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Abstract

Simulations of crop yield due to climate change vary widely between models, locations, species, management strategies, and

Representative Concentration Pathways (RCPs). To understand how climate and adaptation affects yield change, we developed a

meta-model based on 8703 site-level process-model simulations of yield with contrasting future adaptation strategies and climate

scenarios for maize, rice, wheat and soybean. We tested 10 statistical models, including some machine learning models, to relate

the percentage change in future yield relative to the baseline period (2000-2010) to explanatory variables related to adaptation

strategy and climate change. We used the best model to produce global maps of yield change for the RCP4.5 scenario and

identify the most influential variables affecting yield change using Shapley additive explanations. For most locations, adaptation

was the most influential factor determining the yield change for maize, rice and wheat. Without adaptation under RCP4.5,

all crops are expected to experience average global yield losses of 6–21%. Adaptation alleviates this average loss by 1–13%.

Maize was most responsive to adaptive practices with a mean yield loss of -21 % [range across locations: -63%, +3.7%] without

adaptation and -7.5% [range: -46%, +13%] with adaptation. For maize and rice, irrigation method and cultivar choice were

the adaptation types most able to prevent large yield losses, respectively. When adaptation practices are applied, some areas

may experience yield gains, especially at northern high latitudes. These results reveal the critical importance of implementing

adequate adaptation strategies to mitigate the impact of climate change on crop yields.

1



1 
 

Adaptation strategies strongly reduce the future impacts of 1 

climate change on crop yields 2 

Rose Z. Abramoff1,2, Philippe Ciais1, Peng Zhu1, Toshihiro Hasegawa3, Hitomi Wakatsuki3, David 3 

Makowski4 4 

1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-5 

Saclay, F-91191 Gif-sur-Yvette, France rose.abramoff@lsce.ipsl.fr, philippe.ciais@lsce.ipsl.fr, 6 

peng.zhu@lsce.ipsl.fr  7 

2Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA 8 

abramoffrz@ornl.gov   9 

3Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 10 

305-8604, Japan thase@affrc.go.jp, kawatsuki55@affrc.go.jp   11 

4Université Paris-Saclay, AgroParisTech, INRAE, UMR 518, Palaiseau, 91120 France david.makowski@inrae.fr  12 

Correspondence to: Rose Abramoff, abramoffrz@ornl.gov; David Makowski, david.makowski@inrae.fr 13 

Note: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the 14 

U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for 15 

publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-16 

wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States 17 

Government purposes. The Department of Energy will provide public access to these results of federally sponsored 18 

research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). 19 

Abstract. Simulations of crop yield due to climate change vary widely between models, locations, species, 20 

management strategies, and Representative Concentration Pathways (RCPs). To understand how climate and 21 

adaptation affects yield change, we developed a meta-model based on 8703 site-level process-model simulations of 22 

yield with contrasting future adaptation strategies and climate scenarios for maize, rice, wheat and soybean. We tested 23 

10 statistical models, including some machine learning models, to relate the percentage change in future yield relative 24 
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to the baseline period (2000-2010) to explanatory variables related to adaptation strategy and climate change. We used 25 

the best model to produce global maps of yield change for the RCP4.5 scenario and identify the most influential 26 

variables affecting yield change using Shapley additive explanations. For most locations, adaptation was the most 27 

influential factor determining the yield change for maize, rice and wheat. Without adaptation under RCP4.5, all crops 28 

are expected to experience average global yield losses of 6–21%. Adaptation alleviates this average loss by 1–13%. 29 

Maize was most responsive to adaptive practices with a mean yield loss of -21 % [range across locations: -63%, 30 

+3.7%] without adaptation and -7.5% [range: -46%, +13%] with adaptation. For maize and rice, irrigation method and 31 

cultivar choice were the adaptation types most able to prevent large yield losses, respectively. When adaptation 32 

practices are applied, some areas may experience yield gains, especially at northern high latitudes. These results reveal 33 

the critical importance of implementing adequate adaptation strategies to mitigate the impact of climate change on 34 

crop yields. 35 

Plain Language Summary. Computer simulations are commonly used to predict how crop yield may change under 36 

future climate conditions and land management practices. We tested different statistical methods to merge the findings 37 

of many different computer simulations of crop yield change under future climate into one model which can be used 38 

to predict crop yield at any location where that crop is grown. We created and selected the best model for four major 39 

crops: maize, rice, wheat and soybean. We then predicted the change in crop yield under a likely future climate 40 

scenario (Representative Concentration Pathway 4.5) and identified which variables most explained the crop yield 41 

change. Considering both adaptive management status (whether or not adaptation practices were applied) and climate 42 

factors (average temperature, change in temperature, average precipitation, change in precipitation, CO2 43 

concentration), we found that adaptation status was the most influential factor determining yield change for most 44 

crops. Managing land adaptively in the future can reduce yield losses by 1-13% relative to maintaining the same 45 

management practices. We discuss which types of management practices may be the most useful for different crops, 46 

as well as which areas of the world are expected to gain or lose crop yield in the future. 47 

Key Points. 48 

• Under future climate scenario RCP4.5, maize, rice, wheat, and soybean are expected to decrease in average 49 

global yield by 6-21%. 50 

• Implementing adaptive management practices reduces this loss by 1-13% relative to maintaining the same 51 

management practices. 52 
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• Some areas of the world, such as northern high latitudes, may see future yield increases if adaptation practices 53 

are applied. 54 

Keywords. Crop yield, agriculture, crop model, climate change, management, adaptation 55 

1 Introduction 56 

Food security faces increasing threats from anthropogenic climate change (Wheeler and von Braun 2013), with 57 

current assessment methods predicting between 8 and 80 million additional people at risk of hunger by 2050 (Mbow 58 

et al. 2019). While there is general consensus that climate change will undermine food security by causing production 59 

losses (Tomoko Hasegawa et al. 2021; Zhu et al. 2021), there is little consensus on the magnitude and even direction 60 

of yield response to different climate change factors, as well as the extent to which yield losses can be mitigated by 61 

adaptive management. Model projections of yield changes also vary widely from study to study and from region to 62 

region, and there is therefore an urgent need to provide reliable large-scale but regionally specific estimates inferred 63 

from multiple sources of information. This kind of information can help inform stakeholders of expected impact to 64 

crops and potential adaptation strategies at local and regional scales. 65 

Typically, future yields are projected using either statistical or process-based models that relate the climate, 66 

environment and management practices to plant production and subsequent yield. Projected yields show large 67 

variation not only between sites and climate change scenarios but also between crop yield models (Makowski et al. 68 

2015). In order to understand the variation in yield predictions due to model structure, the Agricultural Model 69 

Intercomparison and Improvement Project (AgMIP) was founded in 2010 to run and compare process-based 70 

agricultural models using standardized inputs (Rosenzweig et al. 2013). Though AgMIP primarily makes yield 71 

predictions using process-based models, statistical models are also commonly used (Zhao et al. 2017; Lobell and 72 

Asseng 2017). 73 

Studies assessing the effect of climate change on crop yields typically focus on warming temperatures and 74 

precipitation changes. Warming temperatures are expected to decrease yields of the major staple crops maize, rice, 75 

wheat, and soybean by 3 - 7% per °C warming on average depending on the crop (Zhao et al. 2017), with broad 76 

agreement across field experiments, statistical models, and grid- and point-based process models. While yield losses 77 

are typically <10% when averaged at large scales, losses and gains can be much larger at specific sites or grid-points. 78 

For example, AgMIP models predict between -60% and +60% local change in plant production by the end of the 79 
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century for maize, rice, wheat, and soybean (Rosenzweig et al. 2014). More recent work still finds large variations in 80 

modeled crop yield sensitivity to climate and other environmental factors (Franke et al. 2020).  81 

Two recent modeling studies identified an important role of water stress on historical and projected yields, finding 82 

that water limitation accounts for a greater proportion of yield loss in historical and in near-future periods, with 83 

warming becoming relatively more important only at the end-of-century period (Zhu et al. 2021; Ortiz-Bobea et al. 84 

2019). The importance of other environmental effects is not as well understood, such as the effect of CO2 fertilization 85 

on yield, which has been demonstrated to increase yields in ideal conditions, but have mixed effects depending on 86 

sites and crop types (McGrath and Lobell 2013; Makowski et al. 2020; Wilcox and Makowski 2014). Similarly, many 87 

studies find varying effects of different adaptive management strategies, such as using specialized cultivars or 88 

irrigation techniques (Parent et al. 2018). These techniques are meant to mitigate yield losses due to climate change 89 

by adjusting plant phenology, increasing plant hardiness to extreme temperature or provide deficient water and/or 90 

nutrients. In general, adaptive management results in higher yield relative to no adaptive management, although not 91 

always (Challinor et al. 2014; Wilcox and Makowski 2014; Makowski et al. 2020). These previous studies have 92 

examined the effects of adaptive management, but have not extrapolated management effects on yield to regional and 93 

global scales. 94 

The variability of predictions of yield responses to climate change published in the scientific literature is very 95 

high, and it is therefore necessary to better understand the conditions leading to positive or negative impacts of climate 96 

change on the yields of major crops. In this study, we use information from multiple simulations in different locations 97 

in order to build global meta-models and use them to map the effect of climate change on crop yields at the global 98 

scale, the key novelty being to account for or ignore adaptation of management practices. Meta-models are useful to 99 

synthetize large sets of model simulations because the central tendency of crop model ensembles is often more accurate 100 

than most individual ensemble members (Bassu et al. 2014) and because they can be used to extrapolate yield values 101 

for climate conditions and sites for which no simulation was done with the original crop models (Makowski et al. 102 

2015). Here, we fit different types of meta-models to the largest existing dataset of site-level crop model yield 103 

projections to answer to following research questions: (1) What distributions of yield losses and gains can be expected 104 

on a global scale based on all the available agricultural model simulations? (2) What are the most important factors 105 

explaining variability in yield change projections? (3) To what extent are adaptation strategies able to mitigate yield 106 

losses? We focus on the staple crops maize, rice, wheat, and soybean, from which humans furnish two-thirds of their 107 
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calories (Zhao et al. 2017). Our analysis is conducted for the climate change scenario Representative Concentration 108 

Pathway 4.5 (RCP 4.5) that projects a warming level (between 2.1 and 3.5 °C by the end of the century) and that is 109 

most in line with our current trajectory given stated policies and announced pledges (IEA 2021; Arias et al. 2021). 110 

2 Methods  111 

2.1 Dataset  112 

A recent literature review gathered 8703 process model simulations of crop yields from 202 studies in 91 113 

countries under 21st century emissions scenarios with a variety of warming levels (Hasegawa et al. 2022). These 114 

simulations recorded changes in projected yield with temperature in °C, change in temperature from a reference point 115 

(i.e., the midpoint [2005] of the current baseline period [2001-2010]) in °C, change in precipitation from the baseline 116 

period, average annual precipitation in millimeters (mm), CO2 concentration in parts per million (ppm), geographical 117 

location (Latitude, Longitude), simulation year (both historical and future), and adaptation status. Four crops were 118 

represented: maize, rice, wheat, and soybean. The yield is expressed in relative terms, using the grain mass per unit 119 

land area for a given projection relative to the baseline period yield to calculate the percentage change in yield from 120 

the baseline period. 121 

Adaptation status refers to whether or not any adaptation to land management was simulated. Adaptation 122 

includes any change in the timing or amount of fertilizer application; any change in the timing or amount of irrigation 123 

determined using indicators of crop growth, climate and soil moisture; the use of nonconventional (e.g., heat-adapted) 124 

cultivars; any shift in planting time; soil organic matter management (i.e., compost application or crop residue 125 

retention); reduced or no tillage; and other practices (e.g., switching crops, crop rotation, geographic shift, and crop 126 

diversification such as agroforestry). Additional details about this dataset and access to the dataset itself can be found 127 

in Hasegawa et al. (2022). 128 

After removing rows with missing values in climate and management predictors, there was a total of 8501 129 

predictions of yield change for the four crops combined from 370 unique locations, with over 1000 predictions for 130 

each crop except for soybean (Table S1). For all crops other than soybean, simulations were available on most of the 131 

continents: North America, South America, Europe, Africa, and Asia (Figure 1). Simulated yield changes ranged from 132 

-100% to +136%, with a mean yield change ranging from -3% for Rice to -16% for Soybean (Figure S1). 133 
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2.2 Statistical and machine leaning meta-models  134 

2.2.1 Types of models 135 

We tested multiple types of statistical and machine learning models to find the best model relating the 136 

management and climate variables to the predicted yield change. We tested three categories of models: Random Forest 137 

(RF), gradient-boosting (GB) models, and linear mixed models (LM), with and without spatial correlation (Table 1). 138 

We compared RF and GB models using only spatial location data as predictors (Model 1, 2), using only climate and 139 

management variables as predictors (Model 3, 4), and including climate, management, and spatial location as 140 

predictors (Model 5, 6; Table 1). Climate and management variables included were the average local area-weighted 141 

temperature in degrees Celsius (𝑇!"# ) measured around the year 2000, the average local area-weighted annual 142 

precipitation in mm (𝑃!"#) measured around the year 2000, projected global change in temperature from the current 143 

baseline period (2000-2010) to the future mid-point year (∆𝑇), projected annual site-level change in precipitation (∆𝑃) 144 

from the baseline period, the mean CO2 concentration used for the simulation in parts per million (𝐶𝑂$ ), and 145 

Adaptation as a categorical variable indicating either (1) whether or not an adaptation measure was applied or (2) what 146 

type of adaptation measure was applied. Adaptation as a Yes/No variable (1) was used to evaluate model performance, 147 

calculate Shapley values (see 2.4), and predict future yield change. Adaptation as multiple categorical variables 148 

representing different types of adaptation measures (2) was used to plot partial dependence plots (see 2.2.2) showing 149 

the relative importance of different adaptation measures on the yield change.  Spatial location (longitude, latitude) was 150 

included in some of the models tested to account for all spatial factors not explicitly considered, such as the relationship 151 

between global and local changes in temperature. We also defined four linear mixed (LM) models. The first LM 152 

estimates the yield using climate and management variables as predictors and the study reference as a random effect 153 

(Model 7). The second linear mixed model is similar to Model 7 but also includes all possible interaction effects 154 

between pairs of variables (Model 8). Similar to the RF and GB models with spatial location as a predictor (Model 1, 155 

2), we defined a LM model with a spatial correlation term defined using the Matérn correlation function which is used 156 

to define the spatial correlation between two points based on their distance (Model 9), and lastly, we defined a LM 157 

model with climate and management predictors and a spatial correlation term (Model 10). 158 

All analyses were done in the R Statistical Language (R Version 4.0.4). RF models were fitted using the 159 

ranger package (mtry=2, number of trees=1000; ranger version 0.12.1). GB models were fitted using the caret 160 
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package, choosing the best model of nine parameter combinations (interaction depth=1,2,3 and number of 161 

trees=50,100,150; method= “gbm”; caret version 6.0-86). LM models were fitted using the lme4 package (lmer 162 

function; version 1.1-26), and the LM models with a spatial correlation term were fitted using the spaMM package 163 

(fitme function; version 3.7.2). 164 

2.2.2 Model evaluation 165 

For all models, we split the dataset by location into a training (75% of data) and a testing dataset (25% of 166 

data). Two types of data splitting procedures were implemented. First, the data split was done such that test locations 167 

were the same as those of the training dataset. This type of evaluation is relevant when the meta-models are used to 168 

predict yield changes at the same locations as those where the original simulations were performed. In this case, we 169 

assessed the capabilities of the meta-models to predict yield changes for various scenarios without any spatial 170 

extrapolation. Second, the data split was done such that all of the yield predictions in the testing dataset were from 171 

different locations than those of the training dataset. This second type of model evaluation is relevant to evaluate the 172 

capabilities of the meta-models to extrapolate to new locations where no yield simulation is available for training. 173 

We performed these two types of random splitting 10 times to calculate means and standard errors of model 174 

performance metrics. We calculated three model performance metrics for each meta-model, the root-mean-square 175 

error (RMSE), the coefficient of determination (R2), and the Akaike information criterion (AIC), by comparing the 176 

yield change predictions obtained with each meta-model (Ypred,i) to the original simulated yield change (Yi). AIC is 177 

calculated as: 178 

AIC = 𝑛 × ln *+
∑ &'!('"#$%,!)

'(
!)*

*
, + 2𝑝    [Eq. 1] 179 

where p is the total number of model parameters. We reported the mean and standard deviation of the three model 180 

performance metrics for each meta-model using the 10 test datasets. We chose the meta-model with the best 181 

performance for each crop using the three metrics defined above (RMSE, R2, and AIC in Table S2) averaged over 182 

the 10 test datasets, using the second type of model evaluation (i.e. different locations for testing than those used for 183 

training). Here, the model rankings obtained with the three performance metrics were in agreement about the best 184 

model for each crop, so we did not have to select one performance metric over another. 185 
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Partial dependence plots (PDPs) show the relationship between the yield change and each predictor 186 

variable, averaging over the other predictors. This gives a sense of the marginal effect of each predictor on the 187 

predicted yield change. To generate our PDPs, we calculated the partial contributions of each predictor variable 188 

using the FeatureEffect function (package iml, method = “pdp”), and training the model using all the data available. 189 

2.3 Mapping yield changes at the global scale 190 

We used the best meta-model for each crop to predict global yield changes for different climate and 191 

adaptation scenarios. We predicted the yield changes for RCP4.5 (Moss et al. 2010) for the year 2060 (+2ºC, 506ppm 192 

CO2) with and without adaptation practices at the global scale. Yield change predictions were derived for every half-193 

degree grid cell where the relevant crop was grown today, according to the MIRCA 2000 dataset of harvested areas 194 

around the year 2000 model, using the bias-corrected daily temperature and precipitation from the W5E5 dataset 195 

(Lange 2019), also at half-degree resolution, averaged for the period 2001 to 2010 as in Hasegawa et al. (2022). 196 

2.4 Shapley values  197 

 The influence of model predictors in machine learning algorithms can be analyzed using Shapley additive 198 

explanations (Lundberg and Lee 2017), which for any given prediction in a given grid cell, estimates the contribution 199 

of each predictor to the deviation of that grid-cell prediction from the mean yield change computed over the whole 200 

dataset. For the purposes of this manuscript, we will define a yield anomaly as the deviation from the mean yield 201 

change in a particular location (i.e., the predicted yield change at a given grid-cell – average yield change across the 202 

dataset used to train the model). The Shapley value associated to a given predictor is the contribution of this predictor 203 

to a yield anomaly at a given location. A positive Shapley value indicates that the predictor has a positive contribution 204 

to the anomaly, while a negative value indicates that it has a negative contribution. Thus, Shapley values can be used 205 

to understand the contributions of each predictor to the predicted yield anomalies. We used Shapley values, calculated 206 

using the DALEX package (version 2.2.0), to identify the most influential variables for each grid cell’s prediction of 207 

yield change under the RCP4.5 climate scenario where the relevant crop was grown, assuming either that adaptation 208 

practices were applied or not. We considered climate and management factors affecting yield change: (1) annual mean 209 

temperature during the baseline period, (2) change in global temperature from the baseline period, (3) change in 210 

precipitation from the baseline period, (4) annual precipitation during the baseline period, (5) CO2 concentration, and 211 
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(6) crop management adaptation. For each grid cell, we determined the factor that had the largest Shapley value, that 212 

is, the largest effect on the predicted yield change anomaly for that grid cell. Using this method, we created global 213 

maps highlighting regions where the yield change anomaly is most responsive to temperature, precipitation, CO2 214 

concentration, or adaptation. 215 

3 Results 216 

Of the 10 statistical models tested, the best models were generally RF and GB models (Table S2 and Table 217 

S3). For spatial extrapolation (Table S2), Model 4 was the highest performing model for maize, while for rice and 218 

soybean the best model was Model 5, and for wheat the best model was Model 6. Although they were outperformed 219 

by RF and GB, the LM models revealed that adaptation management practices had a statistically significant effect on 220 

yield changes (Table S4). For spatial extrapolation, the best maize model was able to explain the greatest amount of 221 

variation in the dataset (R2 = 0.43), significantly more than the extrapolation performance of the wheat and soybean 222 

models (both R2 = 0.21). The rice model extrapolation was very low (R2 = 0.12) although its RMSE was lower than 223 

that of other models. In other words, when forced to predict new locations, the statistical models explained 43% or 224 

less of the yield change variation in the test dataset (R2 = 0.12-0.43; Figure S2). Nevertheless, when we split the testing 225 

and training datasets such that the testing dataset only contained locations from the same half-degree grid cells as the 226 

training dataset, model performances were higher (R2 = 0.33-0.58; Table S3, Figure S3), revealing that the models are 227 

better able to predict yield changes for new scenarios at the same sites than to predict new sites. However, it is notable 228 

that the maize model was not improved by restricting the testing sites to the same location as the training site, 229 

suggesting that the maize dataset was large enough to be informative across spatially heterogenous locations.  230 

 Figure 2 shows the global distributions of the yield changes predicted by the selected meta-models. Under 231 

the RCP4.5 scenario for the year 2060 and +2°C warming, the meta-models predict broad yield losses for maize (mean: 232 

-21%; range across locations: -63%, 3.7%), rice (mean: -5.7%; range: -52%, +25%), soybean (mean: -11%; range: -233 

56%, +37%), and wheat (mean: -13%; range: -60%, +27%) when adaptation practices were not applied (Figure 2). 234 

Applying adaptive practices increased yields for all crops relative to without adaptation, by 13%, 1%, and 5% on 235 

average for maize, soybean, and wheat respectively, resulting in reduced net yield losses of -7.5% (mean; range: -236 

46%, +13%) for maize, -10.2% (mean; range: -57%, +33%) for soybean, and -8.1% (mean; range: -54%, +31%) for 237 

wheat (Figure 2). With adaptation, rice yields were increased by 4% relative to without adaptation, resulting in a 238 
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predicted increase in yield of +1.4% (mean; range: -39%, +22%). There was large spatial variability in yield loss and 239 

gain; for example, with adaptive management, rice yields were predicted to increase in South America and parts of 240 

China, but not in North America or western Asia (Figure 3). Maize yield losses showed a strong latitudinal gradient, 241 

with higher losses at low latitudes, while the other crops had patchier distributions suggesting a more complex spatial 242 

effect for these crops than for maize. 243 

The partial dependence plots show that yield decrease tended to be stronger in locations characterized by 244 

high annual mean temperatures during the baseline period and high warming relative to the baseline year (Figure S4). 245 

Conversely, there was relatively little effect of changes in CO2 concentration for all crops except for wheat, for which 246 

yield increased at higher concentrations of CO2. Latitude and longitude were included in the best model for all crops 247 

except maize; the location had non-monotonic effects for these crops, with a tendency towards improved yields at 248 

northern high latitudes. Implementing one or more adaptation strategies tended to reduce yield losses but with a 249 

distinct impact of different adaptation types. For example, maize yields were improved by irrigation, although they 250 

were not very responsive to other adaptation strategies. Rice yields were responsive to multiple adaptation strategies, 251 

especially modifying the cultivar, which was the only crop-specific adaptation strategy that resulted in increased yield 252 

(others only reduced yield losses). Wheat was somewhat responsive to adaptive fertilizer use and adaptations that did 253 

not fall into the other categories (i.e., “Others”), while soybean yields did not improve with any adaptation strategies. 254 

In some cases, implementation of a crop-specific adaptation strategy resulted in even greater yield loss, as was the 255 

case for soybean and adaptive fertilizer use (Figure S4). There was an interaction between adaptation and warming 256 

level, such that the positive effect of implementing adaptation strategies increased with the warming level (Figure S5).  257 

 We used Shapley additive explanations to visualize the contribution of adaptation strategies and climate 258 

variables to the yield change anomaly for each grid cell of the RCP4.5 yield change prediction to the year 2060 either 259 

assuming that no adaptation practices were applied (Figure 4, Figure S6) or assuming that adaptation practices were 260 

applied (Figure S7, Figure S8). In a projection of maize yield without adaptation practices, the lack of adaptation 261 

results in a -9% [mean; range: -20%, -5.1%] reduction in the mean predicted yield change. Average temperature also 262 

had a large effect, ranging from a 21% increase to a -26% decrease in yield change, with higher yield predicted at 263 

northern latitudes (Figure S7a). The other crops showed similar general patterns, with the lack of adaptation 264 

contributing to yield loss and with other predictors contributing to yield gain or loss depending on the latitude or 265 

region (Figure S7b,c,d). For maize, adaptation practices can be seen to contribute to yield gain (Figure S8a). 266 
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 In order to understand which factor (between adaptation, CO2 concentration, warming level, annual 267 

precipitation, and annual mean temperature during the baseline period) was dominant in each predicted location, we 268 

assigned to each grid cell the predictor with the minimum (in case of predicted yield loss) or maximum (in case of 269 

predicted yield gain) Shapley value. Figure 5 shows that the absence of adaptation was the dominant contributor to 270 

yield losses when adaptation practices were not applied, for all crops except wheat where the change in precipitation 271 

was also important, and soybean where several climate factors were more important than adaptation practices (Figure 272 

S9). Conversely, Figure 6 shows that the application of adaptation strategies contributed strongly to yield gains, and 273 

was the dominant contributor for rice and wheat (Figure S10). For maize, rice, and wheat, yield changes tended to be 274 

influenced by adaptation, mean temperature and precipitation during the baseline period, as well as precipitation 275 

change, depending on the location. For example, yield gains in these crops were often associated with low average 276 

temperature during the baseline period at high latitudes, suggesting that warmer projected temperatures under RCP4.5 277 

could alleviate temperature or temperature-driven growing season length restrictions on crop productivity, resulting 278 

in yield gain at high latitude. For wheat, precipitation during the baseline period was a dominant factor explaining 279 

yield losses in western North America where precipitation is expected to decline (Figure 5) and yield gains in eastern 280 

North America where precipitation is expected to increase (Figure 6). Soybean had different drivers than the other 281 

crops; soybean yield loss was most affected by the projected precipitation change and warming level and yield gain 282 

by the average temperature and precipitation during the baseline period (Figure S9, S9). 283 

4 Discussion 284 

The meta-models we developed here for each of the four major crops are informed by climate, management and 285 

location factors to map yield changes under the +2ºC, +116 ppm RCP4.5 scenario in 2060. Our meta-models were 286 

only able to explain a portion of the variability in yields simulated by the original crop models. This is due to the very 287 

high variability of simulations between crop models reported in the literature. Even when these models are calibrated 288 

with the same data and used with the same input variables, the differences between the simulations obtained with 289 

different crop models is generally very large, which explains why our meta-models cannot explain more than half of 290 

the variability of the simulations (Bassu et al. 2014; Makowski et al. 2015). However, our meta-models were able to 291 

capture the effects of several key factors, in particular the effects of different adaptation strategies. Our study focused 292 

on a single scenario, i.e. RCP 4.5 in 2060. We have chosen this scenario because it seems to be the most realistic given 293 
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the current socio-economic context (IEA 2021; Arias et al. 2021). However, the meta-models developed in this study 294 

are not contingent on this scenario; they have been trained with a very large database including yield simulations 295 

obtained with different climate change scenarios covering a wide range of temperature, precipitation, and CO2 296 

concentration changes (Hasegawa et al. 2022). They are therefore very generic and could be easily run for any other 297 

climate change scenario. To facilitate their reuse, we have made the meta-models and analysis scripts freely available 298 

(see code availability section). 299 

Results clearly reveal that adaptation practice is a dominant factor with a strong, and previously overlooked, 300 

impact on global yield change predictions. If we assume that the effect of temperature change is constant, then without 301 

adaptation, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of maize 302 

by 10%, wheat by 6.5%, rice by 2.8%, and soybean by 5.4%. These are close to per degree-Celsius estimates of global 303 

yield reduction estimated by Zhao et al. (2017) of 7.4%, for maize, 6.0% for wheat, 3.2% for rice, and 3.1% for 304 

soybean, although these estimates were based on local rather than global changes in temperature. This study gives a 305 

unique view into what particular adaptation practices could prevent these yield losses. We found that maize has the 306 

greatest potential of yield loss reduction by adaptation, and that irrigation practices were more important relative to 307 

the other adaptation practices in the dataset (i.e., adaptive cultivars, fertilizer application, planting time, others). Wheat 308 

saw some yield benefit from both adaptive fertilization and other management practices, while rice yields were mainly 309 

influenced by the choice of cultivar. In addition to benefits from improved yield, some adaptation-related management 310 

practices can have co-benefits for soil health and soil carbon (Lessmann et al. 2022). While the management practices 311 

that increase yield are often not the same as those meant to increase soil C storage, there is evidence that some practices 312 

(e.g., reduced tillage, cover cropping, crop diversification, organic amendments) can improve both yield and soil C 313 

stocks (Cooper et al. 2016; Lal 2006; Smith, Gross, and Robertson 2008).  314 

After adaptation, temperature and precipitation during the baseline period, as well as local precipitation change 315 

were the most influential climate factors on global yield for most crops. Ortiz-Bobea et al. (2019) found that projected 316 

yields were primarily impacted by temperature (heat stress), followed by precipitation (water stress). Recent studies 317 

have also demonstrated the compound or synergistic effects of heat and water stress on crops (Lesk et al. 2021; 318 

Beillouin, Ben-Ari, and Makowski 2019). In this study we also found temperature and precipitation to be influential, 319 

especially on maize and wheat yield (Figure 4), although yield changes were not always related to heat and drought. 320 

In fact, yield gains projected for high-latitude regions (Figure 3) which are most influenced by temperature (Figure 6) 321 
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are rather due to an alleviation of cold limitation on productivity. A recent update of the Global Gridded Crop Model 322 

Intercomparison (GGCMI) based on the Coupled Model Intercomparison Project (CMIP) Phase 6, compared to the 323 

earlier GGCMI run with CMIP Phase 5 atmospheric forcing, predicted higher sensitivity to warming but less of a CO2 324 

fertilization effect (Franke et al. 2020; Müller et al. 2021). Our study observed both sensitivity of crop yield to average 325 

temperature during the baseline period (and specifically warming in the case of soybean), but little sensitivity to CO2. 326 

However, CO2 fertilization effects can be difficult to compare across modeling studies that simulate many different 327 

levels of CO2 increase.  328 

One major limitation of this study and its predecessors (Challinor et al. 2014; Aggarwal et al. 2019) is that model 329 

results are not fully documented, making it difficult to know what types of adaptation practices were implemented 330 

beyond broad categories. For example, adaptations to fertilizer application could modify the timing of application, the 331 

amount of fertilizer, the type of fertilizer, application method, and other characteristics. As a result, a wide variety of 332 

interventions are considered together and their effects averaged in our grouping into adaptation practices categories. 333 

Yet, we know from experimental studies that small modifications in land management can have large effects on 334 

productivity (Sandén et al. 2018; Bai et al. 2018). Second, most models do not simulate extreme events well, such as 335 

temperature and precipitation extremes (Sun et al. 2021; Heinicke et al. 2022; Schewe et al. 2019), and similarly do 336 

not represent pest, weed, or disease spread among crops, so it is relatively unknown how these major avenues of crop 337 

failure may amplify each other in the future. Lastly, as can be seen in Figure 1, the tropics are not as well-represented 338 

in the simulations compared to mid-latitudes, and as a result the predicted yield change estimates in these regions may 339 

not be as trustworthy as they are in other regions, particularly for rice in South America and soybean in East Asia. 340 

 Every time crop model predictions are updated, negative climate impacts are projected to emerge earlier in 341 

this century (before 2040; (Jägermeyr et al. 2021). One can argue that we already see impacts of climate change on 342 

crop yield, particularly in reference to compound events that resulted in large, unexpected yield losses (Ciais et al. 343 

2005; Ben-Ari et al. 2018). Although previous work and our study support the importance of climate variables such 344 

as temperature and precipitation in determining future yields, our study’s main finding is the potential for adaptation 345 

practices to mitigate yield losses, especially in vulnerable low-latitude regions where yields are otherwise expected 346 

to decline with continued human-induced climate change. We further identified an interaction effect between 347 

adaptation and warming, suggesting that adaptation practices will become increasingly important to preserve crop 348 

yields at higher warming scenarios (Figure S5). Identifying the specific management practices for each crop and 349 
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region that can mitigate yield losses is therefore a research priority. At the same time, it is important to consider the 350 

social and economic consequences of implementing certain management practices. For example, irrigation may be 351 

useful where maize is grown (Figure S4), but if water resources are limited then it is important to consider the 352 

resource and energy trade-offs of using local water sources, treating, or desalinating water. Because of the great 353 

diversity in adaptive land management practices and ways of implementing them, best practices for a particular 354 

location will likely be found in collaboration with local and indigenous knowledge and stakeholders (Makondo and 355 

Thomas 2018; Nkomwa et al. 2014). In this way, sustainable development goals (https://sdgs.un.org/) related to 356 

maintaining agricultural yield such as reducing hunger and poverty can be met along with those related to climate 357 

action, sustainability, equity, and justice. 358 
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Code/Data availability 359 

The authors will maintain the meta-models and analysis code used in this paper as a publicly available Github repository at 360 

https://github.com/rabramoff/ProjectYield. 361 
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 488 

Tables and Figures 489 

Table 1: Characteristics of the 10 statistical and machine learning models used to predict the yield change of maize, 490 

rice, wheat, and soybean. RF = random forest; GB = gradient-boosting; LM = linear mixed model. See section 2.2.1 for 491 

definitions of environment variables. (1|Study reference) means that a random effect was included to describe the 492 

between-study variability. 𝑴𝒂𝒕𝒆𝒓𝒏(𝟏|𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒆 + 𝑳𝒂𝒕𝒊𝒕𝒖𝒅𝒆)  means random effects (with Matern covariance 493 

function) were included to describe the residual spatial variability. 494 

Model 

No. 

Model 

Type 
Predictors Random Effect 

1 RF Latitude + Longitude - 

2 GB Latitude + Longitude - 

3 RF 𝑇!"# + 𝑃!"# + ∆𝑇 + ∆𝑃 + 𝐶𝑂$ + 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 - 

4 GB 𝑇!"# + 𝑃!"# + ∆𝑇 + ∆𝑃 + 𝐶𝑂$ + 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 - 

5 RF 
Latitude	 + 	Longitude + 𝑇𝑎𝑣𝑔 + 𝑃𝑎𝑣𝑔 + ∆𝑇 + ∆𝑃 + 𝐶𝑂2

+ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 
- 

6 GB 
Latitude	 + 	Longitude + 	𝑇!"# + 𝑃!"# + ∆𝑇 + ∆𝑃 + 𝐶𝑂$

+ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 
- 

7 LM 𝑇!"# + 𝑃!"# + ∆𝑇 + ∆𝑃 + 𝐶𝑂$ + 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 (1|Study reference) 

8 LM 𝑇!"# ∗ 𝑃!"# ∗ ∆𝑇 ∗ ∆𝑃 ∗ 𝐶𝑂$ ∗ 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 (1|Study reference) 

9 LM 1 𝑀𝑎𝑡𝑒𝑟𝑛(1|𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 + 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒) 

10 LM 𝑇!"# + 𝑃!"# + ∆𝑇 + ∆𝑃 + 𝐶𝑂$ + 𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑒𝑟𝑛(1|𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 + 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒) 

 495 
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Figure 1: Maps showing locations where future yield was projected for maize, rice, wheat, and soybean. The color of 

the symbol indicates whether the selected meta-models projected a decrease (purple) or an increase in yield (yellow) 

relative to the baseline period under RCP 4.5 in 2060 (yield changes expressed in % of the baseline). 

 

Figure 2: Boxplot summarizing the yield changes (% relative to the baseline) predicted by the selected meta-models for 

maize, rice, wheat and soybean for the RCP4.5 climate scenario for the year 2060 (+2ºC, 506ppm CO2), either with or 
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without adaptation practices applied. The distribution covers all grid cells at the global scale. Box represents the 1st 

quantile, median, and 3rd quantile. Whiskers show the minimum and maximum values. 

 

Figure 3: Maps showing the predicted yield changes (% relative to the baseline) of maize, rice, wheat and soybean for 

the RCP4.5 climate scenario for the year 2060 (+2ºC, 506ppm CO2), without adaptation practices (No Adaptation), 

with adaptation practices (Adaptation), and showing the difference in yield changes from applying adaptation practices 

(Difference = Adaptation – No Adaptation). 
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Figure 4: Shapley additive explanation contribution to the predicted yield change (%) for all crops under an RCP4.5 

scenario without adaptation. The five predictors considered are absence of adaptation (No Adaptation), change in CO2 

concentration above 390ppm (D CO2), change in precipitation (D Precip), global warming level (D Temp), average local 

precipitation (Avg Precip), and average local temperature (Avg Temp). Box represents the 1st quantile, median, and 

3rd quantile. Whiskers show the minimum and maximum values. 
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Figure 5: Maps colored to indicate the greatest contributors to the yield losses predicted under an RCP4.5 scenario 

without adaptation: absence of adaptation (pink), change in CO2 concentration above 390ppm (green), change in 

precipitation (dark blue), warming level (orange), average precipitation (light blue), and average temperature (yellow). 

 



5 
 

Figure 6: Maps colored to indicate the greatest contributors to the yield gains predicted under an RCP4.5 scenario with 

adaptation: application of adaptation strategies (pink), change in CO2 concentration above 390ppm (green), change in 

precipitation (dark blue), warming level (orange), average precipitation (light blue), and average temperature (yellow). 
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Figure S1. Histograms showing the distribution of yield change projections (%) for 
maize, rice, soybean and wheat. The median and mean changes in yield relative to the 
baseline period are depicted as short dash gray lines and long dash black lines, 
respectively. 
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Figure S2. Predicted Yield Change vs Observed Yield Change for Maize, Rice, Soybean, 
and Wheat. Error bars represent the standard error of replicated sites from the 10 
models generated from randomly splitting the dataset for cross-validation. For this 
cross-validation, the testing dataset did not include any locations used in the training 
dataset. 
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Figure S3. Predicted Yield Change vs Observed Yield Change for Maize, Rice, Soybean, 
and Wheat. Error bars represent the standard error of replicated sites from the 10 
models generated from randomly splitting the dataset for cross-validation. For this 
cross-validation, the testing dataset included locations used in the training dataset, and 
error bars are not always large enough to be apparent. 
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Figure S4. Partial dependence plots showing the marginal effect of each predictor 
variable (average temperature, change in temperature, change in CO2 above 390ppm, 
average annual precipitation (mm), annual change in precipitation (mm), Latitude and 
Longitude [only used as predictors in Maize, Rice, and Soybean best models] on the yield 
change (%). The bar plots show the marginal improvement of yield with adaptation 
(marginal effect of: adaptation applied – no adaptation) for each adaptation type 
[Cultivar, Fertilizer, Irrigation, Others, Planting Time]) and each crop. 
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Figure S5. Partial dependence plots showing the marginal effect of the change in 
temperature on the yield increase with Adaptation (marginal effect of warming on yield 
with: adaptation applied – no adaptation). Colors indicate the crop: Maize, Rice, Soybean, 
and Wheat. 
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Figure S6a. Shapley additive explanation contribution to the predicted yield change (%) 
for maize under RCP4.5 without adaptation. The four predictors considered are 
adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S6b. Shapley additive explanation contribution to the predicted yield change (%) 
for rice under an RCP4.5 scenario without adaptation. The four predictors considered are 
adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S6c. Shapley additive explanation contribution to the predicted yield change (%) 
for wheat under an RCP4.5 scenario without adaptation. The four predictors considered 
are adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S6d. Shapley additive explanation contribution to the predicted yield change (%) 
for soybean under an RCP4.5 scenario without adaptation. The four predictors 
considered are adaptation (Yes/No), change in CO2 concentration above 390ppm, 
change in precipitation, warming level, average precipitation, and average temperature. 
The color bar indicates the Shapley value. 
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Figure S7a. Shapley additive explanation contribution to the predicted yield change (%) 
for maize under an RCP4.5 scenario with adaptation. The four predictors considered are 
adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S7b. Shapley additive explanation contribution to the predicted yield change (%) 
for rice under an RCP4.5 scenario with adaptation. The four predictors considered are 
adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S7c. Shapley additive explanation contribution to the predicted yield change (%) 
for wheat under an RCP4.5 scenario with adaptation. The four predictors considered are 
adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S7d. Shapley additive explanation contribution to the predicted yield change (%) 
for soybean under an RCP4.5 scenario with adaptation. The four predictors considered 
are adaptation (Yes/No), change in CO2 concentration above 390ppm, change in 
precipitation, warming level, average precipitation, and average temperature. The color 
bar indicates the Shapley value. 
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Figure S8. Shapley additive explanation contribution to the predicted yield change (%) 
for all crops under an RCP4.5 scenario with adaptation. The five predictors considered 
are application of adaptation strategies (Adaptation), change in CO2 concentration above 
390ppm (∆ CO2), change in precipitation (∆ Precip), warming level (∆ Temp), average 
precipitation (Avg Precip), and average temperature (Avg Temp). Box represents the 1st 
quantile, median, and 3rd quantile. Whiskers show the minimum and maximum values. 
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Figure S9. Barplots showing the number of grid cells in Figure 3 that are attributed to 
either adaptation, change in CO2 concentration above 390ppm (∆ CO2 ppm), change in 
precipitation (∆ Precipitation), warming level (∆ Temperature °C), average precipitation 
(mm), and average temperature (°C) for yield predictions under an RCP4.5 scenario with 
no adaptation. 
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Figure S10. Barplots showing the number of grid cells in Figure 4 that are attributed to 
either adaptation, change in CO2 concentration above 390ppm (∆ CO2 ppm), change in 
precipitation (∆ Precipitation), warming level (∆ Temperature °C), average precipitation 
(mm), and average temperature (°C) for yield predictions under an RCP4.5 scenario with 
adaptation. 
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Crop Number of yield simulations Number of locations 

Maize 4589 194 

Rice 1519 99 

Wheat 2298 174 

Soybean 297 53 

Table S1. Summary information for the synthesis dataset  
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Crop Model No. RMSE R2 AIC 

Maize 1 25.8 ± 0.7 -0.27 ± 0.07 676 ± 38 

 2 24.3 ± 0.8 -0.11 ± 0.04 601 ± 43 

 3 17.5 ± 0.8 0.43 ± 0.02 324 ± 31 

 4 17.5 ± 0.8 0.43 ± 0.02 323 ± 31 

 5 18.7 ± 0.7 0.35 ± 0.02 369 ± 29 

 6 17.5 ± 0.8 0.43 ± 0.02 328 ± 29 

 7 21.9 ± 0.9 0.11 ± 0.01 504 ± 44 

 8 22.5 ± 0.9 0.06 ± 0.02 530 ± 44 

 9 24.0 ± 0.8 -0.07 ± 0.03 598 ± 41 

 10 23.0 ± 1.1 0.02 ± 0.02 557 ± 51 

Rice 

 
1 16.5 ± 1.1 -0.09 ± 0.04 

288 
± 

38 

 2 16.2 ± 1.0 -0.06 ± 0.04 274 ± 32 

 3 15.1 ± 1.1 0.09 ± 0.04 252 ± 34 

 4 15.8 ± 1.0 -0.02 ± 0.08 270 ± 30 

 5 14.8 ± 1.1 0.12 ± 0.04 246 ± 33 

 6 15.6 ± 1.0 -0.01 ± 0.11 269 ± 33 

 7 16.3 ± 1.1 -0.07 ± 0.03 295 ± 36 

 8 16.0 ± 0.9 -0.06 ± 0.07 281 ± 30 

 9 16.3 ± 1.2 -0.07 ± 0.04 296 ± 38 

 10 16.0 ± 1.1 -0.02 ± 0.03 285 ± 36 

Wheat 1 22.2 ± 1.1 -0.09 ± 0.05 508 ± 51 

 2 21.4 ± 1.0 -0.02 ± 0.05 471 ± 42 

 3 20.2 ± 1.2 0.11 ± 0.03 430 ± 49 

 4 20.3 ± 1.3 0.10 ± 0.04 441 ± 59 
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 5 19.3 ± 1.0 0.18 ± 0.03 398 ± 40 

 6 19.0 ± 1.1 0.21 ± 0.04 387 ± 42 

 7 23.5 ± 0.9 -0.24 ± 0.08 579 ± 43 

 8 25.7 ± 1.5 -0.46 ± 0.08 699 ± 82 

 9 21.3 ± 0.9 0.00 ± 0.03 478 ± 41 

 10 21.7 ± 1.0 -0.05 ± 0.05 496 ± 42 

Soybean 1 29.6 ± 3.8 0.12 ± 0.11 1010 ± 274 

 2 29.9 ± 3.7 0.11 ± 0.10 1025 ± 280 

 3 29.5 ± 4.3 0.12 ± 0.14 1048 ± 290 

 4 30.8 ± 4.8 0.05 ± 0.17 1170 ± 356 

 5 28.2 ± 3.8 0.21 ± 0.10 946 ± 264 

 6 28.5 ± 4.6 0.20 ± 0.15 1020 ± 338 

 7 37.6 ± 3.1 -0.43 ± 0.04 1518 ± 261 

 8 450 ± 409 -1764 ± 1763 1713233 ± 1711521 

 9 34.9 ± 3.2 -0.26 ± 0.13 1325 ± 235 

 10 38.4 ± 4.6 -0.48 ± 0.18 1681 ± 415 

Table S2. RMSE, R2, and AIC for the 10 models tested for maize, rice, wheat, and 
soybean. Model performance metrics are calculated using different locations that those 
of the training dataset. The model with the lowest RMSE, highest R2, and lowest AIC for 
each crop is indicated in bold. 
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Crop Model No. RMSE R2 AIC 

Maize 1 15.2 ± 0.4 0.32 ± 0.01 236 ± 12 

 2 16.9 ± 0.5 0.16 ± 0.02 292 ± 16 

 3 12.3 ± 0.6 0.54 ± 0.04 166 ± 15 

 4 15.0 ± 0.5 0.33 ± 0.04 240 ± 14 

 5 12.0 ± 0.6 0.56 ± 0.04 164 ± 14 

 6 14.9 ± 0.5 0.34 ± 0.04 240 ± 14 

 7 14.6 ± 0.3 0.37 ± 0.02 232 ± 9.7 

 8 21.1 ± 0.5 -0.33 ± 0.06 467 ± 22 

 9 15.8 ± 0.5 0.26 ± 0.01 271 ± 16 

 10 14.5 ± 0.3 0.37 ± 0.02 231 ± 9.9 

Rice 

 
1 15.6 ± 0.3 -0.02 ± 0.05 

248 
± 

8.9 

 2 14.0 ± 0.4 0.18 ± 0.03 202 ± 10 

 3 11.3 ± 0.4 0.46 ± 0.04 141 ± 9.9 

 4 12.3 ± 0.4 0.36 ± 0.04 164 ± 8.5 

 5 11.1 ± 0.4 0.48 ± 0.04 140 ± 9.5 

 6 12.0 ± 0.4 0.40 ± 0.04 160 ± 8.9 

 7 12.7 ± 0.3 0.32 ± 0.03 181 ± 7.8 

 8 14.0 ± 0.4 0.19 ± 0.03 215 ± 11 

 9 14.9 ± 0.3 0.06 ± 0.05 241 ± 8.7 

 10 13.1 ± 0.3 0.28 ± 0.04 190 ± 7.0 

Wheat 1 14.2 ± 0.2 0.51 ± 0.03 206 ± 7.0 

 2 16.1 ± 0.2 0.37 ± 0.02 264 ± 8.0 

 3 13.9 ± 0.4 0.53 ± 0.01 206 ± 10 

 4 15.6 ± 0.3 0.41 ± 0.01 257 ± 10 
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 5 12.3 ± 0.3 0.63 ± 0.01 169 ± 7.1 

 6 14.2 ± 0.3 0.51 ± 0.02 219 ± 9.7 

 7 13.8 ± 0.2 0.54 ± 0.02 208 ± 6.3 

 8 21.8 ± 0.6 -0.14 ± 0.03 495 ± 26 

 9 14.2 ± 0.2 0.51 ± 0.02 220 ± 6.8 

 10 13.6 ± 0.3 0.55 ± 0.02 205 ± 7.0 

Soybean 1 19.5 ± 0.7 0.54 ± 0.05 389 ± 27 

 2 19.8 ± 0.7 0.53 ± 0.06 399 ± 27 

 3 21.1 ± 1.2 0.48 ± 0.06 470 ± 54 

 4 20.2 ± 0.9 0.52 ± 0.05 427 ± 36 

 5 18.8 ± 0.9 0.58 ± 0.04 379 ± 36 

 6 17.3 ± 0.8 0.65 ± 0.04 320 ± 27 

 7 25.2 ± 0.6 0.25 ± 0.07 655 ± 31 

 8 36.2 ± 2.3 -0.57 ± 0.22 1377 ± 190 

 9 20.2 ± 0.6 0.51 ± 0.06 428 ± 24 

 10 25.1 ± 0.6 0.25 ± 0.07 654 ± 32 

Table S3. RMSE, R2, and AIC for the 10 models tested for four crops: maize, rice, wheat, 
and soybean. Model performance metrics are calculated using data split such that test 
locations are the same as those of the training dataset. The model with the lowest RMSE, 
highest R2, and lowest AIC for each crop is indicated in bold. 
  



 
 

23 
 

Crop Coefficient SE F-value p-value 

Maize 6.1 0.92 43.41,4438 <0.0001 

Rice 11.6 0.84 1891,1403 <0.0001 

Wheat 7.3 0.84 83.11,2126 <0.0001 

Soybean 7.9 2.3 11.91,262 0.0007 

Table S4. F and p-values for adaptation as a fixed effect in the linear mixed model 
(Model 7). 


