,Mk|yo)

p(ωk,Mk

]
p(ωk,Mk|yo)dωk. (14)

Using equations (8) and (12), equation (14) can be also rewritten as the difference462

between the cross entropy (CE) and the information entropy for the posterior (IE). In463

other words, it can be calculated by removing the uncertainty of the posterior from the464

amount of information needed to get the posterior from the prior:465

RE = CE − IE. (15)

4.2 Computation of Information-Theoretic Scores466

Various problems arise when solving equations (8), (12) and (15). This includes the467

estimation of the multidimensional integral through additional assumptions, that become468

necessary in high dimensions (Oladyshkin & Nowak, 2019). In the current paper, we use469

the following approaches, in order to avoid any assumptions and still excluding multi-470

dimensional integration.471

4.2.1 ELPD472

To compute ELPD (and therefore NNCE), we use a brute force Monte Carlo method-473

ology. Given that the posterior parameter and output distributions are usually not known474

in analytical form, equation (12) can be rewritten as a sample-wise expectation of the475

posterior (giving equal weights to each posterior sample):476

ELPD = Epost

[
ln[p(yo|ωk,Mk)]

]
, (16)

where Epost[·] is the posterior-based expectation.477
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Additionally, posterior samples are a by-product of Bayesian updating. Therefore,

one can approximate equation (16) by:

ELPD ≈ 1

Npost

Npost∑
i=1

ln[ p(yo|ωi,Mk) ], (17)

where Npost is the total number of posterior parameter sets. Posterior samples can be478

obtained, e.g., through MCMC techniques or via a rejection sampling technique (A. Smith479

& Gelfand, 1992).480

One can observe a similarity between equation (16) for ELPD and equation (5) for481

BME; they are both measurements of model fit, with the former being in the posterior482

and the latter in the prior parameter space. Therefore, as with BME, the best model from483

this perspective is the one with the largest ELPD. In contrast to BME, ELPD has a smaller484

influence from the prior, given that the prior does not play a significant role in poste-485

rior predictions when having informative data (Gelman et al., 2014). Thus models with486

different prior flexibility, which received different BME scores, can receive a similar ELPD487

value if their posteriors present a similar model fit.488

4.2.2 Relative Entropy489

In order to compute RE, Oladyshkin and Nowak (2019) reformulate Bayes’ the-

orem from equation (1) and obtain the following formulation (see (Oladyshkin & Nowak,

2019) for more details):

RE = − ln [BME]−NNCE, (18)

which is also equivalent to:

RE = − ln [BME] + ELPD. (19)

Equation (18) indicates that RE can be calculated based on BME and NNCE, both490

of which can be approximated using MCMC or rejection sampling techniques, as men-491

tioned in the previous sections. Moreover, one can clearly see that the information gained492

through the data, in the form of RE, is the difference between the prior model fit (through493

-ln(BME)), and the posterior model fit (through ELPD). From a Bayesian perspective,494

the model with the largest RE is the one that reduces predictive uncertainty the most495

when moving from the prior to the posterior parameter distributions, or to which the496

available data was the most useful. Another way of interpreting RE, as mentioned by497
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Oladyshkin and Nowak (2019), is that a maximum RE is assigned to the model whose498

overall normalized likelihood function is most similar to the true unknown posterior dis-499

tribution. This makes RE different yet still suitable as a model selection criterion. The500

difference is that RE is often inversely related to BME and so can lead to different model501

selection outcomes.502

4.2.3 Cross Entropy503

The cross entropy between the prior and posterior distributions in equation (10)504

can be obtained from its definition using the posterior-based expectations (similar to ELPD):505

CE = −Epost [ ln p(ωk,Mk) ] (20)

or, numerically, using posterior-based sampling:

CE ≈= − 1

Npost

Npost∑
i=1

ln[ p(ωk,Mk) ]. (21)

4.2.4 Information Entropy506

With knowledge on ELPD, CE and RE, one can calculate IE in the Bayesian con-507

text directly from equation (8):508

IE = CE −RE (22)

or

IE = ln [BME]− ELPD + CE. (23)

As previously mentioned, IE is the uncertainty of the posterior distribution. Con-509

sequently, from a model selection perspective, one would be inclined to select the model510

with the smallest IE (smallest uncertainty). A small IE can be due to a) a large gain in511

information by moving from the prior to the posterior and/or b) a small uncertainty as-512

sociated to the prior parameter distribution (simple or very informative prior). Another513

way to interpret IE is through the two components in equation (22). From the equation514

we see that IE depends on the difference between CE and RE. Both terms represent dif-515

ferent aspects of the relationship between the prior and posterior distributions: RE rep-516

resents the gain in information when moving from a prior to a posterior distribution and517
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CE represents the uncertainty carried from the prior to the posterior (CE). Therefore,518

it is important to consider how much of the posterior uncertainty is due solely to the prior519

(CE), and how much is due to the informativeness of the data (RE) to make an informed520

decision based on IE. We will further expand on this in Section 5.2.521

4.3 Effect of Different Calibration Data Sets522

As ELPD is a likelihood-based score, it is sensitive to both data set size and mea-523

surement error. Recall that this is evident from the normalizing factor in equation (2)524

that cannot be canceled out when comparing models with different data sets. This can525

be seen in more detail in equation (31) in Appendix A, where the equation for ELPD526

is decomposed to mathematically see the effect of the normalizing factor. Therefore, ELPD527

is subject to similar issues as BME, and should only be used to compare models with528

the same data set.529

In contrast to BME and ELPD, RE and IE scores compare models based on the530

prior and/or posterior parameter distributions and not directly on model fit: RE quan-531

tifies the gain in information from prior to posterior and IE the uncertainty associated532

to the posterior parameter distribution. Therefore, RE and IE do not depend directly533

on the likelihood function, and thus are not affected by models with different data set534

size. This can be seen mathematically in equation (32) in Appendix A. When estimat-535

ing RE, the normalizing factor from the likelihood function, present in both ln(BME)536

and ELPD, is cancelled out. Consequently RE, and by definition IE, depend solely on537

the exponential term of the likelihood function in the prior and posterior parameter spaces,538

which is a direct measure of model predictive quality. Due to this, RE and IE are more539

suitable scores to compare models with different data sets, compared to BME or ELPD.540

4.4 Extension of Bayesian Model Selection and Model Similarity Anal-541

ysis542

Based on the additional Bayesian information-theoretic scores presented above, we543

now update the BMS and BMJ analysis to include said scores. This allows to compare544

and rank models not only from a prior BME perspective, but also from the perspectives545

of posterior and information gain. In the case of BMS, calculating ELPD, RE and IE546

does not require additional computationally-expensive calculations, given that they are547
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a direct result of calculating BME (using a Monte Carlo approach, which is the most com-548

putationally demanding step) and the rejection sampling processes, intrinsic to the Bayesian549

framework.550

In the case of BMJ analysis, the goal of this paper is not necessarily to justify a551

model’s flexibility (as in the original paper by Schöniger, Illman, et al. (2015)), but to552

simply compare the models from different perspectives. Therefore, we will refer to it as553

a model similarity analysis once the information scores are included in the analysis. We554

propose to construct the MCM for each score, in a similar way as for the BME-weights555

in BMJ (Section 2.3). Hence, additional to BME, we evaluate all information-theoretic556

scores for each model Mk, given each realization Ml of the data-generating model Mj .557

To estimate the entries in the MCM, we average each score for all realizations Mk|Mj,l558

(entries along the green cells in Figure 1) as detailed by the following equations:559

ELPDk,j =
1

Nd

Nd∑
l=1

ELPDk,l , (24)

REk,j =
1

Nd

Nd∑
l=1

(− ln[BMEk,l] + ELPDk,l) , (25)

IEk,j =
1

Nd

Nd∑
l=1

(−REk,l − CEk). (26)

The results will comprise of four different MCMs, one for each BMS score. We ad-560

ditionally propose to represent BME in the natural logarithmic scale (ln(BME)), so the561

results are also in terms of entropy and comparable to all other scores. Nevertheless, its562

interpretation is the same with or without the log-scale. Therefore, the ln(BME) con-563

fusion matrix entries are calculated as follows:564

ln[BME]k,j =
1

Nd

Nd∑
l=1

ln[BMEk,l] , (27)

In contrast to Schöniger, Illman, et al. (2015), we do not calculate Bayesian model565

weights, since these can only be obtained from BME. Therefore, we propose to gener-566

ate a normalized MCM, where each score for Mk given Mj,l is divided, or normalized,567

by the diagonal value (k = j for each realization l). Consequently, the diagonals in the568

final MCM will always be equal to 1 and the off-diagonals will indicate how much model569
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Mk differs, on average, from the self-identification score. The closer the normalized value570

is to 1, the more similar the model Mk is to the data-generating model Mj , given the571

current state of knowledge. This normalization must be done for each realization Mj,l572

individually and then averaged over all values for Mj (green row in Figure 1).573

4.5 Interpretation of MCMs574

Based on the description of the different scores, the MCMs for ln(BME) and ELPD575

can be considered as likelihood-based comparisons. The off-diagonal entries can be in-576

terpreted as how well model Mk can reproduce the results from Mj , or how much Mj577

confuses its results, in the prior (ln(BME)) and posterior states (ELPD). Just like in BMS,578

we cannot include models with different data sets in the MCMs for BME and ELPD.579

The MCM for RE represents how much each model Mk can learn from observa-580

tions generated by model Mj . Given that the MCM is built by first evaluating the scores581

for one realization of Mj,l at a time and then average, we do not expect the RE values582

in the diagonal to tend to zero (when the data-generating model is compared against it-583

self). Based on this, two models can be considered similar, from an RE perspective, if584

they undergo similar information gains (similar updatability), which would result in off-585

diagonal normalized values close to 1.586

IE confusion matrices represent a posterior-based comparison, quantifying the re-587

maining uncertainty in the posterior of Mk after updating prior beliefs with data from588

Mj . As per the definition of IE in equation (22), model similarity based on this perspec-589

tive depends on a balance between similarities in the prior distribution and updatabil-590

ity based on the data generated by model Mj . Therefore, its interpretation is directly591

linked to both terms.592

5 Illustrative Application to Groundwater Flow and Transport Mod-593

els594

5.1 Numerical Implementation595

In this section, we apply the extended BMS and model similarity analysis to the596

groundwater problem presented in Section 3. We calculate the BME, ELPD, RE and IE597

scores using equations (5), (17), (19) and (23). For this, we sample 1x106 Monte Carlo598

realizations from each of the five competing models. For BMS (Section 5.2) we use a sin-599
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gle synthetic data set from the geostatistical model to generate the synthetic observa-600

tions, as described in Section 3.2. For implementing the model similarity analysis (Sec-601

tion 5.3,) equations (27), (24), (25) and (26) are used to populate the MCMs for ln(BME),602

ELPD, RE and IE. Here, Nd = 1000 Monte Carlo realizations of each possible data-603

generating model Mj are sampled and then compared to the NMC = 1x106 Monte Carlo604

realizations from each competing model Mk. The noise added to the data-generating mod-605

els is based on the measurement error variances presented in Section 3.606

We will show, through this application, how to interpret the information-theoretic607

scores alongside BME. Additionally, recall that we use one model with a different cal-608

ibration data set (5-zoned flow model). There, we show when the likelihood-based scores609

(BME and ELPD) can no longer be applied and one must switch to a solely RE and IE-610

based comparison.611

5.2 Bayesian Model Selection612

The Bayesian and information-theoretic scores for BMS analysis can be seen in Fig-613

ure 5, comparing all models to a random realization of the geostatistical model. We use614

these results for three different analyses on the behavior of the different scores: 1) com-615

paring the four flow-transport models, using all four scores 2) comparing the five com-616

peting models, including the one with a different data set, based on RE and IE and 3)617

comparing between the two 5-zoned models. Since BME and ELPD are powerless to com-618

pare models with different data sets, these scores for the flow model are shown in a lighter619

hue in Figures 5a and 5b.620

5.2.1 BME-based Selection: Maximization of Data Probability621

According to BME, the model with the highest value presents the best compromise622

between model fit and model flexibility, and would therefore be selected. The results in623

Figure 5a show that the 5-zoned model obtains a significantly higher value among the624

four transport models. The homogeneous model, although it has the lowest prior flex-625

ibility, receives the overall smallest BME value, indicating an overall bad model fit. There-626

fore, it would be discarded in a BME-based analysis. The geostatistical model is pun-627

ished due to a more flexible prior, and thus receives a smaller BME than the 5-zoned model.628

These results are in line with traditional BME analysis, where the less flexible models629
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Figure 5. Bayesian and information-theoretic scores for each competing groundwater model

in the BMS setup. a) ln(BME), b) expected log-predictive density, c) relative entropy, d) infor-

mation entropy. The bars with the lighter hues in a) and b) indicate that the corresponding flow

model cannot be compared to all other models in the set using ln(BME) and ELPD, respectively,

given that the model uses a smaller data set.

are rewarded with a higher score, if they present a good overall model fit. However, as630

has been pointed out in Section 2, BME does not use the posterior. Consequently, the631

analysis in Figure 5a can be considered incomplete from a fully Bayesian standpoint, as632

it considers only fractional information from the entire Bayesian inference.633

5.2.2 ELPD-based Selection: Maximization of Posterior Likelihood634

In contrast to BME, the model with the highest ELPD is considered as having the635

best posterior and would therefore win against models with a lower score. For example,636

from Figure 5b one would determine that any of the other transport models would be637

chosen over the homogeneous transport model, given the latter’s significantly smaller ELPD638

(worst overall model fit). The three favored models (i.e. the 5-zoned, 9-zoned and the639

geostatistical transport model) present similar ELPD scores of 11.46, 11.09 and 10.65,640
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respectively. This means that they have similar posterior predictive capabilities. In other641

words, all three models have posterior parameter distributions that can similarly pre-642

dict the observed values. This goes to show how ELPD is less dependent on prior choice643

when compared to BME. The 5-zoned model, however, still presents the slightly higher644

ELPD among all four competing models, and would therefore be selected from a pos-645

terior perspective.646

In this case, the ELPD score serves to support the BME-based decision in favor647

of the 5-zoned transport model, given that it received the highest BME and the slightly648

higher ELPD. If, on the other hand, the more flexible geostatistical model had received649

a significantly higher ELPD, one might want to weigh the additional computational cost650

associated to Bayesian updating for a more high-dimensional parameter space against651

a better posterior fit, especially when acknowledging that one will as of now work with652

posterior models anyways. This proves how ELPD can be used to complement BME by653

considering a posterior model fit in the decision process, reducing the influence of a po-654

tentially uninformative prior choice. However, similar to BME values, the ELPD con-655

siders only partial information from a Bayesian inference perspective. Namely, ELPD656

omits the information gain from prior likelihood and, hence, the analysis in Figure 5b657

can still be considered as incomplete.658

Even though we have mentioned that models with different data sets should not659

be compared to each other using BME and ELPD, mathematically it can be done to ob-660

serve the direct effect of different data sets on said scores. Therefore, if we compare the661

BME and ELPD values for the two 5-zoned models (with and without transport), we662

can observe that the transport model, with a larger data set, presents higher scores than663

the flow model. This can be explained by the relatively small measurement error asso-664

ciated to the additional concentration data: overall, it is harder for the transport model665

to reproduce a larger data set. Nevertheless, in this case, the likelihood function rewards666

the (few) realizations that are able to reproduce all 10 observations within the error thresh-667

old with a significantly higher likelihood, increasing the expected BME and ELPD val-668

ues. This indicates how the measurement error and the size of data set can play an im-669

portant role when calculating BME and ELPD, deeming them biased when comparing670

models with different calibration data sets.671
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5.2.3 RE-based Selection: Maximization of Relative Information Gain672

As opposed to the BME and ELPD-based approaches, RE allows to compare all673

models, regardless of the data set used by each model. The model with the largest RE674

represents the one who found the data most useful, meaning it reduced its uncertainty675

the most by moving from the prior to the posterior. For example, when comparing the676

two 5-zoned models in Figure 5c, which present different data sets, the transport model677

obtained a higher RE than the flow-only model. This means that the 5-zoned transport678

model was able to learn more from the 10 data points than the flow model from only 5679

observations. Here, the differences in the RE scores are not due to model flexibility, since680

they both start from the same prior, but due to the availability and informativeness of681

additional observations available to the transport model. Based on this, one would lean682

towards the transport model over the flow model, since it allows a greater information683

gain from prior to posterior while also using the entire available data set.684

Looking at the overall RE-based analysis in Figure 5c, we notice that the geosta-685

tistical model presents the highest RE. This indicates that it gained the most informa-686

tion from the data when updating the prior to posterior, as measured by in RE through687

the difference of ln(BME) and ELPD (see equation (19)). This goes to show how RE and688

BME do tend to be inversely related, given that the geostatistical model also obtained689

the smallest BME out of the top three transport models. We demonstrate that RE tends690

to favor the models independent from their complexity, but rather when the measure-691

ment data prove most useful to it. In some situations, the ability of a model to learn from692

the measurement data could coincide with model flexibility, but the latter should not693

be seen as a necessary nor sufficient condition. In the current case, the setup was built694

such that the geostatistical model was able to gain the most information, given that it695

generated the data. The fact that the 9-zoned model obtained a higher RE and a smaller696

BME value than the 5-zoned transport model further supports this claim.697

Additionally, a small RE does not necessarily indicate a bad fit to the measurement698

data, but can also be caused by an initially good prior fit. This can be seen for the 5-699

zoned transport model. The smaller RE associated to it can be explained due to an over-700

all good prior fit to the data (small difference between ln(BME) and ELPD). In other701

words, it had little to learn from the data given that the prior parameter distribution702

encompassed the true posterior quite well. This can be seen as a limitation when com-703
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paring models solely on RE, given that it tends to punish models with a good prior fit704

with a smaller score. On the other hand, Figure 5c shows that the homogeneous model705

obtains a RE value close to 0, which can also be attributed to BME and ELPD present-706

ing similar values. In this case, however, the BME and ELPD scores do present the small-707

est values and thus the RE score can be interpreted as the homogeneous model not be-708

ing able to learn from the data due to an overall bad model fit. Therefore, we would like709

to emphasize to the reader that BME, ELPD and RE can be used to complement each710

other (when possible) and allow to rank and select among models based on different per-711

spectives or goals set by the modeler.712

5.2.4 IE-based Selection: Minimization of Posterior Uncertainty713

As with RE, IE can also overcome the limitations of BME and ELPD when encoun-714

tering models with different data sets. Recalling from Section 4.2, IE is the posterior un-715

certainty associated to the posterior state, and one would therefore select a model with716

the smallest IE associated to it. However, IE depends on the interaction between RE and717

CE. Thus, it is important to consider both the effect of the informativeness of the data718

through RE and the effect of the prior distribution through CE. When analyzing the IE719

results in Figure 5d, we can observe how the geostatistical model presents a significantly720

smaller IE score than the other four competing models. This would incline us to choose721

the geostatistical model, given that it would provide the most certain posterior distri-722

bution. Nevertheless, if we analyze IE together with RE, we can see that the difference723

between the RE values (Figure 5c) is not as significant as that between IE values. We724

can therefore conclude from equation (23) that the large difference in IE is due to the725

prior uncertainty through the CE, and not necessarily to a greater gain in information726

from the data. This goes to show the large influence that the prior parameter distribu-727

tion has on the posterior uncertainty of a model, and how it can overshadow the effect728

of the data and the overall model fit represented by RE.729

Furthermore, the reason for the significantly smaller CE of the geostatistical model730

can be attributed to the curse of dimensionality (Altman & Krzywinski, 2018) (given the731

2500 uncertain parameters associated to this model) and the high correlation between732

parameters. Due to these factors, the space where all parameters are within the allowed733

prior variance is very small, causing each parameter set to have a high probability den-734

sity associated to it, which translates to a small entropy. It is worth mentioning that,735
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if the correlation between the parameters were to substantially decrease, the entropy would736

increase, given that entropy is maximized for increasingly independent parameters.737

The opposite happens when the parameters are independent, as in the case of the738

homogeneous and the zoned models: the probability density associated to each realiza-739

tion decreases with a higher parameter dimension (given parameter independence), and740

thus the entropy increases. If we omit the geostatistical model for visualization purposes,741

as displayed in Figure 6, the homogeneous model presents the smallest IE within the re-742

maining subset. Here, IE indicates that the homogeneous model has a lower posterior743

parameter uncertainty than the 5 and 9-zoned models. This, however, can be attributed744

to the prior distribution, more specifically to the number of uncertain parameters, and745

not to the overall Bayesian updating process. This is supported by the the small BME,746

ELPD and RE scores associated with the homogeneous model. Additionally, the 9-zoned747

model got the highest IE score among this subset of models, in spite of it presenting the748

largest RE among them. It is clear, then, that the IE depends on both the prior param-749

eter uncertainty and how useful the data is in eliminating the uncertainty specified by750

this prior. However, the dependence of CE on the number of parameters generates bi-751

ased results when comparing models with different parameter dimension and should there-752

fore be avoided in such cases.753

If we compare both 5-zoned models, which have the same prior assumptions and754

different data set sizes, we can observe the effect that the data, through RE, has on IE755

directly. In this case, the transport model presents the smaller IE of the two, since it learned756

more from the observation data (higher RE). This resulted in a greater reduction in the757

(initially identical) prior uncertainty (CE). This complements the conclusions reached758

using the RE score between these two models, but from a posterior parameter uncertainty759

perspective.760

5.3 Bayesian Model Similarity Analysis761

5.3.1 BME and ELPD: Likelihood-based Comparison762

To analyze the similarities, or differences, between the transport models in their763

prior states, one could limit oneself to the original BMJ analysis based on BME-weights,764

which is presented in Figure 7. Here we can see that the 3rd row (where all transport765

models Mj are compared to the flow-only model) has to be left empty, since the flow model766
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Figure 6. Information entropy scores for all competing groundwater models within the BMS

setup, excluding the geostatistical model

has a smaller data set. Additionally, the third column, where the flow model generated767

the data, is also empty. The reason is that, even though these values can be calculated,768

they cannot be used for comparison against all other BME weights.769

From the results in Figure 7 we can observe that both the homogeneous and the770

geostatistical model receive high diagonal values, indicating their capacity to identify their771

own results. They also have the smallest off-diagonal values, meaning they do not tend772

to confuse their results. From this, one can conclude that these two models are the most773

different from each other and from the two zoned models. On the other hand, the 5-zoned774

and the 9-zoned models obtain model weights smaller than 50% on the diagonal, as well775

as similar off-diagonal values when the respective other is the data generating model. This776

suggests that these models have the highest likelihood of confusing their results, and thus777

are the most similar from a prior perspective.778

The extended model similarity analysis to determine model similarities, as detailed779

in Section 4.4, are shown in Figure 8. We focus on the off-diagonal values, namely how780

much they deviate from the behavior of the data generating model (diagonals). The re-781

sults are presented as normalized MCMs based on all four scores, including the ln(BME)782

values. Similar to the BME weights, the MCM based on ln(BME) (8a) and ELPD (8b)783

show empty rows and columns where the 5-zoned flow model is compared to the trans-784
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port models. The non-normalized version of the MCMs can be seen in Figure 9 in Ap-785

pendix B.786

As with the BME-weight-based MCM, the ln(BME)-based MCM in Figure 8a com-787

pares model outputs from a prior predictive space perspective. Therefore, one can see788

similar trends in both results: the homogeneous and the geostatistical model receive the789

smallest off-diagonal entries when they generate the data, confirming them as the two790

most different ones. Additionally, the 5 and 9-zoned models obtain the most similar off-791

diagonal values (closer to 1) when the respective other generates the data. This can be792

interpreted as them presenting similar prior predictive capabilities. One must keep in793

mind, though, that rescaling values to a log-scale compresses the differences given in a794

linear scale at large values, and thus the level of similarity based on BME appears dif-795

ferent compared to ln(BME). Nevertheless, the trend is maintained and one can reach796

similar conclusions in terms of model selection and similarity.797

In contrast to ln(BME), the ELPD-based MCM in Figure 8b compared models from798

a posterior predictive capabilities perspective. This means, how likely model Mk’s pos-799

terior distribution is of reproducing outputs generated by Mj . The results in Figure 8b800
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is compared against a flow-and-transport model (comparison between models with data sets of

different sizes) and thus the MCM entries cannot be used within the similarity analysis.

show that for all models, except the homogeneous model, the off-diagonal values are closer801

to 1 than for the prior-based ln(BME) results. This indicates that the models appear802

more similar in the posterior predictive state than they do in the prior. Here, model flex-803

ibility, which is visible in the ln(BME) results, has a smaller effect. For example, the dif-804

ferences between the 5 and 9-zoned models seems to has been reduced, given that the805

off-diagonal values are closer to 1 when the respective other is generating the data. For806

the geostatistical model, the normalized values along row 5 in Figure 8b are close to one.807

This, however, does not indicate a larger similarity between the models, given that the808

same cannot be observed along the last column, when the geostatistical model generates809

the data. Therefore, it is important to consider both sides of the diagonal to be able to810

determine similarities between models based on these scores.811
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5.3.2 RE: Combined Prior and Posterior Comparison812

To compare all five models, including the flow model, one can refer to the RE-based813

MCM in Figure 8c. These results allow to compare the models based on a combined prior814

and posterior perspective, given that it evaluates the updatability of the prior based on815

the data generated by Mj . Observe that the normalized RE values are far from one along816

the first row, independent of Mj . They indicate the inability of the homogeneous model817

to reproduce all other models, in either the prior, posterior or both. This alludes to large818

differences in the way the homogeneous model learns from the others. Therefore, if one819

only had the RE confusion matrix to compare with, one would reach the same conclu-820

sion as before: that the homogeneous model is very different from the other models.821

When comparing the two 5-zoned models to each other, we can observe that they822

do not receive the same score when the transport model generates the data. This can823

be justified by the transport model being able to learn more from 10 reproducible ob-824

servations than from only five. This also explains why the 9-zoned model presents a nor-825

malized value closer to 1 when compared to the 5-zoned transport model, than does the826

5-zoned flow model. Both the 5 and 9-zoned transport models have similar missing in-827

formation, which can be supplied by the five additional observations.828

On the other hand, the geostatistical model presents the off-diagonal normalized829

RE scores farthest from 1 (after the homogeneous model), when compared to all other830

models. This, again, alludes to its differences in flexibility and ability to learn from data831

(which is greater than that of the other, simpler models). Out of all the models, the 9-832

zoned model can be deemed the most similar to the geostatistical, given that the former833

obtains the normalized value closest to 1 when the latter generates the data and vice-834

versa. This explains why it also obtains the second largest RE in the BMS analysis, given835

that it learns from the data in a similar way as the geostatistical model.836

5.3.3 IE: Posterior-based Comparison837

The IE-based MCM is shown in Figure 8d. Recall that the results represent the838

remaining uncertainty in the posterior parameter distribution. Figure 9d in Appendix839

B shows that there is little to no variability in the score for each model, independent of840

which model is generating the data. As with BMS, IE induces bias when comparing mod-841

els with different parameter dimensions. Therefore, when comparing models with dif-842
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ferent number of uncertain parameters, the IE MCM compares models based solely on843

the uncertainty induced by the prior parameter distribution.844

The two 5-zoned models in Figure 8d present little differences between their IE scores.845

Both models count with the same prior uncertainty (CE), and therefore the results pro-846

vide information on the effect of RE. The slightly greater off-diagonal value (1.1) when847

the transport model generates the data is, in this case, due to the greater RE value as-848

signed to the transport model. This means that there are small differences between their849

posterior parameter uncertainty. The results support the previous statement that IE should850

be compared alongside the other scores, especially RE in case of comparing models with851

different data sets, and when the parameter dimension between the models is equivalent.852

To sum up, through the application to our groundwater models, we addressed is-853

sues related to the BME-based approaches for BMS and BMJ. We suggest to comple-854

ment these frameworks with additional information-theoretic scores to provide a richer855

picture within the Bayesian framework. We show how these scores can be interpreted856

in addition to BME. Also, they come at little to no additional computing cost, given that857

the most computationally demanding step involves the multiple (NMC) model evalua-858

tions. We also show the limitations of likelihood-based scores through the inclusion of859

a competing model with a different data set, as well as how RE and IE can help in over-860

coming this, at the cost of limiting the comparison to an updating (combined prior and861

posterior) and posterior uncertainty perspective.862

6 Summary and Conclusions863

In this study we present how information-theoretic scores, namely expected log pre-864

dictive density (ELPD), relative entropy (RE) and information entropy (IE), can be used865

to complement the Bayesian model evidence (BME) for model selection and model jus-866

tifiably analysis. Employing the connection between Bayesian inference and information867

theory, we demonstrate how ELPD, RE and IE allow to gain additional insight with re-868

gards to 1) posterior model fit (ELPD), 2) information gain in the Bayesian updating869

(RE) and 3) remaining posterior parameter uncertainty (IE).870

We test the proposed methodology on a controlled setup made up of five 2D-groundwater871

models. These five models each consider a different spatial hydraulic conductivity dis-872

tribution, which results in different model flexibility. Additionally, we consider both trans-873
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port and flow models to test the comparison of models with different data sets. For the874

BMS analysis, the models were compared against a random realization of one of the com-875

peting models, with the goal of knowing beforehand the true parameter set and measure-876

ment data. For the model similarity analysis, the models were compared against the re-877

sults from each other.878

Arguing based on the mathematical definitions, we show how both BME and ELPD879

are not suited to compare models with different data sets, neither for BMS nor model880

similarity analysis. This is due to the bias injected by the normalization factor in the881

likelihood function, which in this case was considered as a multivariate Gaussian distri-882

bution. On the other hand, RE and IE overcome these limitations. One can see this in883

their definition as information scores for parameter (not data) distributions. When com-884

posing them from other ingredients of Bayesian updating we can see that the normal-885

ization factor cancels out. Thus they provide a way to compare and select among mod-886

els in this situation.887

In the case of RE, its use with different data sets comes at the cost of solely rank-888

ing and comparing among models based on how useful the data was to them, i.e. how889

much the parameter uncertainty was reduced through Bayesian updating. As the results890

show, this can sometimes lead to different decisions than with BME-based model selec-891

tion. For example, RE can also punish models with an already good prior fit, when not892

much Bayesian updating is necessary.893

IE quantifies the posterior parameter uncertainty after applying Bayesian updat-894

ing. The results show, however, that IE is strongly influenced by the models’ prior dis-895

tribution, to the extent where priors can have a much larger impact than the model fit896

to the data. This can lead to biased results if used on its own to compare models, given897

that it can eliminate models with a high RE but very uncertain/uninformative prior, or898

overestimate the appropriateness of a model due to a very simple prior. Therefore, in-899

formation entropy is useful to complement RE scores, but not as a measure on its own.900

Based on the results, we recommend to complement the traditional BME-based anal-901

ysis with information-theoretic scores for model selection and comparison purposes. The902

results show how ELPD, RE and IE provide additional information regarding the com-903

plete updating process involved in the Bayesian framework, and come at no significant904

additional computational cost. This additional information can be used by the modeler905
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to make a better-informed decision based on different perspectives, considering the model906

setup and the overall modelling goals.907

Appendix A: Proofs of the Effect of Data Sets908

To mathematically show the effect that the calibration data set properties, namely909

data set size and measurement error distribution, have on the different scores, we expand910

the different terms in equation (19) for RE. Here, we use NF to group the normaliza-911

tion factor in the likelihood function (equation (2)), such that:912

NF = (2π)
−No

2 |R|−1/2. (28)

Additionally, the difference between the observed and modeled data is shown in its913

vectorial form:914

(yk − yo) = δ. (29)

Equation (30) shows the simplification of the ln(BME) term based on equation (4):915

− ln(BME) = − ln
(
Eprior

[
NF · exp

(
−0.5 ·

[
δT ·R−1δ

])])
= − ln(Eprior[NF ])− ln

(
Eprior

[
exp

(
−0.5 ·

[
δT ·R−1δ

])])
= − ln(NF )− ln

(
Eprior

[
exp

(
−0.5 ·

[
δT ·R−1δ

])])
(30)

and equation (31) shows the simplification of ELPD from equation (16) into its basic com-916

ponents:917

ELPD = Epost

[
ln
(
NF · exp

(
−0.5 ·

[
δT ·R−1δ

]))]
= Epost[ln (NF )] + Epost

[
ln
(
exp

(
−0.5 ·

[
δT ·R−1δ

]))]
= ln (NF ) + Epost

((
−0.5 ·

[
δT ·R−1δ

]))
(31)

As can be seen in equations (30) and (31), both scores depend on the natural logarithm918

of the normalization factor (cannot be disregarded), which has a high dependence on the919

number of data points and measurement error variance.920

By combining the final simplified formulations in Equations (30) and (31), one can921

rewrite the equation for relative entropy, based on equation (19), as follows:922
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RE =

(
− ln(NF )− ln

(
Eprior

[
exp

(
−0.5 ·

[
δT ·R−1δ

])]))
+

(
ln (NF ) + Epost

[(
−0.5 ·

[
δT ·R−1δ

])])
= −ln(NF)− ln

(
Eprior

[
exp

(
−0.5 ·

[
δT ·R−1δ

])])
+ ln(NF)

+ Epost

[(
−0.5 ·

[
δT ·R−1δ

])]
= − ln

(
Eprior

[
exp

(
−0.5 ·

[
δT ·R−1δ

])])
+ Epost

[(
−0.5 ·

[
δT ·R−1δ

])]
.(32)

In equation (32) the dependence on the normalization factor NF from both BME923

and ELPD is canceled out, since it is constant for each model MK . Consequently, RE924

depends solely on the exponential term of the likelihood function.925

Appendix B: Bayesian Model Similarity Analysis Results926

Figure 9 shows the resulting model confusion matrices for the averaged ln(BME)927

(a), ELPD (b), RE (c) and IE (d) within the Bayesian model similarity analysis. We can928

observe the same tendencies in Figure Figure 9 as with the normalized MCM in Figure929

8. The latter, however, allows for a more clear interpretation, and focuses on the off-diagonal930

values, which is why we prefer it to represent model similarities.931
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The Python implementation of the Bayesian and information-theoretic model se-933

lection and similarity analysis can be accessed from the GitHub repository https://github934
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.git (Morales Oreamuno, 2021). The files that serve as input for the aforementioned936

software can be found in https://doi.org/10.5281/zenodo.7086127 (Morales Ore-937
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Figure 9. Model confusion matrices for a) ln(BME), b) ELPD, c) RE and d) IE for the

Bayesian model similarity analysis. The empty cells in a) and b) correspond to the cases where

the flow model is compared against a flow-and-transport model (comparison between models

with data sets of different sizes) and thus the MCM entries cannot be used within the similarity

analysis
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