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Key Points:

• An open source machine learning-based algorithm was designed to esti-
mate actual evapotranspiration (ET) at a 30-m resolution for any-scale
application.

• Among climate variables, we find net solar radiation to have the most
influence on ET over agricultural lands in the CONUS.

• Over CONUS, annual wheat ET decreased significantly from 2013 to 2021,
accompanied by a significant increase in air temperature.

Abstract

An open source computer algorithm, the Surface Energy Balance Algorithm
for Land-Improved (SEBALI), was designed to estimate actual evapotranspi-
ration (ET) at a basin level. In this study, we build on later versions of SE-
BALI/SEBALIGEE to estimate ET at a 30-m resolution for any scale applica-
tion using advanced machine learning approaches (SEBALIGEE v2). We eval-
uate the monthly ET estimated from the new algorithm across several fluxnet
sites in US, China, Italy, Belgium, Germany, and France, yielding an Absolute
Mean Error (AME) of 0.41 mm/day versus 0.48 mm/day in the original SE-
BALIGEE. Analyses of the ET in the US indicate that the annual wheat ET
decreases significantly between 2013 and 2021 (p < 0.05), accompanied by a
significant air temperature increase. Net solar radiation is found to be the most
influencing factor on ET of corn and soybeans with R2 values of ~0.72.

Plain Language Summary

Evapotranspiration, the combination of soil evaporation and plant transpiration,
represents a major consumptive use of agricultural water. Accurate estimate of
evapotranspiration plays an important role in improving water use efficiency
and achieving sustainable water management in agriculture. We improve on ex-
isting algorithms for estimating global evapotranspiration from crops at a 30-m
resolution for any-scale application through use of advanced machine learning
approaches. We apply the algorithm to three major crops in the US from 2013
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to 2021, and examine associations with various climate variables and drought
conditions. The new version of the algorithm is an open-sourced and fully
automated system that can be easily customized to estimate actual evapotran-
spiration, accounting for differences in management and other environmental
conditions, in any region of interest across the globe.

1 Introduction

A sustainable water management plan is critical to meeting the goals of the UN
2030 Agenda on Sustainable Development Goals (Si, 2021). However, climate
change poses a major threat to developing a resilient water management system
that ensures crops’ optimum health and productivity (Zhang et al. 2021). Never-
theless, the availability of abundant satellite observations and the advancement
of artificial intelligence/machine learning technologies have provided unprece-
dented opportunity to tackle this challenge.

One essential component of water management systems calls for an accurate es-
timate of crop water demand, also known as the actual evapotranspiration (ET).
ET is affected by many factors, including weather parameters and crop char-
acteristics as well as management and environmental aspects. ET is typically
expressed by relating to the reference evapotranspiration (ET0) via the adjusted
crop coefficient (aKc, ET = ET0*aKc) (Mhawej et al., 2021). ET0 represents
the evapotranspiration from a reference surface (eg., well-watered grass) and is
only affected by weather parameters. aKc accounts for the crop evapotranspi-
ration under non-standard field conditions with all kinds of stresses as well as
sub-optimal crop management and environmental constraints. It represents the
integrated effects of crop characteristics, leaf area, plant height, canopy cover,
rate of crop development, irrigation method, soil and climate conditions, and
management practices. aKc is specific for each crop, changes throughout the
crop growth stages, and is usually determined experimentally (Mhawej et al.,
2021). Knowledge of aKc for a given crop will provide crucial information about
water use at each stage of the crop growing season (from sowing till harvest).

There are two common approaches to estimate ET: crop model and satellite
remote sensing. Each of these techniques considers specific properties and has
limitations. Crop models, such as AquaCrop (Steduto et al., 2009), CropSyst
(Stockle et al., 1994), the Agricultural Production Systems sIMulator (APSIM)
(Keating et al., 2003), are often applied on a parcel-scale, due to many site-
specific parameters which need be calibrated to achieve a desired accuracy. This
usually generates fragmented observations. Satellite remote sensing can readily
provide continuous observations over large areas of various variables required
to calculate ET at global coverage (Fadel et al., 2020). The widely used al-
gorithms for estimating ET include the Surface Energy Balance Algorithm for
Land (SEBAL) (Bastiaanssen et al., 1998), Mapping EvapoTranspiRation with
Internalized Calibration (METRIC) (Allen et al., 2007), ET-Watch (Wu et al.,
2008), the Atmosphere-Land EXchange Inverse (ALEXI) flux Disaggregation
approach (DisALEXI) (Anderson et al., 2013), and operational Simplified Sur-
face Energy Balance (SSEBop) (Senay et al., 2014). Our recently developed
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SEBAL – Improved (SEBALI) (Mhawej et al., 2020a; 2020b; Allam et al., 2021)
Google Earth Engine (SEBALI-GEE) (Mhawej and Faour, 2020; Mhawej et al.,
2021) algorithm represents many improvements over the previously mentioned
models (see section 3.1 for more details). The utilization of the GEE platform
also enables prompt fetching and processing of all the needed inputs (Gorelick et
al., 2017) and is therefore end-user friendly. However, SEBALI/SEBALIGEE
and other algorithms mentioned above generally rely on the use of hot and cold
pixels to construct a linear relationship between temperature differences (dTs)
and their corresponding land surface temperatures (LSTs) in the sensible heat
calculation (Abunnasr et al., 2022). This procedure may introduce biases when
the relationship is extrapolated to other pixels for the dT computation (see
section 3.2 for more details).

Here we propose an improved version of the SEBALI/SEBALIGEE model (SE-
BALIGEE version 2, hereinafter referred to as SEBALIGEE v2), also hosted
over the GEE. SEBALIGEE v2 employs the Random Forest (RF) machine learn-
ing technique in place of the conventional hot/cold pixel approach, which en-
ables more objective and accurate dT computation on any scale. In this study,
we first evaluate the performance of SEBALIGEE v2 in estimating the ET at
various Fluxnet sites across six different countries, including the United States,
China, Italy, Belgium, Germany, and France. We then focus on three most
commonly grown crops across the entire Contiguous United States (CONUS),
namely, corn, soybeans and winter wheat, and deduce their aKc values from the
SEBALIGEE v2-estimated ET and ET0 between 2013 and 2021. We further
assess the seasonal and annual variations of three crops’ aKc and ET as well as
how different climate variables and drought conditions are associated with their
variations. The structure of the paper is as follows; in section 2, we describe
the study area and various datasets used in this study. The method for devel-
oping the SEBALIGEE v2 is given in section 3. Section 4 presents the results.
Summary and discussions are provided in section 5.

2 Study Area and Datasets

2.1 Study Area

Our study focuses on the Contiguous United States (CONUS) which
is represented by 22 different climatic zones (Abunnasr and Mhawej,
2021). Agriculture is a major industry in the United States with nearly
two million farmers (Page, 2018). It is mostly mechanized and con-
centrated in the Great Plains, Great Lakes and east of the Rocky
Mountains. According to the United States Department of Agricultural
National Agricultural Statistics Service (USDA NASS) report of 2015
(https://www.nass.usda.gov/Charts_and_Maps/Crop_Progress_&_Condition/2015/index.php),
corn represents the highest production value of 52.3 billion USD, followed by
soybeans of 40.3 billion USD and wheat of 11.9 billion USD. In 2021, these
three crops corresponded to an area of 53, 46, and 12 million ha, respectively
(Figure 1). Corn and soybeans are mainly located over the eastern half of
the US called Corn Belt, whilst wheat plantations are largely found over the
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western half, known as the Wheat Belt (Winkler et al., 2012). The western
US is typically characterized by a cold semi-arid climate in the interior upper
states and warm/hot semi-arid climate in the southwestern states. In the
eastern US, the climate transitions from humid continental in northern areas
into a humid temperate in the southern states.

Figure 1: Mapping main crops in the CONUS, 2021 (“n” corresponds
to sample size of 30x30 pixels).

2.2 Datasets

Various datasets have been compiled for the development of SEBALIGEE v2,
including 1) the 30-m 16-day Level-2 Bottom of Atmosphere (BOA) Surface
Reflectance (SR) Landsat-8 satellite (Vermote et al., 2016), which is used for
the generation of Normalized Difference Vegetation Index (NDVI), LST, and
albedo; 2) the monthly air temperature, dewpoint and wind speed from the
fifth generation ECMWF atmospheric reanalysis of the global climate at 0.1°
(~10-km, ERA5, Hersbach et al. 2020) used for the calculation of ET0; 3) the 1-
km Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover
version 6 (MOD10A1, Hall et al., 2016) used for cloud cover detection; 4) the 500-
m annual MODIS Land Cover Type version 6 (MCD12Q1.006, Sulla-Menashe
and Friedl, 2018) used for water body mapping; 5) the 90-m NASA Shuttle
Radar Topographic Mission (SRTM) version 4 (Jarvis et al., 2008) used for the
calculation of altitude and slope and ET0; 6) the 30-m annual USDA NASS
Cropland Data (Boryan et al., 2011) used for the corn, soybeans and winter
wheat mapping; 7) air temperature at two different heights (i.e., 2-m and 10-
m) from the Modern-Era Retrospective analysis for Research and Applications,
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Version 2 at 0.625° × 0.5° (~ 50km, MERRA-2, Bosilovich et al., 2016) used
for the sensible heat calculation. Two additional datasets are employed for
the statistical analysis (section 4.2), including the monthly total precipitation
from the Parameter-elevation Regressions on Independent Slopes Model AN81m
at 4-km (PRISM, Daly et al., 2008) and various daily drought indices at 4-
km derived from the Gridded Surface Meteorological (GRIDMET, Abatzoglou,
2012). The drought indices to be examined in our study include the widely-
used Standardized Precipitation Evapotranspiration Index (SPEI) calculated at
different time scales (Table S1 in Supplementary Materials). Given a wide range
of spatial resolutions among various datasets (30-m ~ 50-km), our analyses will
be performed at the 30-m (finest) grid scale. Any coarser dataset grid will
overlay multiple 30-m grids with the same values across the grids. Although
the ERA5 provides air temperature at 2-m and 10-m, we consider only those
datasets that are directly available and accessible at the GEE platform. This will
allow end-users to readily apply our algorithm for their applications. We expect
that the use of climate variables from multiple data sets will not significantly
change our results.

We use ET observations collected at multiple Eddy Covariance flux towers to
evaluate the SEBALIGEE v2 performance (Table S2 and Figure S1 in Supple-
mentary Materials). Most of these sites have been used in our previous stud-
ies related to the SEBALI/SEBALIGEE model. We focus on the sites which
have the flux measurements overlapping the Landsat-8 data, specifically from
September 2013 to December 2021. This results in a total of 11 sites across
four climate regions (Hot-summer Mediterranean climate (Csa), Oceanic (Cfb),
Monsoon-influenced warm-summer humid continental (Dwb), and hot-summer
humid continental (Dfa)) in six countries. These datasets are available to down-
load from the FLUXNET (https://fluxnet.fluxdata.org/) or AMERIFLUX
(https://ameriflux.lbl.gov/) official data portal. Only the fully processed Eddy
Covariance ET measurements in China were provided by the Chinese Academy
of Science (CAS) from January 2016 to December 2017.

3 Development of the SEBALIGEE v2

3.1 SEBALI/SEBALIGEE model

SEBALI/SEBALIGEE is a satellite-based surface energy balance model devel-
oped in 2020 and commonly implemented over a basin scale. The basic princi-
ple behind SEBALI /SEBALIGEE is the widely known surface energy equation
(Price, 1985) at the Earth’s surface with the latent heat flux as a proxy for ET,
derived as the residual of other energy terms (i.e., net radiation flux Rn, soil heat
flux G and sensible heat flux H). SEBALI/SEBALIGEE integrates the strengths
of existing models (i.e., SEBAL, METRIC, ET-Watch, and SSEBop) but also ad-
dresses gaps in their capabilities. Major improvements of SEBALI/SEBALIGEE
over previous models include the reduction of required parameters (e.g., daily
wind speed and relative humidity), the exclusion of the commonly-biased soil-
related variables (e.g., wilting point and field capacity) as inputs, and a more so-
phisticated tree-like algorithm for automatically identifying hot and cold pixels
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(Mhawej and Faour, 2020), water-based internal calibrations to achieve improved
satellite-based estimates of sensible and latent heat fluxes, and the estimation of
30-m ET and aKc simultaneously. SEBALI/SEBALIGEE is a fully automated,
open-source, user-friendly system by ingesting various readily available remote
sensed datasets at the GEE platform, including vegetation indices, albedo, and
LST, climate, and other ancillary datasets (Mhawej and Faour, 2020). Detailed
information can be found in Mhawej et al. (2020a, 2020b; 2021) and Allam et
al. (2021).

3.2 SEBALIGEE v2

SEBALIGEE v2 (Figure S2 in Supplementary Materials) essentially follows the
same principle and procedure as SEBALI/SEBALIGEE in the calculation of
ET, ET0, and aKc, except that RF machine learning method is implemented in
place of the hot/cold pixels approach to resolve the air temperature differences
for the sensible heat calculation and further reduce potential bias/uncertainty.
In SEBALI/SEBALIGEE, hot and cold pixels are identified in two steps by
accounting for the effects of both vegetation (agricultural areas only) and surface
temperature. First, hot pixels are selected from bare or uncultivated lands with
limited or lack of vegetation cover (0 < NDVI <= 0.2) while cold pixels are
associated with a vegetation cover (NDVI > 0.2). Two types of pixels are
further filtered based on the LST statistics (mean and standard deviation) of
each pixel group. A linear relationship is constructed between dTs and LSTs
of two groups and applied to the LSTs of other pixels across the whole satellite
image for estimating a pixel-based spatial distribution of dT. This procedure
may introduce several potential sources of uncertainty due to 1) the impacts
of ever changing cloud/shadow conditions and/or land cover type through the
time on the determination of hot/cold pixels and their respective LSTs and dTs;
and 2) the extrapolation of the linear relationship to the pixels of the whole
image.

The RF approach is a type of supervised learning algorithm that uses ensemble
methods (bagging) to solve both regression and classification problems (Breiman
2001; Chen et al., 2020). In SEBALIGEE v2, RF is implemented on a monthly
scale at the spatial resolution of MERRA-2 (50-km * 62.5-km) over the CONUS.
We first obtain the median daily air temperature at 2-m and 10-m heights from
MERRA-2 and calculate their difference at each grid for each month. Similarly,
the median NDVI, LST and albedo values at 30-m are derived from one or two
Landsat images of each month and then spatially aggregated to the resolution
of MERRA-2. RF is then trained with Landsat NDVI, LST, and albedo as the
independent variables and MERRA-2 air temperature difference as the depen-
dent variable. The trained RF model is later applied to the NDVI, LST, and
albedo at their native Landsat resolution to derive the spatial distribution of
dT at 30m. The procedure is performed for each month from 2013 to 2021.
In comparison with the hot/cold pixel approach, RF algorithm presents sev-
eral unique strengths in the dT computation on a large scale: 1) it utilizes all
the pixels within the extent of any region of interest and thus eliminates the
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subjectivity and potential biases in identifying two types of extreme pixels; 2)
the trained RF model is nonparametric and therefore the relationship between
dependent (dTs) and independent variables is not necessarily linear; and 3) RF
provides great flexibility to account for multiple independent variables in the
classification model. These strengths are expected to lead to a more robust
model with an improved performance. The RF is computationally very efficient.
With 130 decision trees (the maximum allowable capacity at the GEE platform),
it takes only a few seconds to produce a monthly dTs at the 30-m resolution
over the CONUS. SEBALIGEE v2 (Figure S3 in Supplementary Materials) is
easily portable and customizable to produce the relevant parameters specific to
any region of interest, greatly increasing its applicability.

We have computed a total of 220 monthly ET estimates across 11 Eddy covari-
ance tower sites of different climate zones in six countries (Table S2 in Supple-
mentary Materials). A random selection of 70% of the samples is used for the
calibration with the remaining 30% for validation. The model performance is
evaluated with the monthly Root Mean Square Error (RMSE), Absolute Mean
Error (AME) and the R-squared correlation between SEBALIGEE v2 monthly
ET values and their flux towers’ counterparts. The validated SEBALIGEE v2
is then applied for estimating the water requirements of three major crops, in-
cluding corn, soybeans and winter wheat, in the CONUS between 2013 and
2021. Statistical analysis, including Mann-Kendall tests and step-wise regres-
sions, were followed to understand how different climate variables affect the
variations of the aKc for each crop and also identify the most influential factors.

4 Results and Discussion

Comparison of the SEBALIGEE v2 estimated ET values with the flux tower ob-
servations show good performance with a RMSE of 16.35 mm/month, an AME
of 14.47 mm/month and a R2 of 0.78 over the remaining 30% of total samples.
SEBALIGEE exhibits a similar RMSE of 16.26 mm/month and an AME of
14.54 mm/month but a much lower R2 of 0.66 with the six flux tower observa-
tions (excluding the new three tower sites in the US). Over the same flux towers
considered in SEBALIGEE, SEBALIGEE v2 has an improved RSME (14.73
mm/month) and AME (12.22 mm/month) and a much higher R2 (~0.83%).
Our following analyses focus on the three crops in the CONUS.

4.1. Water requirements of corn, soybeans and winter wheat

Figure 2a shows the monthly climatology of ET for three crops from 2013 to
2021. These results are aggregated from the total number of parcels of each
crop (sample size in Figure 1) based on the yearly crop plantation mask from
USDA NASS cropland data layers. We see that the ET values of all three crops
present similar distinct seasonal cycles with peaks occurring in late spring to the
summer (May-Aug) and troughs between October and January. These features
correspond well to the key stages of crop life cycle, such as onset of greenness,
peak of the growing season, duration of the growing season, and initiation of
the dry down period. Corn and soybean exhibit similar magnitudes of ET (36
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~ 168 mm/month) and higher than winter wheat (33 ~ 122 mm/month), where
the reproductive stages (i.e., emergence and nth leaf collar for corn, germination
and seedling and rapid vegetative growth for soybeans, and heading, flowering
and grain filling in winter wheat) are requiring the most water (Baum et al.,
2019). Large standard deviations are observed in the ET estimates of all the
crops, with ~ 32 mm/month for corn and soybean and ~ 43 mm/month for
winter wheat, likely attributed to different parcels of the same crop exhibiting a
wide range of planting times, crop health conditions, and management practices.
Our ET curves are consistent with previous studies which suggested an optimum
planting window between the last week of April and the first week of May for
corn and soybeans (Nafziger, 1994; Norberg et al., 2010; Xu et al., 2019) and
from mid-September to the first week of October (Nouri et al., 2017; Nasrallah
et al., 2020) for winter wheat.

All three crops show a similar seasonal cycle of aKc with two distinct peaks (~
1.2) in April and October, respectively. This may be associated with cultivation
twice a year or in rotation with other crops in the same year. Due to the contin-
uous pressure from more frequent occurrence of extreme events (e.g., droughts),
multi-cultivation/rotation is a desired strategy for farmers to achieve increased
annual crop yields. The lowest aKc values (~0.8) generally occur in winter and
summer when crop growth is less active or a field is fallow. Corn and Soybean
present overall higher aKc than winter wheat.

Interannual variations of ET and aKc are shown in Figure 2b for all three crops,
with corn and soybean consistently presenting higher ET and aKc values than
winter wheat. Corn shows the highest and lowest ET in the year 2014 and 2020,
respectively. This is largely consistent with the interannual variations of SPEI.
The incipient dry spell in 2013, as reflected by SPEI-360, triggered increased
annual ET the year after in 2014 (Figure 2c). Inversely, the wet year of 2019
decreased the corn water consumption in 2020. The R2 between SPEI-360 and
one-year lag ET is around 0.6 for corn (Figure 2d).

The highest and lowest ET values occur in the year 2018 and 2015 for soybean
as well as 2019 and 2013 for winter wheat, respectively. Similar relationships
between SPEI-360 and one-year lag ET can be observed for winter wheat, with a
R2 value of 0.54. However, this does not hold for the soybean with a R2 value of
0.12. Overall, soybeans and corn demonstrate higher aKc values (1.08 +/- 0.03
and 1.05 +/- 0.03, respectively) than winter wheat (0.94 +/- 0.04), suggesting
corn and soybeans higher water requirements and stronger irrigation dependence.
Note that these aKc values are aggregated from all the parcels. When the
number of parcels over the CONUS is factored in, the small aKc differences
observed among crops would have a large impact on water resources nationwide.
Thus, more attention and effort are required to assess water management system
particularly in the US, where irrigation water is often unsustainably pumped
from groundwater, leading to a reduction in future production of corn, soybeans
and winter wheat (Lopez et al., 2022).
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Figure 2: Monthly climatology (a), annual mean (b) of ET and aKc
and annual mean SPEI (c) for corn, soybeans and winter wheat across
all parcels over the CONUS from 2013 to 2021; the error bar repre-
sents one standard deviation of all the years and parcels of each crop.
(d) represents the R2 between SPEI-360 and one-year lag ET for
corn.

4.2 Statistical Analysis

4.2.1 Mann-Kendall Test

We further examine the annual trends of ET and aKc of three crops, climate
variables (i.e., air temperature, dewpoint, wind speed, precipitation, surface net
solar radiation) as well as the SPEI indices computed on multiple time scales
(i.e., 14, 30, 90, 180 and 360 days) between 2013 and 2021. The Mann-Kendall
test is used to check whether a set of data values is increasing or decreasing
over time, and whether the trend in either direction is statistically significant
(Mann 1945, Kendall 1975, Gilbert 1987). It does not assess the magnitude
of change and cannot necessarily be extrapolated into the future. Still, the
strength of applying the Mann-Kendall test is based on its ability to work on a
small sample’s size, usually larger than four (Gilbert 1987).

Our results indicate that only winter wheat ET presents a significant decreasing
trend (-1.06 mm/year, significant at 5% level) over the last decade. Crop yields
have been shown to continuously increase during the past decades (https://ww
w.nass.usda.gov/). This finding is likely associated with the climate warming
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induced increase in the air temperature (0.129°C, significant at 5% level) and
resulting longer growing seasons (Rizzo et al., 2022). However, warming climate
may also render the Corn Belt less sustainable to corn plantation and thus
endanger further productivity gains (Rizzo et al., 2022). The exact reasons
for the decrease in water demand is not certain, but could be attributed to the
improved breeding and agronomic management (Grassini et al., 2013; Cooper et
al., 2020). Another possible cause is that recent higher temperatures and drier
conditions in the CONUS may lead to less ET—just no water to evaporate.
Further research needs to be done to determine the root causes behind the
winter wheat ET trend and better understand its impacts on productivity.

4.2.2 Step-wise regression

There seems to be no strong association between aKc values of corn, soybeans
and winter wheat and various climate variables as well as SPEI indices exam-
ined (Table S3 in Supplementary Materials). The highest R2 values are obtained
when five variables are used with the corresponding R2 values of 0.35, 0.31 and
0.2 for corn, soybeans, and winter wheat, respectively. The weak association is
likely related to the fact that aKc is a complex metric aggregated from many
aspects, including crop characteristics, environmental conditions, and manage-
ment practices. There is no simple way to incorporate all these different features
into a single relationship (Allam et al., 2021). Our analyses indicate that the
most influential factor is wind speed, followed by dewpoint temperature. Inclu-
sion of additional variables may help improve the R2 values marginally.

In contrast, ET appears to be well represented to various extents by climate
variables and SPEI indices. As expected, the surface net solar radiation shows
the most dominant impact on the crop ET, with R2 values of 0.73, 0.71, and 0.54
for soybeans, corn, and winter wheat, respectively. In this context, agrivoltaic
systems could serve as a viable option to lower the net solar radiation (Zainol
Abidin et al., 2021) and decrease the crop water consumption for future farming.
Wind speed appears to be the second most influential variable for corn and
soybeans, but the SPEI-30 stands out for winter wheat. SPEI-14 appears to
be the most dominant factor over corn and soybeans plantations in comparison
to other SPEI time scales (i.e., 30, 90, 180 and 360 days). This information
is useful to assist farmers and managers in determining the optimum time for
cultivating these crops.

5 Conclusions

In this study, we develop a new version of the SEBALIGEE (v2) in which a
machine learning RF algorithm is employed for the calculation of sensible heat
flux in place of the widely used hot/cold pixel approach. This improvement
allows SEBALIGEE’s application to extend from a basin scale to any scale (e.g.,
parcel, basin, nation, continent, or globe). The performance of SEBALIGEE
v2 in estimating the ET is evaluated with the observations from various Eddy
Covariance flux towers across different climatic regions. Our results indicate
satisfactory performance of the SEBALIGEE v2 in estimating ET as a key
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proxy for crop water requirement, with a much lower AME (~ 0.48 mm/day)
than those reported by some more complex models (e.g., 0.52 ~ 1.31 mm/day,
Degano et al. 2018, Knipper et al. 2019, Allam et al. 2021, Asadi and Kamran,
2022). In comparison with the SEBALIGEE, v2 presents a similar bias but
much higher R2 (0.78 versus 0.66).

Further analyses focus on the SEBALIGEE v2 estimated ET and aKc values
of three major crops in the CONUS from 2013 to 2021, including the seasonal
and annual variations as well as the association with different climate variables
and drought conditions. Our study considers a large study area of ~112 million
ha per year with a huge number of parcels in each crop type, which indirectly
takes into consideration the diverse agricultural management plans and micro-
climates. Several findings were reported aiming towards increasing crop water
productivity by scheduling irrigation and guiding future initiatives, at local, re-
gional and national scales. This can provide useful insights into achieving an
increased crop water productivity and a sustainable water usage. Furthemore,
it perfectly fits within the Sustainable Development Goals (SDG) and the 2030
agenda proposed by the United Nation (UN).

The SEBALIGEE v2 is an open-source, fully automated, computationally effi-
cient, readily-accessed, and easily-operated system for ET and aKc assessments.
Non-expert end users can customize and implement it to any time period and
study the region of their interest across the globe with minimal effort. The
main outputs include processed monthly albedo, NDVI, LST, ET and aKc, and
annual Land Cover. An option is also available for the statistical analysis of
the relevant variables. The hosting GEE platform provides great accessibility
to massive computational power and a large collection of geospatial databases,
which facilitates the water productivity research that would otherwise be hin-
dered by the scarcity of required resources.

Nevertheless, several aspects of the presented SEBALIGEE v2 motivate sub-
sequent trials and development that include, 1) outputs at a higher spatial
resolution by integrating 10-m sentinel-2 data (30-m in this study), 2) time laps
studies that go back to the 1980’s and 1990’s by including other sensors such
as Landsat 4, Landsat 5, Landsat 7, Advanced Spaceborne Thermal Emission
and Reflectance Radiometer (ASTER), 3) outputs on weekly and daily scales,
4) validation of the SEBALIGEE v2 with more extensive tower observations,
and 5) the seasonal responses of ET and aKc to the drought intensity and the
impacts on crop yields. Improving the SEBALIGEE v2 with these aforemen-
tioned considerations will ultimately lead to persuasive and actionable insights
for future water sustainable plans in the face of unavoidable and unpreventable
global changes, population increase and resources’ scarcity.
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The evapotranspiration-related data used for ET assessments in the study are
available from SEBALIGEE v2 [Software] via https://github.com/mariomhawej
/SEBALIGEEv2 with Creative Commons Attribution. This code was produced
from scractch under the Javascript language by the authors of this paper.
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Table S1: SPEI Thresholds for Drought/Wet Classification 
SPEI Value Meaning 
2.0 or more  extremely wet 
1.6 to 1.99  very wet 
1.3 to 1.59  moderately wet 
0.8 to 1.29  slightly wet 
0.5 to 0.79  incipient wet spell 
-0.49 to 0.49 near normal 
-0.79 to -0.5  incipient dry spell 
-1.29 to -0.8  mild drought 
-1.59 to -1.3  moderate drought 
-1.99 to -1.6  severe drought 
-2.0 or less  extreme drought 
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Table S2: Description of various Eddy Covariance Flux towers sites used in our 
study 

 
 

Country Flux tower name Location 
(longitude, 
latitude) 

Data DOI Dates 

Belgium BE_LON 4.746E, 50.551N 10.18140/FLX/1440129 Jan 2014 – Nov 2014 

China - 115.788E, 40.349N  - Jan 2016 – Dec 2017 

France FR_GRI 1.951E, 48.844N 10.18140/FLX/1440162 Sep 2013 – Oct 2014 

Germany DE_KLI 
 

DE_GEB  

13.522E, 50.893N 
 

10.914E, 51.099N 

10.18140/FLX/1440149 
 

10.18140/FLX/1440146 

Feb 2014 – Oct 2014 
 

Apr 2014 – Oct 2014 

Italy IT_CA2 12.026E, 42.377N 10.18140/FLX/1440231 Sep 2013 – Dec 2014 

United 
States 

US_Bi1 
 

US_Bi2 
 

US_Ro6 
 

US_TW3 
 

US_TWT 

121.499W, 38.099N 
 

121.535W, 38.109N 
 

93.058W, 44.695N 
 

121.646W, 38.115N 
 
121.653W, 38.108N 

10.17190/AMF/1480317 
 

10.17190/AMF/1419513 
 

10.17190/AMF/1419509 
 

10.18140/FLX/1440110 
 
10.18140/FLX/1440106 

Jan 2017 – Dec 2021 
 

Jan 2018 – Dec 2021 
 

Feb 2017 – Dec 2017 
 

Sep 2013 – Oct 2014 
 

Sep 2013 – Oct 2014 
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Table S3: Highest R2 values for the step-wise regressions between ET/aKc of 
corn, soybeans and winter and various variables from 2013 to 2021. AT, DT, 
RN, and WIND represent air temperature; dewpoint temperature, surface net 
solar radiation and wind speed, respectively. SPEI-14 and SPEI-30 are SPEI 
calculated on 14 days and 30-days, respectively. 

 
 Highest R2  

One variable  Two variables Three variables Four variables Five variables 

Corn aKc WIND (0.2) WIND + DT 
(0.24) 

WIND + DT + 
AT (0.31) 

WIND + DT + 
AT + SPEI-90 
(0.34) 

WIND + DT + 
AT + SPEI-30 + 
RN (0.35) 

Soybeans aKc WIND (0.14) WIND + DT 
(0.2) 

WIND + DT + 
AT (0.26) 

WIND + DT + 
AT + SPEI-14 
(0.29) 

WIND + DT + 
AT + SPEI-14 + 
RN (0.31) 

Winter Wheat 
aKc 

WIND (0.01) WIND + DT 
(0.11) 

WIND + DT + 
AT (0.14) 

WIND + DT + 
AT + SPEI-30 
(0.19) 

WIND + DT + 
AT + SPEI-30 + 
RN (0.20) 

Corn ET RN (0.71) RN + WIND 
(0.75) 

RN + WIND + 
DT (0.77) 

RN + WIND + 
DT + SPEI-14 
(0.79) 

RN + WIND + 
DT + SPEI-14 + 
AT (0.8) 

Soybeans ET RN (0.73) RN + WIND 
(0.78) 

RN + WIND + 
DT (0.79) 

RN + DT + AT + 
SPEI-14 (0.81) 

RN + WIND + 
DT + AT + 
SPEI-14 (0.84) 

Winter Wheat 
ET 

RN (0.54) RN + SPEI-30 
(0.60) 

RN + SPEI-30 + 
AT (0.60) 

RN + SPEI-30 + 
AT + DT (0.63) 

RN + SPEI-30 + 
AT + DT + 
WIND (0.65) 
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Figure S1: Location of the flux towers in six countries as well as a Google Earth 

satellite view above each tower. The world map at the middle corresponds to Koppen 
climate classification 

 
 



 

 

 
Figure S2: SEBALIGEE v2 simplified flowchart of the used inputs and generated output 
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Figure S3: Snapshot of the SEBALIGEE v.2 system interface hosted over the 

GEE platform 
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