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Abstract

The Imperial Valley, CA, is a tectonically active transtensional basin located south of the Salton Sea; the area hosts nu-

merous geothermal fields, including significant hidden hydrothermal resources without surface manifestations. Development

of inexpensive, rugged, and highly-sensitive exploration techniques for undiscovered geothermal systems is critical for accel-

erating geothermal power deployment as well as unlocking a low-carbon energy future. We present a case study utilizing

distributed acoustic sensing (DAS) and ambient noise interferometry for geothermal reservoir imaging utilizing an unlit fiber-

optic telecommunication infrastructure (dark fiber). The study utilizes passive DAS data acquired from early November 2020

over a ˜28-kilometer section of fiber from Calipatria, CA to Imperial, CA. We apply ambient noise interferometry to retrieve

coherent signals from DAS records, and develop a spatial stacking technique to attenuate effects from persistent localized noise

sources and to enhance retrieval of coherent surface waves. As a result, we are able to obtain high-resolution two-dimensional

(2D) S wave velocity (Vs) structure to 3 km depth based on joint inversion of both the fundamental and higher overtones.

We observe a previously unmapped high Vs and low Vp/Vs ratio feature beneath the Brawley geothermal system that we

interpret to be a zone of hydrothermal mineralization and lower porosity. This interpretation is consistent with a host of other

measurements including surface heat flow, gravity anomalies, and available borehole wireline data. These results demonstrate

the potential utility of DAS deployed on dark fiber for geothermal system exploration and characterization in the appropriate

contexts.
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Key Points:13

• We utilize high-resolution ambient noise imaging to characterize a geothermal sys-14

tem using DAS and dark fiber.15

• We develop a spatial stacking technique to attenuate the effects of persistent lo-16

cal noise sources and enhance the retrieved EGF.17

• We image a zone of high shear wave velocity beneath the Brawley geothermal field,18

which we interpret to be a zone of hydrothermal alteration.19
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Abstract20

The Imperial Valley, CA, is a tectonically active transtensional basin located south of21

the Salton Sea; the area hosts numerous geothermal fields, including significant hidden22

hydrothermal resources without surface manifestations. Development of inexpensive, rugged,23

and highly-sensitive exploration techniques for undiscovered geothermal systems is crit-24

ical for accelerating geothermal power deployment as well as unlocking a low-carbon en-25

ergy future. We present a case study utilizing distributed acoustic sensing (DAS) and26

ambient noise interferometry for geothermal reservoir imaging utilizing an unlit fiber-27

optic telecommunication infrastructure (dark fiber). The study utilizes passive DAS data28

acquired from early November 2020 over a ∼28-kilometer section of fiber from Calipa-29

tria, CA to Imperial, CA. We apply ambient noise interferometry to retrieve coherent30

signals from DAS records, and develop a spatial stacking technique to attenuate effects31

from persistent localized noise sources and to enhance retrieval of coherent surface waves.32

As a result, we are able to obtain high-resolution two-dimensional (2D) S wave veloc-33

ity (Vs) structure to 3 km depth based on joint inversion of both the fundamental and34

higher overtones. We observe a previously unmapped high Vs and low Vp/Vs ratio fea-35

ture beneath the Brawley geothermal system that we interpret to be a zone of hydrother-36

mal mineralization and lower porosity. This interpretation is consistent with a host of37

other measurements including surface heat flow, gravity anomalies, and available bore-38

hole wireline data. These results demonstrate the potential utility of DAS deployed on39

dark fiber for geothermal system exploration and characterization in the appropriate con-40

texts.41

Plain Language Summary42

Geothermal resources are considered a valuable component of our transition to a43

zero-emissions sustainable energy future; the undiscovered geothermal energy potential44

beneath our feet is vast. In the Imperial Valley, CA, three of the four producing geother-45

mal fields have no active surface features. Development of inexpensive, rugged, and highly-46

sensitive exploration techniques for undiscovered geothermal systems is a critical step47

in accelerating geothermal power deployment. We utilize a ∼28-kilometer section of ex-48

isting unused telecommunication fiber as seismic sensors (called distributed acoustic sens-49

ing, DAS) to characterize the subsurface geothermal resources. Our results reveal sig-50

nificant high-velocity anomalies beneath the Brawley Geothermal Field area; these are51

coincident with observations from boreholes, heat flow and gravity surveys which indi-52

cate hydrothermal alteration has a pronounced effect on the physical properties of the53

sediments.54

1 Introduction55

Geothermal energy is considered a key base-load resource for transitioning to a zero-56

emissions sustainable energy future (Sbrana et al., 2021). Geothermal energy currently57

accounts for 0.4% of net electricity generation in the United States (EIA, 2021). Accord-58

ing to a recent National Renewable Energy Lab report, U.S. geothermal net summer ca-59

pacity could increase from 2.5 to 6 GigaWatts (GW) by 2050 (Robins et al., 2021). In60

2008, the U.S. Geological Survey (USGS) released summary results of an assessment of61

the electric power production potential from the moderate- and high-temperature geother-62

mal resources of the United States, and indicated the estimated mean power production63

potential from undiscovered geothermal resources is more than three times the estimated64

mean potential from identified geothermal systems (Williams et al., 2008). A significant65

portion (∼30%) of the estimated undiscovered resource in the US is predicted to occur66

within the Imperial Valley (Williams et al., 2009). Development of improved exploration67

strategies for undiscovered geothermal systems is critical for accelerating geothermal power68

deployment (Williams et al., 2009; Dobson, 2016).69
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Active hydrothermal systems are often associated with measurable differences in70

physical properties (e.g., high heat flow, low electrical resistivity, elevated density, and71

attenuation of high frequency elastic waves). As a result, geophysical methods play a key72

role in geothermal reservoir exploration (e.g., Combs, 1978; Flóvenz & Saemundsson, 1993;73

Thanassoulas, 1991; Santos & Rivas, 2009; Zucca et al., 1994). For example, heat flow74

anomalies, derived from temperature measurements in shallow boreholes, can be used75

to locate and outline potential geothermal fields (Fahnestock et al., 2001; Burton-Johnson76

et al., 2020). Gravity surveys can be used to study the depth of fill in intermontaine val-77

leys, locate intrusive masses of rock and delineate geothermal features (Atef et al., 2016;78

Guglielmetti & Moscariello, 2021). A combination of resistivity studies, derived from ac-79

tive or passive electromagnetic (EM) surveys, and heat flow measurements from tem-80

perature gradient wells are often used to search for zones likely to host permeable geother-81

mal reservoirs sealed with an overlying clay cap (Anderson et al., 2000; Munoz, 2014;82

Gao et al., 2018). Seismic reflection profiles can be used to identify faults, which may83

facilitate flow, in hot sedimentary systems using reflection offsets, as well as image base-84

ment contacts and verify structures related to tectonic processes relevant to geothermal85

system development (Brogi et al., 2005; Lüschen et al., 2011; McGuire et al., 2015). Lastly,86

microseismic surveys are widely used for studying slip on seismogenic faults which may87

preserve permeability (Ward, 1972; Combs & Hadley, 1977; Lellouch et al., 2020). How-88

ever, considering the limitations of these different approaches, suites of methods are typ-89

ically used to verify proposed system location, conditions, and associated structures be-90

fore exploratory wells are drilled (Soyer et al., 2018; Ars et al., 2019).91

Compared to relatively expensive active-source seismic methods, ambient noise in-92

terferometry can be a cost-effective imaging approach, valuable for both characteriza-93

tion and long-term monitoring. Following the pioneering work of Campillo and Paul (2003),94

ambient noise interferometry can be used to estimate an empirical Green’s function (EGF)95

between two receivers by cross-correlating the ambient seismic wave field (Shapiro & Campillo,96

2004; Snieder, 2004; Wapenaar, 2004; Bensen et al., 2007; Snieder et al., 2009; Nakata97

et al., 2015; Cheng et al., 2016, 2018; Behm et al., 2019; Fichtner et al., 2020). In recent98

years, ambient noise interferometry techniques have found a variety of applications for99

geothermal reservoir imaging by using dense nodal arrays (e.g., Lehujeur et al., 2018; Spica100

et al., 2018; Martins et al., 2019, 2020; Planès et al., 2020; Zhou et al., 2021; Cheng et101

al., 2021a). Recorded EGFs are often rich in surface wave energy, hence the most com-102

monly retrieved physical property from ambient noise studies are shear wave velocities103

estimated using surface wave tomography methods.104

Currently, there are still large portions of western basins of the U.S. that are rel-105

evant to geothermal energy production but poorly mapped using classical high-resolution106

seismic methods. This is due to the high costs of active seismic surveys and the lack of107

availability of Large-N passive seismic datasets required for ambient noise imaging. These108

factors likely result in both missed prospects as well as limitations in our understand-109

ing of regional geological frameworks relevant to geothermal prospecting.110

Distributed fiber optic sensing is a family of techniques that utilizes standard op-111

tical fibers to make measurements of local physical parameters including temperature112

(Tyler et al., 2009), static strain (Masoudi & Newson, 2016), and most recently low am-113

plitude dynamic strain or strain rate (Lindsey & Martin, 2021). The last approach, re-114

ferred to as distributed acoustic sensing (DAS), is an emerging technology that repur-115

poses a fiber-optic cable as a dense array of seismic sensors and in some environments116

is transforming seismic acquisition (Daley et al., 2013; Dou et al., 2017; Lindsey et al.,117

2017; Ajo-Franklin et al., 2019; Zhan, 2020; Martin et al., 2021; Cheng et al., 2021b, 2022).118

DAS utilizes short pulses of laser light to interferometrically measure minute extensional119

strains (or strain rates) over spatially continuous intervals along an optical fiber (Hartog,120

2017) with spatial resolutions down to the meter scale, linear extents from 10s to 100s121

of km, and bandwidth from the kHz range to quasi-static depending on interrogator unit122
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and measurement parameters (Lindsey et al., 2020; Paitz et al., 2021). The ability to123

plug an interrogator unit into existing unused telecommunications fiber has enabled easy124

access to urban locations where traditional seismic acquisition systems would be prohibitively125

difficult or costly to deploy (Lindsey & Martin, 2021). Recently, several DAS-related fea-126

sibility studies have been conducted to characterize geothermal reservoirs (e.g., Feigl &127

Team, 2017; Feigl & Parker, 2019; Chalari et al., 2019; Kasahara et al., 2020; Schölderle128

et al., 2021; Lellouch et al., 2021; Chang & Nakata, 2022).129

In the Imperial Valley, CA, there are three producing geothermal systems that have130

no active surface thermal features, and there are likely additional undiscovered resources.131

In this study we investigate the potential of high-resolution ambient noise imaging, us-132

ing DAS data acquired on existing unused telecommunications fiber, to image geother-133

mal reservoir structure. We present the acquisition and the main characteristics of the134

ambient seismic noise records obtained from a ∼28-km DAS array that runs along a por-135

tion of Imperial Valley, CA, and crosses the producing Brawley geothermal field. We ex-136

tract high quality Rayleigh waves based on ambient noise interferometry, and apply sur-137

face wave inversion across the profile to generate a two-dimensional (2-D) S wave veloc-138

ity model. The resulting image identifies a zone of high Vs closely correlated with the139

Brawley heat flow anomaly; we hypothesize that the imaged feature is due to a zone of140

hydrothermal mineralization at the core of the Brawley geothermal field, which results141

in significant reduction in porosity. We conclude by attempting to verify this hypoth-142

esis using secondary datasets including regional velocity models, existing wireline logs,143

gravity measurements, and heat flow data. Our results demonstrate the feasibility of such144

passive DAS surveys for detecting and characterizing structure relevant to geothermal145

systems at the basin scale.146

2 Area and Data147

The Imperial Valley, south of the Salton sea, is part of the landward extension of148

the Gulf of California, within a broad, structural trough (Salton Trough) partly filled149

with deltaic silts, sands and gravels of late Tertiary age, capped by Quaternary alluvium150

and lake sediments (Jackson, 1981). The Salton Trough is a tectonically active sedimen-151

tary pull-apart basin located at the southern tip of the San Andreas Fault system as it152

steps over into the continental transitional zone on the boundary between the North Amer-153

ican Plate and the Pacific Plate (Kaspereit et al., 2016). The transition from the trans-154

form faulting of the San Andreas Fault system to the rifting associated with the East155

Pacific Rise, results in a series of smaller scale pull-apart basins of different sizes that156

connect right-stepping, strike-slip faults that strike generally northwest (Elders et al.,157

1972; Hill et al., 1975; Johnson & Hadley, 1976; Hill, 1977; Fuis et al., 1982). This pat-158

tern of faulting forms in transtensional shear zones where there are structures related159

to both strike-slip and extension. Major faults (red lines in Figure 1a) in the region in-160

clude the Imperial Fault (IF), the Superstition Hills Fault (SHF), the Superstition Moun-161

tain Fault (SMF) and the Brawley Fault (BF, we use the Brawley fault as mapped by162

Hill et al. (1975); Jackson (1981)). The southeast end of the San Andreas Fault is linked163

to the northwest end of the Imperial Fault by a band of seismicity referred to as the Braw-164

ley Seismic Zone (BSZ, outlined by the orange line in Figure 1a). Within the trough, all165

these tectonic forces are currently active and allow mantle-derived magmas to intrude166

into the sedimentary sequence. The existence of igneous intrusive bodies is inferred from167

gravity and magnetic anomalies, high seismic velocities, and a localized temperature anomaly,168

all of which are coincident with the Quaternary volcanic domes along the southern shore169

of the Salton Sea (Biehler, 1964; Larson et al., 1968; Lomnitz et al., 1970; Elders et al.,170

1972). The magmatic intrusions serve as heat sources to drive hydrothermal systems and171

alter the thermal structure of the sediments with the associated hydrothermal alteration,172

causing changes in the dominant mineral assemblages (McGuire et al., 2015).173
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The Salton Trough is filled with late Tertiary and Quaternary clastic and evapor-174

itic sediments. The sedimentary fill consists primarily of Pliocene to Holocene deltaic175

deposits derived from the Colorado River with coarser detritus along the margins derived176

from the adjacent mountain ranges (Muffler & White, 1969; Winker, 1987). The thick177

sediments contain geothermal brines near the known geothermal resource areas (KGRA)178

(highlighted with green polygons in Figure 1a): Salton Sea Geothermal Field (SSGF),179

Brawley Geothermal Field (BGF), East Mesa Geothermal Field (EMGF) and Heber Geother-180

mal Field (HGF); there are additional KGRAs in the area (such as Westmorland, Glamis,181

and Dunes) that have yet to be developed.182

Local seismicity and earthquake focal mechanisms across the area have been stud-183

ied (Hill et al., 1975; Marone et al., 1991; Lin et al., 2007; Lohman & McGuire, 2007;184

Brodsky & Lajoie, 2013; Hauksson et al., 2013). The seismicity was characterized by nar-185

row zones of right lateral events extending between the Brawley and the Imperial faults186

within the BSZ, and a broader zone of right lateral activity along the San Jacinto Fault.187

Seismic activity was also observed at the Salton Sea and Brawley geothermal fields, which188

lie on the Brawley fault, and at the Heber geothermal field near the extension of the San189

Jacinto Fault. In contrast, the Glamis, Dunes and East Mesa fields have had low lev-190

els of historical seismicity. These observations are consistent with the historical earth-191

quake catalog (green-to-blue scatters in Figure 1a) relocated by Hauksson et al. (2012).192

As part of the USGS regional assessment of unidentified geothermal systems in the193

Imperial Valley, a regional heat flow map was generated (Williams et al., 2007, 2008).194

Figure 1b clearly shows that the SSGF geothermal system and three previously hidden195

geothermal systems (BGF, EMGF, and HGF), highlighted with green polygons, are all196

associated with regions of elevated heat flow. For example, the heat flow reaches 350 mW/m2
197

near the BGF. The average heat flow in the region is roughly twice the national aver-198

age (Lachenbruch & Sass, 1973). The heat flow map also shows a number of other ar-199

eas with elevated heat flow values, suggesting that there might be significant thermal re-200

sources in the Imperial Valley area that are yet to be discovered and developed (Williams201

et al., 2007, 2008; Dobson, 2016). A Bouguer gravity contour map of the Imperial Val-202

ley is overlain on the heat flow map (Biehler, 1964, 1971). The region exhibits a broad203

north-northwest positive Bouguer anomaly coincident with the axis of the trough. In this204

area, regions of gravity maxima often coincide with hydrothermal systems and high heat205

flow.206

Our experiment, described in detail in Ajo-Franklin et al. (2022), was conducted207

in the Imperial Valley and utilized an unused fiber-optic telecommunication cable (dark208

fiber) starting in Calipatria, CA, running through Brawley and Imperial CA, and then209

turning West at El Centro, terminating in Plaster City. The total path length (∼65 km)210

is too long for the DAS interrogator unit (IU, iDAS v2. Silixa LLC) used in this exper-211

iment to fully probe; only the first 28-km-partition, the black line in Figure 1, is utilized212

with a roughly straight path line crossing the previously hidden geothermal resources,213

BGF, and the complex transition zone, BSZ, where Brawley Fault lies.214

The DAS IU is configured with 10 m gauge length and records strain-rate as the215

native unit; we used a 2 kHz laser pulse rate, which is higher than the sampling rate (500216

Hz), to improve system dynamic range. The DAS channel locations are calibrated by tap217

tests along the fiber profile. After several acquisition tests, ambient noise data were con-218

tinuously recorded at 4 m channel interval across the ∼28 km (total 6912 channels) dark219

fiber from Nov. 10th, 2020 till the spring of 2022. After first round of data retrieval in220

the spring of 2021, we obtained close to 4 months of continuous data (close to 65T) from221

Nov. 10th, 2020 to Mar. 8th, 2021. In this study, we utilize only the first two days to222

evaluate the feasibility of using DAS-based ambient noise data for high-resolution geother-223

mal reservoir mapping. Details about experiment as well as installation information have224

been provided in Ajo-Franklin et al. (2022).225
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3 Methods226

3.1 Noise Characteristics227

Figure 2a shows a typical time domain ambient noise records from the 28-km-long228

DAS fiber with several identified seismic signatures associated with a variety of noise sources.229

Noise characteristics vary significantly across the profile. The signatures of moving ve-230

hicles are visible with linear moveouts, a common observation in urbanized areas on ei-231

ther dense nodal (Cheng et al., 2018, 2019) or DAS arrays (Ajo-Franklin et al., 2019; Wang232

et al., 2020; Rodŕıguez Tribaldos et al., 2021). A series of persistent noise sources are233

also observed across the DAS array, visible as stationary surface wave generators and high-234

lighted by the dashed lines in Figure 2a. Examples include agricultural and transport235

infrastructure such as the grain silos and loading facility located around 0.9 km location,236

overpass excited in resonance around 15 km location, and an agriculture products whole-237

sale facility around 16 km location. These powerful noise sources generate coherent sur-238

face waves propagating over multiple km, and contribute to extraction of coherent sig-239

nals; however, the persistent localized sources with strong spatial consistency (almost240

zero moveout indicated by the vertical dashed lines) will produce nonnegligible spuri-241

ous signals superimposed on empirical Green’s functions (EGFs) during ambient noise242

interferometry, which will be discussed in later sections. Finally, towards the southern243

end of the array, increasing optical noise levels are observed due to the light propaga-244

tion loss (Cedilnik et al., 2019; Waagaard et al., 2021) as well as the lack of traffic ac-245

tivities in the southern cropland area.246

An averaged power spectrum (Figure 2b) of the first 2-day DAS ambient noise data247

along the cable shows that the dominant noise frequencies are located between 1 and 20248

Hz, typical spectral characteristic for anthropogenic noise (Groos & Ritter, 2009; Cheng249

et al., 2019; Zhu & Stensrud, 2019). The variable spectrum at the southern end of the250

array indicates the lack of anthropogenic signals. It is worth mentioning that the slightly251

quieter interior section with dominant lower-frequency spectrum is located near the BGF.252

3.2 Ambient Noise Interferometry253

We utilized ambient noise interferometry to generate empirical Green’s functions254

from the passive DAS data. Before interferometric processing, a sequence of steps were255

applied to reduce computational expense given the large array size and high temporal256

sampling. As an initial compression step, we temporally decimated the dataset to 100257

Hz after applying an anti-aliasing filter; this step was followed by sequential spatial me-258

dian stacking (5 trace window), which transformed the dataset from 6912 channels with259

a 4-meter spatial sampling interval to 1382 channels with 20-meter spatial sampling in-260

terval. This combination of spatial stacking and temporal decimation reduced the dataset261

size by about a factor of 25. Next, a classical ambient noise data preprocessing work-262

flow (e.g., Bensen et al., 2007; Cheng et al., 2015, 2021a) was applied to the continuous263

DAS dataset (2 days) by processing 1 minute non-overlapping data segments with the264

native recording unit (strain rate). Preprocessing steps included mean and trend removal,265

as well as a symmetric Hanning taper applied to each end of the time series, followed by266

temporal and spectral normalization. The temporal normalization was accomplished us-267

ing a running absolute mean filter. The spectral normalization step utilized a frequency-268

domain whitening approach, which exploits the smoothed amplitude of complex Fourier269

spectrum as the whitening weights (e.g., Bensen et al., 2007; Cheng et al., 2021b). To270

extract empirical Green’s function (EGF) from the preprocessed ambient noise dataset,271

we utilized the cross-coherence algorithm by performing cross-correlation followed with272

spectral whitening (Schuster et al., 2004; Prieto et al., 2009; Nakata et al., 2011). Ac-273

cording to Cheng et al. (2021a), the cross-coherence algorithm has advantages over the274

cross-correlation algorithm for mitigating pseudo-arrivals associated with spectral spikes275

and improving the signal to noise ratio (SNR) of the resulting EGF. After cross-coherence,276
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we employ phase-weighted stacking (PWS) on 2 days of EGFs to further improve the277

coherent signals (Schimmel & Paulssen, 1997; Schimmel et al., 2011; Ventosa et al., 2017).278

In the case of this dataset, special attention was paid to the effects of persistent279

localized noise sources, several of which are distributed across our array as discussed pre-280

viously. Figure 3a displays an example of an extracted EGF gather with a virtual source281

at 1.2 km location (indicated by the red dashed line). Coherent signals are observed as282

far as ∼5 km offset range. Superimposed are three hyperbolic events centered at 0.9 km,283

1.8 km and 2.6 km as highlighted with colored stars. The northernmost feature is iden-284

tified as persistent noise from a grain silo complex; Figure 3b shows a photograph of the285

site’s infrastructure where powerful and high-frequency ground vibrations were detected286

during tap test activities. The high frequency energy can also be observed on the aver-287

aged noise spectrum (Figure 2b). The other two dominant events are identified as source288

effects from crossing roads as indicated by the blue and magenta stars on the street map289

(Figure 3c). Compared with the energy from the grain silos, events from the persistent290

traffic noise usually show relatively lower frequencies and lower velocities. It is worth men-291

tioning that the term ”persistent localized source” in this work mainly indicates that the292

source is spatially persistent and temporally frequent, breaking the assumptions of ran-293

domly distributed noise sources underlying much of the theory of ambient noise imag-294

ing. Studies relevant to persistent localized noise sources have gained increasing atten-295

tion with recent work ranging from source localization (Zeng & Ni, 2010) to seismic mon-296

itoring (Dales et al., 2017). However, these studies are usually limited by the sparse spa-297

tial sampling available with conventional seismic networks; DAS offers an alternative to298

study and utilize these persistent localized sources for potential seismic imaging and mon-299

itoring. Other recent studies have attempted to utilize these spurious events for struc-300

tural seismic imaging (Yang et al., 2022), however, we believe they are not appropriate301

modes for such purposes. Our focus is on strategies to attenuate these persistent local-302

ized sources to improve conventional ambient noise imaging.303

We developed a simple processing workflow to attenuate these spurious events as-304

sociated with persistent localized noise sources and to enhance the SNRs of the result-305

ing EGF. For conventional ambient noise imaging utilizing linear arrays and multichan-306

nel analysis of surface waves (MASW) technique, a roll-along strategy (Mayne, 1962; Xia307

et al., 2009) is often implemented by separating the array into a series of subarrays and308

rolling the subarrays to image subsurface lateral variations. In this approach, each sub-309

array contains only one virtual-source cross-correlation/coherence gather with the first310

trace selected as the virtual-source (we refer to these as CN1 virtual-source gather, VSG)311

to ensure the uniform spatial coverage. In this study, CN1 virtual-source gathers are re-312

placed by bin-offset stacked CN2 virtual-source gathers for each subarray where C2
N =313

1+2+ ...n−1 and n is the trace number with each subarray. Here CN1 and CN2 are314

defined after the mathematic combination function. Bin-offset stacks simply stack all EGF315

source-receiver pairs that have the same spatial offset into a single super-gather. Bin-316

offset stacking techniques have been used for signal enhancement for 2-dimensional (2D)317

dense arrays (Nakata et al., 2015; Cheng et al., 2021a); we apply this technique to our318

dense 1-dimensional (1D) DAS array. In our approach, cross-coherence functions are first319

extracted for all possible inter-station pairs (CN2) after 2-day PWS stacking. The re-320

sulting gathers are then spatially averaged using bin-offset stacking to generate an en-321

hanced VSG. This binning approach increases data quality, particularly for cross-coherence322

EGFs with small offsets, and tends to mitigate artifacts due to persistent noise sources323

and local lateral heterogeneity within each subarray. As a result, the stacked EGFs are324

more uniform, and generate more consistent dispersion curves that can be more effec-325

tively inverted using traditional surface wave analysis algorithms. However, as one would326

expect, some degree of lateral resolution is lost in the stacking process.327

Figure 4 shows a typical example of the performance of CN2-bin-stack. Compared328

with the CN1 virtual-source gather (Figure 4a), the CN2-bin-stack virtual-source gather329
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(Figure 4b) has been significantly improved with attenuation of spurious arrivals asso-330

ciated with persistent localized sources and SNR enhancement as indicated by the trace-331

by-trace comparison shown in Figure 4c. The interval of the offset bins used in this work332

is 20 m, similar to the spatial sampling of the decimated dataset.333

3.3 Surface wave imaging334

As described above, a MASW roll-along strategy is implemented for ambient noise335

imaging. In order to ensure sufficient imaging depth and lateral resolution for geother-336

mal reservoir characterization, a 5 km subarray was selected to allow observations of sur-337

face waves with sufficient wavelengths for constraining properties at a depth of ∼3 km338

(Xia et al., 2006; Foti et al., 2018). Subarrays roll along the DAS cable with a coverage339

overlap of 80% to ensure continuity of lateral variations beneath the DAS array. In to-340

tal, we processed 57 subarrays across the DAS cable; for each subarray the enhanced VSG341

after CN2-bin-stack is analyzed for dispersion imaging and subsequent 1D shear wave342

velocity (Vs) inversion. Figure 5 depicts an integrated workflow of DAS ambient noise343

imaging developed for this study. In summary, the data processing workflow contains344

four steps, 1) data preprocessing which decimates the data matrices (from 415 Mb to345

∼17Mb) and normalizes the time series (both temporal and spectral); 2) interferomet-346

ric processing and stacking that generate one enhanced VSG for each subarray after CN2-347

bin-stack; 3) dispersion analysis based on the obtained VSG for each subarray; 4) Vs in-348

version, which constructs a series of 1D Vs profile for all subarrays and aligns them along349

the cable to build a pseudo-2D velocity structure.350

We apply an improved frequency-domain slant-stacking algorithm (Cheng et al.,351

2021c) on each VSG for surface wave dispersion analysis. Figure 6 shows a typical ex-352

ample of the DAS-based surface wave retrieval (a) and dispersion image (b) at location353

∼22 km. Clear Rayleigh waves with apparent velocities varying between 200 m/s to 800354

m/s are visible on the enhanced VSG after CN2-bin-stack without interference from spu-355

rious arrivals associated with persistent localized sources. Higher overtones are clearly356

identified on the high-resolution dispersion spectrum. For accurate dispersion curve pick-357

ing, we limit the target zone using the effective wavenumber range defined by kmin =358

1/L (L, array length 5 km) and kmax = 1/dx (dx, spatial interval 20m) as indicated359

by the blue dashed lines on Figure 6b. Based on the enhanced surface wave shot gather360

and the high-resolution dispersion imaging technique, dispersion curves for multiple modes361

are picked across the DAS profile (see Figure S1 for all the picked curves in supporting362

information). Note that the offset information has been calibrated by tap tests results363

rather than the fixed channel interval, so that the geometry across the two curved sec-364

tions around 6 km and 12 km locations will not impact phase velocity estimation.365

To extract 1D Vs profile for each subarray, we simultaneously invert the multiple-366

mode Rayleigh wave dispersion curves by using a neighborhood algorithm (NA) as im-367

plemented in Geopsy (Wathelet et al., 2004). We initialize the Vs model based on the368

picked fundamental-mode dispersion curves by following the empirical formula described369

in Xia et al. (1999), and generate the density as well as the Poisson ratio model by in-370

terpolating from the IVLSU (Imperial Valley velocity model developed by Louisiana State371

University) model (Persaud et al., 2016; Ajala et al., 2019) archived in Unified Commu-372

nity Velocity Model (UCVM) package (Small et al., 2017) (see the initial models on Fig-373

ure S2 in supporting information). To constrain the model space, we built an earth model374

pool with weak (±50% parametric perturbations) bounds based on the defined initial375

Vs model; density values are treated as a free parameter and P wave velocity (Vp) is linked376

to Vs during the inversion; layer number is fixed as defined in the initial model, and thick-377

ness of each layer is flexible with ±50% perturbations. For each subarray, we invert the378

multiple-mode dispersion curves with 3 independent runs of the inversion process. Each379

run retains 2500 models and the best 400 models of all runs are retained for velocity es-380

timation. To reduce potential uncertainties within the neighborhood algorithm as well381
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as avoid overfitting, we extract the optimal Vs model with a misfit-weighted mean model382

by averaging the best 100 models with weights from the corresponding misfits, rather383

than selecting the individual model with the smallest misfit. Figure 7 shows an exam-384

ple of a DAS-based surface wave inversion utilizing the multiple-mode dispersion curve385

picks from Figure 6b. For all modes, acceptable misfits between the measured and in-386

verted dispersion curves are obtained (Figures 7a1-4). The forward modeled dispersion387

curves from the misfit-weighted model (the red curve in Figures 7b) also show a good388

match with the measured picks. Figure 8 shows the sensitivity kernels of different Rayleigh389

wave modes; compared with the sensitivity kernel of the fundamental mode (Figure 8a),390

higher sensitivities are observed at deeper depths for the lower frequency band of the first391

overtone (Figure 8b) and at shallower depth for higher frequencies of all the higher modes392

(Figure 8b-d). These observations indicate that simultaneous inversion of multiple modes393

has advantages over using only the fundamental mode, both reducing non-uniqueness394

and improving sensitivity at depth (Xia et al., 2012; L. Pan et al., 2019; Fu et al., 2022).395

4 Results396

Our high-resolution inverted Vs model, derived from the DAS array, is shown in397

Figure 9b with the prior IVLSU model shown for comparison (Figure 9a). While both398

models are broadly similar in depth, our inversion resolves a zone of high S-wave veloc-399

ity beneath the BGF which is only hinted at in the IVLSU model. Likewise, the DAS400

result resolves two zones of lower S-wave velocity north and south of the BGF. The high401

velocity zone is also coincident with a region of shallow high Vp (see the reference Vp model402

on Figure S3 in the supporting information) observed in SSIP inversions (Han et al., 2016;403

Persaud et al., 2016). We hypothesize the feature is due to secondary mineral precip-404

itation caused by hydrothermal brine circulation and corresponding water-rock interac-405

tion at depth.406

At 5 km location where our DAS cable crosses over the Alamo River, a low-velocity407

zone (LVZ) is visible on the inverted Vs structure as indicated by the magenta arrow on408

Figure 9b, and coincides with the LVZ hinted at by the IVLSU model as indicated by409

the dip in the 1.5 km/s contour line around the 5 km location on Figure 9a. This LVZ410

might indicate an unmapped fault located between Calipatria and Brawley, considering411

similar discontinuities have been traced with correlations derived from electric logs (Towse,412

1975), a ground magnetic survey (Meidav & Furgerson, 1972), and as well as a seismic413

refraction survey (Frith, 1978). Around the 20 km location, a prominent LVZ as indi-414

cated by the break contour line at 1.8 km/s on the DAS result is probably associated415

with the Brawley Fault (BF) and the complex fault network associated with the south-416

ern termination of the BSZ. The mapped BF from USGS Quaternary fault database crosses417

our cable at ∼21 km location on the surface (see Figure 1a), and our model indicates that418

it might extend farther to the north at depth.419

In geothermal settings within sedimentary basins, high seismic velocities are often420

associated with low porosity units with high degrees of cementation and/or secondary421

alteration (e.g., Ryan & Shalev, 2014; McGuire et al., 2015). Additional knowledge of422

the ratio of P- to S-wave velocities (Vp/Vs) can help to further constrain subsurface prop-423

erties and is sometimes more important than Vp or Vs separately in diagnosing the pres-424

ence of fractures and the effects of pore pressure (Walck, 1988; Nakajima et al., 2001;425

Takei, 2002; Hamada, 2004; Behm et al., 2019). We utilize the Vp model from SSIP by426

slicing the three-dimensional (3D) model of Persaud et al. (2016) along our DAS cable427

and interpolating the 2D slice to the same grid as our inverted Vs model (see the refer-428

ence Vp model on Figure S3 in the supporting information). Compared with the inverted429

2D Vs model, however, the reference 2D Vp model lacks comparable spatial resolution430

due to the limited shots and receivers coverage in SSIP experiment. Although the ob-431

tained Vp/Vs model does not have as high a spatial resolution as the original Vs model,432

it is still a useful aid in interpreting the features beneath the BGF.433
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The resulting mapped Vp/Vs profile (Figure 10a) displays a prominent low Vp/Vs434

dome near the BGF area, as indicated by the contour line at Vp/Vs = 1.8. It coincides435

with the observation presented in Lin (2013) that one of the most significant features436

in the Vp/Vs model for Salton Trough is the predominantly low Vp/Vs values below 2 km437

depth and the lowest Vp/Vs ratios occur in the SSGF area, where the Vp/Vs ratios vary438

from 1.510 to 1.811 according to Lin (2020).439

This low Vp/Vs feature is strikingly correlated with a high heat flow anomaly (the440

red curve in Figure 10b) as well as a gravity high (the blue curve in Figure 10b). The441

higher Bouguer gravity anomaly near the heat-flow anomaly (Figure 1b) may reflect a442

combination of two processes: (1) the intrusion of rhyolitic and basaltic dikes and sills,443

and/or (2) the increased density of sediments due to cementation, recrystallization, and444

thermal metamorphism generated by circulating hydrothermal fluids (Mase et al., 1981).445

Boreholes in geothermal areas in the Imperial Valley have encountered greenschist fa-446

cies metamorphism, cementation of pore spaces, altered rhyolites, and basalt dikes. Many447

geologic studies of this area have concluded that hydrothermal alteration can have a pro-448

nounced effect on the physical properties of the sediments by reducing porosity and in-449

creasing density (Muffler & White, 1969; Robinson et al., 1976; Browne, 1976; McDow-450

ell & Elders, 1979; Elders et al., 1979; Miller & Elders, 1980). These hydrothermal al-451

teration effects coincide with the observation of low Vp/Vs anomalies on Figure 10a, which452

might be used as an indicator for high temperature geothermal systems. In addition to453

the low Vp/Vs dome probably associated with the BGF geothermal reservoir, two high454

Vp/Vs zones around 5 km and 20 km locations are co-located with low velocity zones ob-455

served on the inverted Vs profile. We hypothesize that these features are damage zones456

related to faulting. Discontinuities in EGF waveform character, observed on common off-457

set gathers derived from interferometric processing, also support above observations (see458

Figure S4 in the supporting information).459

The Imperial Valley exhibits active deformation and seismicity associated with both460

extension within the rift centers and shear across strike-slip faults systems (Elders et al.,461

1972; Parsons & McCarthy, 1996; Han et al., 2016). Figure 1a shows the relocated his-462

torical earthquakes from 1981 to 2019 (Hauksson et al., 2012), with most of seismic events463

occurring in the BSZ, which represents the northernmost extension of the spreading cen-464

ter axis associated with the East Pacific Rise. In order to statistically analyze the dis-465

tribution of seismicity along our DAS cable, we project the near-line (distance < 2 km)466

events to the vertical plane where our DAS cable is located. Abundant earthquakes are467

distributed around the 20 km location (as shown on the histogram on Figure 10b); this468

observation is consistent with interpreting the high Vp/Vs values as damage related to469

faulting at the terminus of the BSZ. However, the relationship between the seismicity470

and the Vp/Vs distribution is still ambiguous considering the substantial offset between471

our inversion depth (< 3 km) and the relocated earthquake depths mainly ranging from472

5 km to 10 km (Hauksson et al., 2012). Earthquakes occurring in the BGF area at depths473

from 10 km to 15 km (much deeper than the geothermal reservoir) may have a remote474

connection to geothermal activities or at least related structures (Ellsworth, 2013); the475

histogram spike around 13.5 km is associated with the 2012 Brawley swarm (Wei et al.,476

2013), which has been hypothesized to be induced indirectly through poroelastic cou-477

pling rather than directly by a pore pressure change (Wei et al., 2015). During our DAS478

deployment, the primary seismic network observed no events close to the BGF, suggest-479

ing current production and injection activities are not inducing a large numbers of events.480

5 Discussion481

The Brawley geothermal field was originally developed by Union Oil Company (Un-482

ocal) in the 1970’s. In addition to drilling deep geothermal wells, previous development483

included building and operating a 10 MWe power plant. Unfortunately, corrosion and484

scaling issues resulted in Unocal abandoning the project in the 1980’s. Ormat Nevada485
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Inc investigated the potential of the shallow sands in 2006 and concluded that these matrix-486

permeable sands contained moderately saline water, high porosity, and could support487

a binary-type power plant. After resurrection of the previously developed geothermal488

field, a power plant with a nameplate capacity of 49.9 MWe is presently being operat-489

ing (Matlick & Jayne, 2008).490

To better evaluate the geothermal system beneath the Brawley field, we focus on491

the depth variation of the low Vp/Vs anomalies detected by DAS as well as observations492

from three nearby geothermal wells (see locations in Figure 1a). For better display, well493

logs are smoothed with a 150 m averaging window. Figure 11a provides a comparison494

between various velocity models in BGF area, which help us assess the reliability of the495

obtained structure models. Compared with the Vs model from the IVLSU (the blue dotted-496

dashed line), the inverted Vs model obtained using DAS (the gray solid line) shows higher497

vertical resolution; the reference Vp model (the blue dotted line) is smooth but gener-498

ally matches the sonic log from the Veysey #1 geothermal well (the magenta line). We499

observe that the Vp/Vs model utilizing the reference Vp from Persaud et al. (2016) (the500

gray line in Figure 11b) matches well with the one with the reference Vp from the sonic501

log (the magenta line in Figure 11b), except for the shallower zones where the Vp model502

was poorly resolved from travel-time tomography in Persaud et al. (2016).503

As shown in the high-resolution Vp/Vs profile (Vp from the sonic log), Vp/Vs grad-504

ually decreases until a depth of 800 m; then rapidly increases from 2.2 to 2.7 and then505

decreases to a relatively constant value ∼1.8 at depth below 1,600 m. We interpret the506

increasing Vp/Vs to be associated with the higher porosity upper geothermal reservoir507

dominated by matrix permeability. Historical logs show an increasing temperature from508

100 to 170 oC with thermal gradients of approximately 85 oC/km (highlighted by the509

light-red shallow zone on Figure 11c). This interpretation is supported by the co-located510

geothermal production as indicated by the distribution of total depths of 18 new pro-511

duction wells (highlighted by the gray triangles on Figure 11b, c, and d).512

We hypothesize the zone above to be an impermeable thermal cap with much higher513

Vp/Vs; however, the interface between the upper geothermal reservoir and the cap is am-514

biguous considering the lower resolution of the inverted Vs model comparing to the sonic515

log. The zone below with almost constant low Vp/Vs might house the lower geothermal516

reservoir with potential cementation, recrystallization and thermal metamorphism by517

circulating hydrothermal fluids. The increase in sulfide, chlorite, and epidote alteration518

noted in lithographic logs is indicative of hydrothermal activity (Elders & Sass, 1988;519

Paillet & Morin, 1988; Bonner et al., 2006).520

This lower reservoir is also where Unocal detected the fractured high-temperature521

resource with fluid temperatures of up to 273 oC (the red square on Figure 11c) and op-522

erated the older production wells (the blue triangles on Figure 11b, c, and d). Unfortu-523

nately, high salinity brine and the non-condensable gas caused the carbon steel casing524

and surface equipment to rapidly develop scale and corrode; this problem led Unocal to525

abandon the project since the early exploration focus was on the higher temperature re-526

sources. While we would expect a higher Vp/Vs ratio in this zone due to fracturing, our527

surface wave study likely has insufficient resolving power to isolate such features at depth.528

The constant temperature records in the lower reservoir with low gradients ∼1 oC/km529

might indicate the lower reservoir has been supplying heat to the cap long enough for530

steady-state conduction to develop. Due to thermal alteration, reduced porosity is ob-531

served in the lower reservoir compared to that in the upper reservoir (Figure 11d), con-532

sistent with both seismic observations and the Bouguer anomaly. The dominant heat trans-533

fer mechanism in the lower region might be convective flow of pore fluids. We refer to534

this region as the convective zone in contrast with the conductive zone. Figure 11e shows535

a simplified geothermal system including an impermeable thermal cap above 800 m, a536

relatively high porosity and conductive upper reservoir in the middle depth and a highly537
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thermal-altered and convective lower reservoir below 1,600 m with localized regions of538

fracturing.539

Our high-resolution 2D Vs profile from DAS ambient noise successfully mapped the540

high-temperature and highly thermally-altered lower geothermal reservoir. With the as-541

sistance of legacy sonic logs, the improved 1D Vp/Vs model with higher vertical resolu-542

tion also detected the weakly thermal altered upper thermal reservoir, which contains543

moderately saline water and relatively high porosity. Unfortunately, it is challenging to544

distinguish this upper reservoir with ambient noise results alone due to the limited ver-545

tical resolution of the seismic imaging technique used. Further work is required to im-546

age fine-scale crustal structures beneath linear arrays, for example, waveform-based in-547

version method (Zhang et al., 2018; Y. Pan et al., 2021) or extraction of refracted body548

waves and/or reflected phases from the ambient noise wavefield.549

6 Conclusions550

We extract high quality surface waves from ambient noise data, acquired using DAS551

and a 28-km-long telecommunication cable, and apply high-resolution surface wave imag-552

ing to retrieve the S wave velocity structure of the top 3 km of the Imperial Valley. We553

develop a linear spatial stacking technique, called CN2-bin-stack, to attenuate spurious554

events associated with persistent localized sources and enhance the SNR of the retrieved555

EGF. We jointly invert multiple surface wave modes retrieved from this dataset to re-556

duce non-uniqueness inherent in Vs inversion and improve sensitivity at depth. Based557

on the Vp model obtained from Persaud et al. (2016), we generate a 2D Vp/Vs profile across558

the valley, and observe a significant low Vp/Vs feature beneath the Brawley field, which559

is likely related to hydrothermal alteration within and beneath the currently producing560

reservoir. We have also identified two low velocity zones, north and south of the field,561

which we hypothesize are associated with an unmapped fault between Calipatria and Braw-562

ley and the mapped Brawley Fault and BSZ termination zone, respectively.563

With the assistance of legacy sonic logs, we were also able to improve the 1D Vp/Vs564

model, allowing detection of the seismic signature associated with the upper geothermal565

reservoir. Based on observations from geothermal wells as well as heat flow and grav-566

ity surveys, a simplified geothermal system is inferred, incorporating an impermeable ther-567

mal cap above 800 m, a relatively high porosity and conductive upper reservoir at in-568

termediate depths, and a highly altered, low porosity, and moderately fractured lower569

reservoir below 1,600 m. While future studies might benefit from incorporation of a larger570

variety of wave modes and earthquake signals recorded on the same network, our inves-571

tigation effectively demonstrates the utility of high spatial-resolution geothermal char-572

acterization with DAS at the basin scale, as well as the potential for high temporal-resolution573

geothermal monitoring even with the short imaging period (2 days).574
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Ajo-Franklin, J., Rodŕıguez Tribaldos, V., Nayak, A., Cheng, F., Mellors, R., Chi,622

B., . . . Dobson, P. (2022). The Imperial Valley Dark Fiber Project: Towards623

seismic studies using DAS and telecom infrastructure for geothermal applica-624

tions. Seismological Research Letters.625

Anderson, E., Crosby, D., & Ussher, G. (2000). Bulls-eye! simple resistivity imag-626

ing to reliably locate the geothermal reservoir. In Proceedings world geothermal627

congress (pp. 909–914).628

Ars, J.-M., Tarits, P., Hautot, S., Bellanger, M., Coutant, O., & Maia, M. (2019).629

Joint inversion of gravity and surface wave data constrained by magnetotel-630

luric: application to deep geothermal exploration of crustal fault zone in felsic631

basement. Geothermics, 80 , 56–68.632

Atef, H., Abd El-Gawad, A., Zaher, M. A., & Farag, K. (2016). The contribution633

of gravity method in geothermal exploration of southern part of the Gulf of634

–13–



manuscript submitted to JGR: Solid Earth

Suez-Sinai region, Egypt. NRIAG Journal of Astronomy and Geophysics, 5 (1),635

173–185.636

Behm, M., Cheng, F., Patterson, A., & Soreghan, G. (2019). Passive process-637

ing of active nodal seismic data: Estimation of Vp/Vs ratios to characterize638

structure and hydrology of an alpine valley infill. Solid Earth, 1–32. doi:639

10.5194/se-2019-47640

Bensen, G., Ritzwoller, M., Barmin, M., Levshin, A., Lin, F., Moschetti, M., . . .641

Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable642

broad-band surface wave dispersion measurements. Geophysical Journal Inter-643

national , 169 , 1239–1260.644

Biehler, S. (1964). A geophysical study of the Salton Trough of southern California645

(Unpublished doctoral dissertation). California Institute of Technology.646

Biehler, S. (1971). Gravity studies in the Imperial Valley. Cooperative Geological-647

Geophysical-Geochemical Investigations of Geothermal Resources in the Im-648

perial Valley of California: Riverside, California, University of California–649

Riverside Education Research Service, 29–41.650

Bonner, B., Hutchings, L., & Kasameyer, P. (2006). A strategy for interpretation651

of microearthquake tomography results in the Salton Sea Geothermal Field652

based upon rock physics interpretations of state 2-14 borehole logs (Tech. Rep.).653

Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).654

Brodsky, E. E., & Lajoie, L. J. (2013). Anthropogenic seismicity rates and opera-655

tional parameters at the salton sea geothermal field. Science, 341 (6145), 543–656

546.657

Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., Group, C. W., et al. (2005).658

Crustal structures in the geothermal areas of southern Tuscany (Italy): in-659

sights from the CROP 18 deep seismic reflection lines. Journal of Volcanology660

and Geothermal Research, 148 (1-2), 60–80.661

Browne, P. (1976). Occurrence of hydrothermal alteration of diabase Heber geother-662

mal field, Imperial Valley, California. Preliminary results (Tech. Rep.). Uni-663

versity of California Riverside, Institute of Geophysics Planetary Physics664

Report.665

Burton-Johnson, A., Dziadek, R., & Martin, C. (2020). Geothermal heat flow in666

antarctica: current and future directions. The Cryosphere, 14 (11), 3843–3873.667

Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda.668

Science, 299 (5606), 547–549.669

Cedilnik, G., Lees, G., Schmidt, P., Herstrøm, S., & Geisler, T. (2019). Ultra-long670

reach fiber distributed acoustic sensing for power cable monitoring. In Proceed-671

ings of the jicable (Vol. 19).672

Chalari, A., Mondanos, M., Coleman, T., Farhadiroushan, M., & Stork, A. (2019).673

Seismic methods for geothermal reservoir characterization and monitoring us-674

ing fiber optic distributed acoustic and temperature sensor. In Eage/bvg/fkpe675

joint workshop on borehole geophysics and geothermal energy (Vol. 2019, pp.676

1–6).677

Chang, H., & Nakata, N. (2022). Investigation of time-lapse changes with das bore-678

hole data at the brady geothermal field using deconvolution interferometry. Re-679

mote Sensing , 14 (1), 185.680

Cheng, F., Chi, B., Lindsey, N., Dawe, C., & Ajo-Franklin, J. (2021b). Utilizing681

distributed acoustic sensing and ocean bottom fiber optic cables for sub-682

marine structural characterization. Scientific Reports, 11 (1), 5613. doi:683

10.1038/s41598-021-84845-y684

Cheng, F., Lindsey, N. J., Sobolevskaia, V., Dou, S., Freifeld, B., Wood, T., . . . Ajo-685

Franklin, J. B. (2022). Watching the cryosphere thaw: Seismic monitoring of686

permafrost degradation using distributed acoustic sensing during a controlled687

heating experiment. Geophysical Research Letters, 49 (10), e2021GL097195.688

Cheng, F., Xia, J., Ajo-Franklin, J. B., Behm, M., Zhou, C., Dai, T., . . . Zhou, C.689

–14–



manuscript submitted to JGR: Solid Earth

(2021a). High-resolution ambient noise imaging of geothermal reservoir using690

3c dense seismic nodal array and ultra-short observation. Journal of Geophysi-691

cal Research: Solid Earth, 126 (8), e2021JB021827.692

Cheng, F., Xia, J., Behm, M., Hu, Y., & Pang, J. (2019). Automated Data Selec-693

tion in the Tau–p Domain: Application to Passive Surface Wave Imaging. Sur-694

veys in Geophysics, 1–18. doi: 10.1007/s10712-019-09530-2695

Cheng, F., Xia, J., Luo, Y., Xu, Z., Wang, L., Shen, C., . . . Hu, Y. (2016). Multi-696

channel analysis of passive surface waves based on cross-correlations. Geo-697

physics, 81 (5), EN57–EN66.698

Cheng, F., Xia, J., Xu, Y., Xu, Z., & Pan, Y. (2015). A new passive seismic method699

based on seismic interferometry and multichannel analysis of surface waves.700

Journal of Applied Geophysics, 117 , 126–135.701

Cheng, F., Xia, J., Xu, Z., Hu, Y., & Mi, B. (2018). Frequency-wavenumber(FK)-702

based data selection in high-frequency passive surface wave survey. Surveys in703

Geophysics, 39 , 661–682.704

Cheng, F., Xia, J., Zhang, K., Zhou, C., & Ajo-Franklin, J. B. (2021c). Phase-705

weighted slant-stacking for surface wave dispersion measurement. Geophysical706

Journal International , 256–269. doi: 10.1093/gji/ggab101707

Combs, J. (1978). Geothermal exploration techniques: a case study. Final report708

(Coso geothermal area). (Tech. Rep.). Texas Univ., Richardson (USA). Center709

for Energy Studies.710

Combs, J., & Hadley, D. (1977). Microearthquake investigation of the Mesa geother-711

mal anomaly, Imperial Valley, California. Geophysics, 42 (1), 17–33.712

Dales, P., Audet, P., & Olivier, G. (2017). Seismic interferometry using persistent713

noise sources for temporal subsurface monitoring. Geophysical Research Let-714

ters, 44 (21), 10–863.715

Daley, T. M., Freifeld, B. M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V.,716

. . . others (2013). Field testing of fiber-optic distributed acoustic sensing (das)717

for subsurface seismic monitoring. The Leading Edge, 32 (6), 699–706.718

Dobson, P. F. (2016). A review of exploration methods for discovering hidden719

geothermal systems. GRC Transactions, 40 , 695–706.720

Dou, S., Lindsey, N., Wagner, A., Daley, T., Freifeld, B., Robertson, M., . . . Ajo-721

Franklin, J. (2017). Distributed acoustic sensing for seismic monitoring of the722

near surface: A traffic-noise interferometry case study. Scientific reports, 7 (1),723

1–12.724

EIA. (2021). Monthly energy review, April 2021 (Tech. Rep.). Energy Information725

Administration, Washington DC (United States). Retrieved from https://www726

.eia.gov/totalenergy/data/monthly/pdf/mer.pdf727

Elders, W., Hoagland, J., McDowell, S., & Cobo, J. (1979). Hydrothermal mineral728

zones in the geothermal reservoir of Cerro Prieto. Geothermics, 8 (3-4), 201–729

209.730

Elders, W., Rex, R., Robinson, P., Biehler, S., & Meidav, T. (1972). Crustal Spread-731

ing in Southern California: The Imperial Valley and the Gulf of California732

formed by the rifting apart of a continental plate. Science, 178 (4056), 15–24.733

Elders, W., & Sass, J. (1988). The Salton Sea scientific drilling project. Journal of734

Geophysical Research: Solid Earth, 93 (B11), 12953–12968.735

Ellsworth, W. L. (2013). Injection-induced earthquakes. science, 341 (6142),736

1225942.737

Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., & Gogineni, P. (2001). High738

geothermal heat flow, basal melt, and the origin of rapid ice flow in central739

Greenland. Science, 294 (5550), 2338–2342.740

Feigl, K. L., & Parker, L. M. (2019). Porotomo final technical report: Poroelastic741

tomography by adjoint inverse modeling of data from seismology, geodesy, and742

hydrology (Tech. Rep.). Univ. of Wisconsin, Madison, WI (United States). doi:743

10.2172/1499141744

–15–



manuscript submitted to JGR: Solid Earth

Feigl, K. L., & Team, P. (2017). Overview and preliminary results from the poro-745

tomo project at brady hot springs, nevada: Poroelastic tomography by adjoint746

inverse modeling of data from seismology, geodesy, and hydrology. In 42nd747

workshop on geothermal reservoir engineering (pp. 1–15).748

Fichtner, A., Bowden, D., & Ermert, L. (2020). Optimal processing for seismic noise749

correlations. Geophysical Journal International , 223 (3), 1548–1564.750
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Figure 1. Site overview of the Imperial Valley dark fiber experiment. (a). Maps of the Im-

perial Valley with DAS cable array (black line), Quaternary faults (red lines), Brawley seismic

zone (orange dash-line polygon), rivers (Alamo River and New River, steelblue lines), geothermal

fields (green polygons), geothermal wells (magenta triangles, #1, #8 and #9) discussed in this

paper, and historical earthquakes from 1981 to 2019 (blue-to-green colored dots). The colors of

earthquakes are coded by the relocated depths (Hauksson et al., 2012). 5 yellow squares mark

the cable length at 5/10/15/20/25 km locations referring to the north starting end. Major faults

in the region are indicated by capital letters as follows: Imperial Fault (IF), Superstition Hills

Fault (SHF), Superstition Mountain Fault (SMF) and Brawley Fault (BF). (b). Heat flow map

(Williams et al., 2007, 2008) of the Imperial valley area overlaying with Bouguer gravity contours

(blue lines) (Biehler, 1964, 1971).

–22–



manuscript submitted to JGR: Solid Earth

Figure 2. Observations of ambient noise on a ∼28 km DAS array. (a) 60-second-long ambient

noise record in strain-rate (unit, nanostrain/s) with seismic signatures from moving vehicles and

persistent localized sources, like factories, crossing roads, Brawley overpass, and Brawley Airport.

A rotated street map on the top of (a) shows the main infrastructures crossing the cable. Three

colored stars, colocated on both street map and the waveform map, represent the detected persis-

tent localized sources, like grain silos (the red star) and crossing roads (the blue stars). (b) 2-day

averaged spectrum of the noise along the cable.
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Figure 3. Example of the effect from persistent localized source. (a) Empirical Green’s func-

tion gather with virtual source at 1.2 km location (indicated by the red dashed line). The colored

stars indicate the persistent localized sources, from the working grain silo (red star), the Yocum

Rd (blue star) and the Albright Rd (magenta star), which have been colocted on the raw wave-

form map. (b) shows the site photo of the grain silo beside the cable line as indicated by the red

star on (c). The street map on (c) shows the Yocum Rd and the Albright Rd crossing the fiber-

optic cable (the black line). Seismic signature of the grain silo is significantly different to that of

the crossing roads and shows dominant higher frequency components.
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Figure 4. Performance of CN2-bin-stack. (a) The CN1 shot gather with the first channel as

virtual source and the other N channels as virtual receivers. (b) The CN2-bin-stack shot gather

with every channel as virtual source and the channels behind the virtual sources as virtual re-

ceivers. (c) Single trace comparison between CN1 (black) and CN2-bin-stack (red) shot gather at

offset 0.7 km (highlighted by the red dashed line in (a) and (b)).
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Figure 5. Workflow of DAS ambient noise imaging including preprocessing, virtual source

gather (VSG) generation, dispersion curve (DC) measurement, and S-wave inversion.

Figure 6. DAS-based surface wave retrieval and dispersion analysis. (a) and (b) show the

extracted Rayleigh wave shot gather after CN2-bin-stack and the corresponding dispersion mea-

surement with multiple modes identified and picked. The blue dashed lines indicate the minimum

wavenumber defined by kmin=1/L (L, array length) and the maximum wavenumber defined by

kmax = 1/dx (dx, spatial interval).
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Figure 7. DAS-based multiple-mode surface wave dispersion inversion. (a) shows the mea-

sured (the black dotted curves) and the best 400 forwarded (the colored curves) dispersion

curves; the gray curves show the the dispersion curve forwarded from the best-fitting model; the

red curves depict the dispersion curve forward modelled from the misfit-weighted mean model.

(b) presents the best 400 Vs models; the gray and red curves indicate the best fitted model and

the misfit-weighted median model; the gray dashed lines indicate the upper and bottom velocity

boundaries. Colors in (a) and (b) are coded by misfits as shown on the color map.

–27–



manuscript submitted to JGR: Solid Earth

Figure 8. Sensitivity kernel of fundamental (a), first higher mode (b), second higher mode

(c) and third higher mode (d) surface waves, respectively. The gray zone indicates the frequency

band that could not be reliably identified in the DAS dispersion analysis.

Figure 9. Vs imaging of Brawley geothermal reservoir and Brawley fault. (a) Reference Vs

model from IVLSU. (b) Inverted Vs model from DAS ambient noise data. The gray dashed line

indicates the location of the model used for comparison in Fig.11a.
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Figure 10. Seismic imaging of Brawley geothermal reservoir and Brawley fault. (a) Vp/Vs

profile based on Vp from Persaud et al. (2016) and Vs from DAS. The gray dashed line indicates

the location of the model used for comparison in Fig.11a. (b) Distribution of miscroseismicity,

heat flow and detrended Bouguer gravity anomaly along the ∼28 km fiber-optic cable. For better

visualization, the linear trend of the bouguer gravity has been removed.

–29–



manuscript submitted to JGR: Solid Earth

Figure 11. Velocity models, borehole observations and the inferred geothermal system. (a)

Velocity models at location 12.5 km (highlighted by the gray dashed line in Fig.9 and Fig.10). Vs

model from DAS (the gray solid line) and IVLSU model (the blue dotted-dashed line), Vp model

from Persaud et al. (2016) (the blue dotted line) and geothermal well Veysey #1 (the magenta

solid line). (b) Vp/Vs profile at location 12.5 km with Vs from DAS and Vp from Persaud et al.

(2016) (the gray dotted line) and geothermal well Veysey #1 (the magenta solid line). (c) and

(d) show the temperature and neutron porosity observations from geothermal wells, Veysey #8

(the cyan line) and Veysey #9 (the green line), respectively. (e) The inferred geothermal system.

The gray triangles indicate the depths of the new production wells developed by Ormat Nevada

Inc; the blue triangles indicate the depths of the older production wells developed by Unocal.

The red square in c shows the temperature record observed in old geothermal well of Unocal.
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