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Abstract

Wildland fire is expected to increase in response to global warming, yet little is known about future changes to fire regimes in

Europe. Here, we developed a pyrogeography based on statistical fire models to better understand how global warming reshapes

fire regimes across the continent. We identified five large-scale pyroregions with different levels of area burned, fire frequency,

intensity, length of fire period, size distribution, and seasonality. All other things being equal, global warming was found to

alter the distribution of these pyroregions, with a spatial extension of the most fire prone pyroregions ranging respectively from

50% to 130% under 2 and 4 °C global warming scenarios. Our estimates indicate a strong amplification of fire across parts of

southern Europe and subsequent shift towards new fire regimes, implying substantial socio-ecological impacts in the absence of

mitigation or adaptation measures.
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Key Points:

• This is the first study to project future changes in fire regimes on a pan-European scale under different
global warming levels

• Our projections point to an intensification and expansion of the most fire prone pyroregions in southern
Europe under a warmer climate

• Limiting global warming would substantially reduce the expansion of the area at risk and the transition
towards more intense fire regimes

Abstract

Wildland fire is expected to increase in response to global warming, yet little is known about future changes
to fire regimes in Europe. Here, we developed a pyrogeography based on statistical fire models to better
understand how global warming reshapes fire regimes across the continent. We identified five large-scale
pyroregions with different levels of area burned, fire frequency, intensity, length of fire period, size distribution,
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and seasonality. All other things being equal, global warming was found to alter the distribution of these
pyroregions, with a spatial extension of the most fire prone pyroregions ranging respectively from 50% to
130% under 2 and 4 °C global warming scenarios. Our estimates indicate a strong amplification of fire across
parts of southern Europe and subsequent shift towards new fire regimes, implying substantial socio-ecological
impacts in the absence of mitigation or adaptation measures.

Plain Language Summary

Previous research has investigated the effects of global warming focussing on burned area only, ignoring
other relevant fire metrics which are strongly associated with the fire impacts. In this paper, we examined the
effects of global warming on a range of fire-regime components including burned area, fire frequency, intensity,
seasonality, size, and length of the fire-prone window, which collectively shape the so-called pyroregions. We
identified five large-scale pyroregions reflecting different fire regimes. Future climate projections indicated
an increase in all fire-regime components and subsequent expansion of fire prone pyroregions across parts
of southern Europe under warmer and drier conditions. The most fire prone pyroregions presented a spatial
expansion ranging respectively from 50% to 130% under 2 and 4 °C global warming scenarios with potential
impacts on society. Limiting global warming would substantially reduce the expansion of the fire prone
pyroregions in Europe.

1 Introduction

Wildland fire research has been increasingly promoted in Europe in recent years to better understand the
driving forces and identify regions at risk. Fire activity responds to multiple drivers among climate, vegetati-
on, and human activities operating at different spatial and temporal scales (Bowman et al., 2020; Cochrane
& Bowman, 2021; Zheng et al., 2021). While the relative influence of environmental and anthropogenic
factors varies geographically, climate variability expressed through fuel dryness has been shown to be the
dominant driver of fire activity at broad spatio-temporal scales (Abatzoglou et al., 2018, 2021; Bedia et al.,
2015). Warmer and drier conditions have been shown to promote fire activity in many regions across Europe
(Barbero et al., 2019; Rodrigues et al., 2021; Turco et al., 2017). Extreme fire seasons, featuring intense and
large fires, as seen in 2016 in France (Ruffault et al., 2018), 2017 in Portugal (Turco et al., 2019), and 2021
in Greece (Giannaros et al., 2022) were indeed associated with intense droughts and heatwaves.

These fire climate conditions are widely thought to become more frequent and intense with global warming
(Abatzoglou et al., 2019; Jones et al., 2022; Son et al., 2021). Previous research projected an increase in
burned area (Turco et al., 2018), fire frequency (Vilar et al., 2021), fire intensity (Apaŕıcio et al., 2022), and
fire size (Ruffault et al., 2020) alongside a lengthening of the fire season (Fargeon et al., 2020) in Europe,
under a warmer climate. Yet, our understanding of the effects of global warming on fire has been limited to
single fire-regime components, thereby ignoring how fire regimes might change in the future.

Fire-regime components such as the frequency, intensity, seasonality, and size control the effects of fire on
the landscape, collectively shaping the so-called pyroregions (Cochrane & Bowman, 2021; Morgan et al.,
2001). Pyroregions are usually defined as broad spatio-temporal units sharing similar distributions of the
aforementioned components (Krebs et al., 2010). In this sense, pyroregions provide a level of generalization
that may aid in understanding fire regimes among both technical and non-technical audiences (Boulanger
et al., 2013; Galizia et al., 2021a). Pyroregions are also useful tools for developing fire policies that aim
to adapt burnable landscapes to future climate conditions (Cochrane & Bowman, 2021). While previous
efforts have focused on delineating historical or current pyroregions (Archibald et al., 2013; Galizia et al.,
2021a; Pausas, 2022; Rodrigues et al., 2020), little is known about their future changes in response to global
warming. Here, we hypothesize that the future climate may not only increase burned area but also alter the
current pyrogeography with a potential expansion of fire-prone regions and even the emergence of new fire
regimes.

Drawing from a remote-sensing dataset of individual fires, we developed a European pyrogeography based on
a range of fire-regime components to better understand how, where and when global warming may reshape
fire regimes across the continent. We built empirical models linking each fire-regime component with climate
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and environmental variables for the historical period, and future 2°C and 4°C global warming scenarios. We
then delineated the pyroregions based on a clustering of the simulated fire-regime components and examined
how these pyroregions might change in the future.

2 Materials and Methods

2.1 Fire data

We used the GlobFire (Artés et al., 2019) data, a daily remote sensing dataset of individual fires built from
the pixel-based burned area MODIS product MCD64A1 Collection 6 (Giglio et al., 2018) at 500-m resolution
over the period 2001-2018. GlobFire provides information beyond the burned area MODIS product, such as
the perimeter and spatial extent of each fire patch. GlobFire dataset presented a reasonable agreement with
ground-based fire data, especially for fires larger than 100 ha (Campagnolo et al., 2021; Galizia et al., 2021b).
We excluded fire data located within artificial lands (i.e. agriculture and urban) using Corine land cover data
(European Union, 2018) because they generally do not put ecosystems at risk. Additionally, we used daily
fire radiative power (FRP) of pixel-based MODIS product MCD14ML (Giglio, 2006) at 1-km resolution over
the period 2001-2018. The FRP measures the radiant energy released per unit time from vegetation biomass
burning (Wooster et al., 2021) and has been extensively used as a proxy of fire intensity (Archibald et al.,
2013; Laurent et al., 2019; Pausas, 2022). Following Laurent et al. 2019, we performed a spatio-temporal
matching between FRP and GlobFire databases at an annual timescale and 1-km resolution and excluded
FRP pixels without individual fire data.

2.2 Climate data

We used the observed fire-weather index (FWI) (Van Wagner, 1987) data from the C3S Climate Data Store
(CDS; https://cds.climate.copernicus.eu/) at 25-km resolution over the period 1980-2018, given its strong
correlations with fire activity across Europe (Bedia et al., 2015; Galizia et al., 2021a; Pimont et al., 2021).
FWI is calculated using weather variables from the ECMWF ERA5 reanalysis dataset (Vitolo et al., 2020).
Simulated FWI were extracted from the CDS at 11-km resolution over the period 1980-2098. Projections
were computed using one regional climate model coupled with six global climate models (GCMs; Table S1)
from the EURO-CORDEX (Jacob et al., 2014) initiative. Given that much of the variability across models
arises from GCMs, our approach should capture most of the uncertainty in future projections.

We regridded the projected FWI onto a common 25-km resolution grid and averaged both observed and
projected FWIs onto an annual timescale. We bias-corrected the projected FWI by applying the equidistant
quantile mapping (Li et al., 2010) method to each climate model. This ensures that the distributions of
projected FWI matched the observed FWI while preserving future changes in FWI from this reference
period. Using a delta change bias correction procedure yielded similar results (Figure S8). Note that we
bias-corrected directly the FWI values to avoid an underestimation of extreme values when correcting first
the individual meteorological variables (Jain et al., 2020). We then reaggregated observed and projected fire
weather data onto a common 50-km resolution grid for fire modeling purposes.

We estimated the global warming dates (2 and 4 °C) for each climate model following the procedure described
in Jacob et al. (2014). Global warming levels are largely independent of the choice of future emissions scenario
and aligned with the Paris agreement targets (Hausfather et al., 2022). Warming levels correspond to the
period over which time-averaged global mean temperature (20-year window) reaches 2 and 4 °C, compared
to the ’preindustrial’ period 1881-1910 (Table S2). Finally, we computed the multimodel mean by taking the
average of the FWI from the six climate models for each warming scenario.

2.3 Environmental data

We used the Corine land cover data from Copernicus Land Monitoring Service
(https://land.copernicus.eu/pan-european/corine-land-cover) at 100-m resolution from the period 2000-
2018. We computed the land cover distribution as the percentage area of the 50-km grid cell covered by
different vegetation and anthropogenic classes across Europe (Table S2). To account for land cover changes
through time we computed land cover distributions averaging the Corine dataset over the studied period.

3
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We omitted from our analysis grid cells with more than 80% of non-burnable land cover (i.e. anthropogenic
lands), following Abatzoglou et al (2019). Additionally, we retrieved topographic data from the GTOPO30
raster digital elevation model (https://earthexplorer.usgs.gov/) at 1 km resolution. We computed the
topographic slope as the percent of rise in elevation calculated from the altitude layer and regridded onto a
common 50-km resolution grid.

2.4 Fire-regime components

Fire-regime components represent the statistical fire characteristics that collectively shape the so-called
pyroregions (Krebs et al., 2010). We aggregated daily fire data onto a 50-km grid at an annual timescale to
compute six fire-regime components: burned area (in ha), number of fires (in n), percentage of large fires
(fires > 100 ha; in %), percentage of fires during the cool season (fires in November–April period; in %),
length of fire period (in months), and fire intensity (in MW), following Galizia et al. (2021a) (see Table S3).
These components were used in previous studies for the characterization of fire regimes (Archibald et al.,
2013; Chuvieco et al., 2008; Pausas, 2022) and represent the spatial and temporal patterns of fire extent,
frequency, seasonality, intensity, and size distribution over the study period.

2.5 Modeling fire-regime components

Statistical models linking climate and environmental conditions to fires have received much attention under
the global warming context (Abatzoglou et al., 2021; Barbero et al., 2014; Pimont et al., 2021; Riviere et
al., 2022; Turco et al., 2018, 2019). We sought here to develop individual statistical models for each fire-
regime component to simulate historical and future fire activity in Europe. We used generalized additive
models (GAMs), a supervised learning data modeling method (James et al., 2013) that allows nonlinear
responses to explanatory variables to be estimated through different smoothed functions and distribution
types. GAMs were extensively used to simulate fire-regime components, such as the area burned (Joseph
et al., 2019; Pimont et al., 2021) and fire frequency (Ager et al., 2018; Preisler et al., 2008; Woolford et
al., 2021). Each fire-regime component was simulated at the annual scale in a 50-km grid with relevant
explanatory variables, such as climate, land cover, topography, and grid coordinates (i.e. spatial effect) over
the period 2001-2018 (Table S3). In order to deal with the large proportions of zeros in our data, we used
Tweedie and negative binomial regression as GAMs to link the fire-regime components with the explanatory
variables (Wood et al., 2016). For more technical details about smoothing and GAMs, see (Wood et al.,
2016). Note that we assumed that the percentage of fires during the cool season will remain unchanged (i.e.
stationary) in the future as no significant relationship was found between this variable and climate conditions
or land cover types (Galizia et al., 2021a), indicating that these are generally intentional fires under control.
For each fire-regime component model, we selected the most relevant explanatory variables based on the
stepwise approach based on a trade-off between accuracy and complexity of the models using the Akaike
information criterion (AIC). Only variables with significant influence on a specific fire-regime component
were selected. We simulated each fire-regime component under the historical period (2001-2018) and for two
different global warming levels (2 and 4 °C). For the future projections, we considered the respective 20-year
window of each model (Table S2). FWI was the only time-varying explanatory variable in the models, the
others were considered stationary as FWI projections and land cover projections were derived from different
climate models.

We evaluated the predictive performance of the models with an independent dataset i.e., excluding a test
period of 5 years (˜30% of the data) when computing the model parameters (Turco et al., 2018). We compared
model predictions with observations aggregated across temporal and spatial scales to assess how the models
perform in practice. The goodness-of-fit between predictions and observations was measured with the root-
mean-square error (RMSE), coefficient of determination (R2), and its significance values (p ).

2.6 Delineating the European pyrogeography

We delineated the European pyrogeography based on the projections of temporally averaged fire-regime
components at the grid cell level over both historical and future (20-years period) periods. The pyrogeography
was designed through a fuzzy version of the K-means clustering algorithm (Pal et al., 1996). Fuzzy clustering
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algorithms have the advantage over other clustering methods to provide the probability of each observation
to belong to a specific cluster. To do so, fire-regime components were first rescaled into Z-scores with a zero
mean and a unit variance, as recommended in most clustering approaches (Galizia et al., 2021a; Rodrigues
et al., 2020). The clustering strategy consisted of a Euclidean distance as a dissimilarity measure. The
optimal number of clusters was determined using the highest-ranked number of clusters out of 30 indices
available in the nbClust R package (Charrad et al., 2014). We computed the spatial agreement between the
pyrogeography from observed and predicted fire-regime components.

2.7 Future changes in the European pyrogeography

We analyzed future changes in the spatial distribution of the pyrogeography with 2 and 4°C global warming
levels. To assess the uncertainty of future climate projections, we simulated the pyrogeography using each
climate model separately, and grid cells for which all models agreed on the simulated pyroregion were
indicated with a dot. Additionally, we examined the probability of pyroregions occurrence to assess the
degree to which each grid cell belongs to a specific pyroregion for each scenario. We then computed the
difference in pyroregions probability between each warming scenario and the historical period. Finally, we
averaged probabilities across longitudes and smoothed the signal using a polynomial filter to assess future
changes across a north-south gradient.

4 Results

4.1 Modeling fire-regime components

We built statistical models based on climate and environmental factors for five different fire-regime com-
ponents: burned area, number of fires, percentage of large fires, length of fire period, and fire intensity. These
models reproduced to a large extent fire-regime components at the grid-cell level (50-km at annual timescale)
across the European continent (Table S1). When averaged temporally over the historical period (2001-2018),
the spatial agreement between model outputs and observations ranged from an R2 of 0.40 to 0.79 depending
on fire-regime components (Figure 1A, Figure S1, and Table S1), partly because of the presence of the spatial
effect. When averaged spatially across the continent, interannual correlations were however much lower (R2

ranged from 0.22 to 0.43) (Table S1 and Figure S2). This lower temporal agreement between observations
and simulations was expected due to the contrasted fire regimes within such a large domain and the stocha-
sticity at play amongst fire seasons. This has however limited impact on our study given our objectives to
reproduce the averaged fire-regime components over 20-year periods.
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Figure 1. Fire-regime components and partial effects of the statistical fire models. (a) Observed and predicted
burned area, number of fires, percentage of large fires, length of fire period, and fire intensity averaged over
the historical period (2001–2018). R-squared (R2) represents the spatial agreement with observations and
significance level. Regions with more than 80% of non-burnable land cover are shaded in grey. Note the
non-linear colorscales. Observed percentage of fires during the cool season is presented in Figure S3. (b)
Response curves of the models showing the effects of FWI, wildlands cover (%), slope (%), urban cover (%),
and wildland-human interfaces (%) on each fire-regime component. The shading shows the 95% confidence
interval. Note that only predictor/predicated couples with significant responses are shown. For the spatial
effect see Figure S4.

FWI was the dominant driver of all fire-regime components on such spatio-temporal scales (Figure 1b).
For instance, burned area, fire intensity, length of fire period, and the number of fires were all positively
correlated with annual FWI, in agreement with previous studies (Abatzoglou et al., 2018; Bedia et al.,
2015; Ruffault et al., 2020), but their responses seem to level off beyond a certain threshold, as already
observed at finer temporal and spatial scales (e.g. Pimont et al., 2021). Overall, environmental factors,
such as wildland cover and topographic slope, also exerted a positive effect on fire activity as documented in
previous regional studies (Boulanger et al., 2018; Pimont et al., 2021). Conversely, burned area and length of
fire period were found to decrease in regions where urban land cover exceeds 20% due to the fragmentation
of the landscape decreasing fuel continuity and load (Laurent et al., 2019). Interestingly, fire intensity also
decreases at wildland human interface exceeding 40%, and at steeper slopes. Note that the use of the spatial
effect (grid coordinates) improved the accuracy of the statistical fire models since this implicitly accounted
for interactions among the explanatory variables, which were not explicitly modeled here.

4.2 Projecting future fire-regime components

We simulated each fire-regime component under both 2 and 4 °C global warming periods (20-year window)
using the multimodel mean of FWI computed from six paired GCM-RCMs projections while keeping the other
predictors stationary (Figure 2). As expected, FWI was projected to increase in response to global warming,
with the highest changes in the Mediterranean basin and rather limited increases in northern Europe (i.e. >
50º N) due to the future increase in summer precipitation in response to large-scale circulation changes (de

6
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Vries et al., 2022). The warm season may indeed become wetter across these latitudes thereby dampening
the effect of rising temperatures on the FWI (Bedia et al., 2015; Carnicer et al., 2022; Krikken et al., 2021).

Figure 2. Observed FWI and future changes under different global warming levels. (a) Mean annual FWI
during the historical period (2001-2018) and (b) absolute changes in the annual FWI multimodel mean with
respect to the historical period in response to a 2°C and 4°C global warming scenario.

All fire-regime components clearly increased across southern Europe in a warmer world (Figure 3). Regions
such as the northwest of the Iberian Peninsula and the western Balkans presented substantial changes
under the 2 °C global warming scenario. Larger increases in fire activity were foreseen under the 4 °C
warming scenario, with a lengthening of the historical fire season by about 3 months in northern Portugal
and western Balkans. Other regions, such as northern Spain, western Pyrenees, and southern Italy, showed
substantial changes as well in that scenario. Similar to (Turco et al., 2018), we found an increase in the
burned area exceeding 50% across the northern Iberian Peninsula beyond a 2°C global warming level (Figure
S5). Alongside the burned area, our analysis showed large increases in fire frequency, fire intensity, the length
of fire season, and percentage of large fires. Yet, there was no notable increase in fire activity across central
and northern Europe (i.e. > 50º N) due to the limited change in FWI.

Figure 3. Changes in projected fire-regime components under different global warming levels. Absolute
changes in projected fire-regime components in response to a 2°C and 4°C global warming scenario with
respect to the historical period (2001-2018).

7
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Although changes in fire-regime components are mostly expected across southern Europe due to the large
signal of change in the FWI, the spatial patterns of changes did not entirely match those of the FWI (see
Figure 2 and 3) as the climate-fire relation is mediated, on finer scales, by other bottom-up drivers.

4.3 Historical and future European pyrogeography

We then delineated the European pyrogeography based on a clustering of the temporally averaged fire-
regime components over both the historical and future periods. We identified five different pyroregions
representative of fire regimes prevailing in Europe (Figure 4). A Cool-season fire pyroregion (hereafter CSF) is
characterized by moderate fire activity and with a large percentage of very low-intensity fires occurring during
the November–April period (Figure 4d). A Low fire-prone pyroregion (hereafter Low-FP) is characterized
by very low fire activity and dominated by low-intensity fires. A Fire-prone pyroregion (hereafter FP) is
characterized by moderate fire activity with moderate fire intensity, and a high proportion of large fires.
A Highly fire-prone pyroregion (hereafter High-FP) features a high fire occurrence with high fire intensity
and a long fire period. Finally, an Extremely fire-prone pyroregion (hereafter Extremely-FP) displays the
highest fire incidence, fire intensity, and the longest fire period, characterizing the most fire-affected region
in Europe. Note that FP, High-PF, and Extremely-FP presented a substantial percentage of cool-season fires
(˜10%), suggesting a bimodal fire season as seen in other regional analyses (Benali et al., 2017; Pimont et
al., 2021). Conversely, in Low-FP, all fires occurred during the warm period.

Over the historical period, the CSF was scattered across Europe, including parts of the Alps, Pyrenees,
Scotland, Romania, and the Baltics (Figure 4a). The Low-FP was found mostly across northern and parts of
central Europe. The FP was identified mostly across Spain, southern Portugal, southern France, Italy, and
parts of the Balkans. The High-FP was found in the northwestern part of the Iberian Peninsula, Sicily, and
parts of the Balkans. Finally, the Extremely-FP was located mostly in northern Portugal. This historical
pyrogeography built from modeled fire-regime components presented a reasonable spatial agreement (i.e.
86% of all grid cells were correctly classified) when compared with the pyrogeography built from observed
fire-regime components (see Figure S6). Additionally, this pyrogeography exhibited spatial patterns in line
with those reported in previous regional studies in southern Europe (Calheiros et al., 2021; Fréjaville & Curt,
2017; Moreno & Chuvieco, 2013; Rodrigues et al., 2020).

In the 2°C global warming scenario, the spatial extent of High-FP and Extremely-FP expanded by 71%
and 43%, while Low-FP and FP decreased by ˜ 2% and 6%, respectively (Figure 4b). More acute changes
arose with a 4°C warming, with High-FP and Extremely-FP increasing up to 197% and 129% in extent, while
Low-FP, FP, and CSF decreased by ˜ 5%, 7%, and 21%, respectively (Figure 4c). In absolute terms, High-FP
and Extremely-FP together increased by 116,410 km2 in a 2°C warming and 324,285 km2 in a 4°C warming.
This represents an expansion of 1 to 3 times the size of Portugal. Overall, the main transitions occurred
across southern Europe, with less fire-prone pyroregions (Low-FP and CSF) switching to more fire-prone
pyroregions (FP and High-FP) and fire-prone (FP) switching to higher fire-prone pyroregions (High-FP and
Extremely-FP), indicating an intensification of fire activity in regions already at risk (see Figure S7).
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Figure 4. Historical and future pyrogeography under different global warming levels. Projected pyrogeog-
raphy based on simulated fire-regime components for (a) the historical period (2001-2018), (b) the 2°C, and
(c) 4°C global warming scenarios. Values in the top left represent the relative extent of each pyroregion and
relative changes (in %) in pyroregion extents among the scenarios. Dots indicate grid cells where the pyro-
geography agrees with all individual climate model projections. (d) Distribution of fire-regime components
(i.e. median and interquartile range) in each pyroregion.

For a deeper understanding of future potential switches induced by climate change, we also examined, for
each warming scenario, how the probabilities of grid cells to be classified in a given pyroregion may change
(Figure 5). Unlike categorical changes (i.e. hard clustering) seen in Figure 4, which were mostly clumped in
specific regions of southern Europe, large changes in the probability of pyroregions occurrence emerged along
the northern edge of historically fire-prone regions (i.e. 40-45º N). We found an increased probability of FP
expanding towards the north, while High-FP may expand to the east and south. However, future increases
in FWI were too limited to trigger categorical changes in more mesic forested zones such as central and
northern Europe.

9
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Figure 5. Changes in probability to belong to each pyroregion under different global warming levels. (a)
Absolute changes in pyroregions probability were computed for each warming scenario with respect to the
historical period (2001-2018). The probability of occurrence (0-1) indicates the degree to which grid cells
belong to each pyroregion and (b) Changes in the latitudinal average probability computed from weighted
regression (smooth) across the latitudinal gradients for each warming scenario.

Building upon previous studies projecting an increase in fire frequency and burned area across southern
Europe due to global warming (Dupuy et al., 2020; Ruffault et al., 2020; Turco et al., 2018), our study pro-
vided two important new insights. First, we considered a range of fire-regime components, going beyond the
single burned area metric examined in most studies. By including fire frequency, intensity, size distribution,
and seasonality we presented different spatial patterns of fire that have been shown to shape collectively
the pyroregions (Bowman et al., 2020; Krebs et al., 2010). For instance, we found that fire regimes in the
southern Iberian peninsula were dominated by large but less frequent fires than in northern Portugal which
featured the highest fire activity in Europe. In mountainous and/or traditionally agricultural regions, such
as the Pyrenees, parts of the Alps, and Scotland, burned area can be substantial but originates mostly from
cool-season fires due to human-related activities, which were not found to be related to climate conditions
(Galizia et al., 2021a). Additionally, the magnitude of future changes was found to vary substantially across
the fire-regime components (Figure S5). The highest changes were found in fire intensity and percentage of
large fires, while changes in the number of fires were more limited. Second, we projected future changes in
pyroregions in a spatially and temporally explicit approach at a pan-European level, relying on a statistical
modeling framework able to reproduce historical patterns. Spatially and temporally explicit studies provide
an optimal view of fire regimes being more relevant for fire management since they indicate where and when
changes may occur (Boulanger et al., 2013; Rodrigues et al., 2020).

Our findings highlighted the importance of climate as a primary control of fire regimes, as observed in
previous studies examining burned area (Abatzoglou et al., 2018; Jones et al., 2022; Rogers et al., 2020),
but also indicated that climate alone cannot explain all of the variation in fire regimes throughout Europe.
Other factors, such as the location, land cover, urban cover and topography controlled to some extent fire
regimes across space. Future changes projected in the European pyrogeography agreed with other studies
indicating that most of the future increases are expected in the most fire-affected areas today (Carnicer et
al., 2022; Jones et al., 2022; Riviere et al., 2022). Additionally, our findings indicated that regions with a
great extent of fuel available to burn in the transition zones (40-45° N) were more likely to shift towards a
more fire prone regime in a warmer and drier climate.

This work extends previous regional or national studies that had delineated historical fire regimes across
parts of Europe (Fréjaville & Curt, 2017; Resco de Dios et al., 2022; Rodrigues et al., 2021) and shows
how global warming might alter fire regimes in Europe, providing valuable insights into the implementation
of relevant policies on a continental scale. We reported on a strong intensification and expansion of the
most fire prone regions (High-FP and Extremely-FP) across southern Europe in a warmer world. This shed
light on potential concerns raised by firefighting and fire management services, which were devised based on
historical records or experiences. An increase in the area burned, fire intensity, and lengthening of fire period
up to 3 months in parts of the Balkans, northern Iberian Peninsula, Italy, and western France may overwhelm
national fire suppression capacities. Observations alone may become insufficient to cope with fire in a warmer
climate in some regions of Europe (Taylor, 2020). In this sense, the pyrogeography developed here may help in
prioritizing fire management and develop consistent risk mitigation strategies across pyroregions. Pyroregions
combined with fire danger forecasts can be seen as broad management units to mitigate the negative effects of
fire in the short term. Additionally, it may also facilitate country-to-country cooperation for fire management
and suppression (Bloem et al., 2022) when pyroregions span geopolitical borders, fostering and strengthening
partnerships among fire-affected regions within the European Union Civil Protection Mechanism. Finally,
combining the pyrogeography with exposure and vulnerability maps would be the first step into a fire risk
assessment on a pan-European scale.

The classification of fire-regime components into pyroregions is widely thought to capture the spatial he-
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terogeneity of fire regimes providing a level of generalization that aids in understanding the fire patterns
(Boulanger et al., 2013; Bowman et al., 2020). This implies using a coarse spatiotemporal resolution in order
to identify persistent fire patterns (i.e. historical range of variability). However, fires are often characterized
by many low-intensity events and a few high-intensity events responsible for most of the societal and eco-
logical impacts (Le Breton et al., 2022). The latter is obviously masked in such coarse resolution analysis
(Krebs et al., 2010). Our approach is thus likely to underestimate the occurrence of individual extreme fire
events generally associated with specific meteorological conditions (Ruffault et al., 2020). Flash droughts
and/or critical synoptic-scale fire weather conditions facilitate the occurrence of extreme fire on sub-annual
timescales, features that are not evident in annual resolution (Barbero et al., 2019; Pimont et al., 2021).
Additionally, climate projections are known to underestimate the observed trends in fire weather conditions
across Europe (Jones et al., 2022). In this sense, our study should be viewed as a conservative estimate of
the effect of climate change on fire regimes. We note that the methodology developed here has some other
limitations. First, we assumed that the percentage of cool-season fires will remain unchanged in the future.
In Europe, cool-season fires are mostly related to anthropogenic activities, however, no correlation was found
between those fires and anthropogenic variables over the historical period, hampering reliable projections.
Second, we considered the environmental and human-related variables as stationary in our future simulati-
ons. Indeed, a warming climate may temper increases in fire activity by decreasing fuel availability in dry
regions through aridification (Mauri et al., 2022; Pausas & Paula, 2012). Conversely, this may boost fire
activity in other regions through transitions from forested systems to more flammable vegetation types (i.e.
shrublands), or through increasing dead fuel from drought-induced forest diebacks (Liang et al., 2017; Masrur
et al., 2022). Additionally, an increase in fuel accumulation due to systematic fire suppression (Moreira et
al., 2020; Parisien et al., 2020) could exacerbate the signal of climate change on fire activity, particularly
high-intensity fires. To overcome these limitations, studies that explicitly account for interactions among
fire, climate, vegetation, and anthropogenic factors have been implemented using dynamic global vegetation
models (Hantson et al., 2016). Yet, such models often struggle to represent interannual variations in fire ac-
tivity and observed trends (Forkel et al., 2019; Jones et al., 2022). Finally, previous research has shown that
new fire suppression policies may be able to reshape the functional climate-fire relationship (e.g. Ruffault
& Mouillot, 2015). In this sense, continued efforts are still needed to better understand the roles played by
top-down climate and bottom-up environmental and anthropogenic factors in shaping current and future fire
regimes across Europe.

5 Conclusions

This work is the first to project future changes in fire regimes on a pan-European scale. The developed
pyrogeography synthesized the complexity of fire patterns enabling a better understanding of the pan-
European fire regimes. This is crucial in the context of global change since it provides a baseline to investigate
temporal and spatial changes in fire regimes under different warming scenarios. Additionally, by examining
future changes under policy-relevant warming levels of 2°C and 4°C, we provided insights into how the success
or failure of climate policies would translate to fire hazards in Europe.

In summary, we found a substantial increase in all fire-regime components across southern Europe in a future
warmer climate, indicating a strong amplification of fire in regions already at risk. We showed that under
global warming, pyroregions are likely to shift towards more fire prone regimes across parts of southern
Europe, potentially triggering a wide range of ecological and socio-economic issues. Additionally, regions on
the northern edge of historically fire-prone areas (i.e. 40-45º N) were found to be the most sensitive to a
warming climate.

These projected changes have direct implications for both short-term risk management, long-term risk mit-
igation implemented by the European Union Civil Protection mechanisms, as well as climate adaptation
across these regions. This notably includes increased community preparedness, optimized resource allocation
(personnel and equipment), resource sharing, and enhanced fuel management. Policies based on a speci-
fied fire-regime target should help develop better fire prevention and suppression strategies supporting fire
managers to minimize the negative impacts of fire.
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Barbero, R., Curt, T., Ganteaume, A., Maillé, E., Jappiot, M., & Bellet, A. (2019). Simulating the effects
of weather and climate on large wildfires in France. Natural Hazards and Earth System Sciences, 19(2),
441–454. https://doi.org/10.5194/nhess-19-441-2019

12



P
os

te
d

on
28

N
ov

20
22

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

24
10

.1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., & Moreno, J. M. (2015). Global
patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and
Forest Meteorology, 214–215, 369–379. https://doi.org/10.1016/j.agrformet.2015.09.002

Benali, A., Mota, B., Carvalhais, N., Oom, D., Miller, L. M., Campagnolo, M. L., & Pereira, J. M. C.
(2017). Bimodal fire regimes unveil a global-scale anthropogenic fingerprint: Benali et al. Global Ecology
and Biogeography, 26(7), 799–811. https://doi.org/10.1111/geb.12586

Bloem, S., Cullen, A. C., Mearns, L. O., & Abatzoglou, J. T. (2022). The Role of International Re-
source Sharing Arrangements in Managing Fire in the Face of Climate Change. Fire, 5(4), 88. htt-
ps://doi.org/10.3390/fire5040088

Boulanger, Y., Gauthier, S., Gray, D. R., Le Goff, H., Lefort, P., & Morissette, J. (2013). Fire regime
zonation under current and future climate over eastern Canada. Ecological Applications, 23(4), 904–923.
https://doi.org/10.1890/12-0698.1

Boulanger, Y., Parisien, M.-A., & Wang, X. (2018). Model-specification uncertainty in future area burned by
wildfires in Canada. International Journal of Wildland Fire, 27(3), 164. https://doi.org/10.1071/WF17123

Bowman, D., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., & Flannigan, M.
(2020). Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 1(10), 500–515. htt-
ps://doi.org/10.1038/ s43017-020-0085-3

Calheiros, T., Pereira, M. G., & Nunes, J. P. (2021). Assessing impacts of future climate change on ex-
treme fire weather and pyro-regions in Iberian Peninsula. Science of The Total Environment, 754, 142233.
https://doi.org/10.1016/j.scitotenv.2020.142233

Campagnolo, M. L., Libonati, R., Rodrigues, J. A., & Pereira, J. M. C. (2021). A comprehensive characteri-
zation of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sensing
of Environment, 252, 112115. https://doi.org/10.1016/j.rse.2020.112115

Carnicer, J., Alegria, A., Giannakopoulos, C., Di Giuseppe, F., Karali, A., Koutsias, N., Lionello, P., Parring-
ton, M., & Vitolo, C. (2022). Global warming is shifting the relationships between fire weather and realized
fire-induced CO2 emissions in Europe. Scientific Reports, 12(1), 10365. https://doi.org/10.1038/s41598-022-
14480-8

Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., & Charrad, M. M. (2014). Package ‘nbclust.’ Journal
of Statistical Software, 61(6), 1–36.

Chuvieco, E., Giglio, L., & Justice, C. (2008). Global characterization of fire activity: Toward defining fire
regimes from Earth observation data. Global Change Biology, 14(7), 1488–1502.

Cochrane, M. A., & Bowman, D. M. J. S. (2021). Manage fire regimes, not fires. Nature Geoscience, 14(7),
455–457. https://doi.org/10.1038/s41561-021-00791-4

de Vries, H., Lenderink, G., van der Wiel, K., & van Meijgaard, E. (2022). Quantifying the
role of the large-scale circulation on European summer precipitation change. Climate Dynamics.
https://doi.org/10.1007/s00382-022-06250-z

Dupuy, J., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal,
J., & Fernandes, P. (2020). Climate change impact on future wildfire danger and activity in southern Europe:
A review. Annals of Forest Science, 77(2), 35. https://doi.org/10.1007/s13595-020-00933-5

European Union. (2018). Copernicus Land Monitoring Service (2018). European Environment Agency
(EEA). https://land.copernicus.eu/

Fargeon, H., Pimont, F., Martin-StPaul, N., De Caceres, M., Ruffault, J., Barbero, R., & Dupuy, J.-L.
(2020). Projections of fire danger under climate change over France: Where do the greatest uncertainties lie?
Climatic Change, 160(3), 479–493. https://doi.org/10.1007/s10584-019-02629-w

13



P
os

te
d

on
28

N
ov

20
22

—
C

C
-B

Y
-N

C
4

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

10
02

/e
ss

oa
r.

10
51

24
10

.1
—

T
h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M.,
Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., & Arneth, A. (2019). Emergent relationships with
respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences,
16(1), 57–76. https://doi.org/10.5194/bg-16-57-2019
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Abstract 17 

Wildland fire is expected to increase in response to global warming, yet little is known about future 18 

changes to fire regimes in Europe. Here, we developed a pyrogeography based on statistical fire 19 

models to better understand how global warming reshapes fire regimes across the continent. We 20 

identified five large-scale pyroregions with different levels of area burned, fire frequency, 21 

intensity, length of fire period, size distribution, and seasonality. All other things being equal, 22 

global warming was found to alter the distribution of these pyroregions, with a spatial extension 23 

of the most fire prone pyroregions ranging respectively from 50% to 130% under 2 and 4 °C global 24 

warming scenarios. Our estimates indicate a strong amplification of fire across parts of southern 25 

Europe and subsequent shift towards new fire regimes, implying substantial socio-ecological 26 

impacts in the absence of mitigation or adaptation measures. 27 

Plain Language Summary 28 

Previous research has investigated the effects of global warming focussing on burned area only, 29 

ignoring other relevant fire metrics which are strongly associated with the fire impacts. In this 30 

paper, we examined the effects of global warming on a range of fire-regime components including 31 

burned area, fire frequency, intensity, seasonality, size, and length of the fire-prone window, which 32 

collectively shape the so-called pyroregions. We identified five large-scale pyroregions reflecting 33 

different fire regimes. Future climate projections indicated an increase in all fire-regime 34 

components and subsequent expansion of fire prone pyroregions across parts of southern Europe 35 

under warmer and drier conditions. The most fire prone pyroregions presented a spatial expansion 36 

ranging respectively from 50% to 130% under 2 and 4 °C global warming scenarios with potential 37 

impacts on society. Limiting global warming would substantially reduce the expansion of the fire 38 

prone pyroregions in Europe. 39 

1 Introduction 40 

Wildland fire research has been increasingly promoted in Europe in recent years to better 41 

understand the driving forces and identify regions at risk. Fire activity responds to multiple drivers 42 

among climate, vegetation, and human activities operating at different spatial and temporal scales 43 

(Bowman et al., 2020; Cochrane & Bowman, 2021; Zheng et al., 2021). While the relative 44 

influence of environmental and anthropogenic factors varies geographically, climate variability 45 

expressed through fuel dryness has been shown to be the dominant driver of fire activity at broad 46 

spatio-temporal scales (Abatzoglou et al., 2018, 2021; Bedia et al., 2015). Warmer and drier 47 

conditions have been shown to promote fire activity in many regions across Europe (Barbero et 48 

al., 2019; Rodrigues et al., 2021; Turco et al., 2017). Extreme fire seasons, featuring intense and 49 

large fires, as seen in 2016 in France (Ruffault et al., 2018), 2017 in Portugal (Turco et al., 2019), 50 

and 2021 in Greece (Giannaros et al., 2022) were indeed associated with intense droughts and 51 

heatwaves. 52 

These fire climate conditions are widely thought to become more frequent and intense with global 53 

warming (Abatzoglou et al., 2019; Jones et al., 2022; Son et al., 2021). Previous research projected 54 

an increase in burned area (Turco et al., 2018), fire frequency (Vilar et al., 2021), fire intensity 55 

(Aparício et al., 2022), and fire size (Ruffault et al., 2020) alongside a lengthening of the fire 56 

season (Fargeon et al., 2020) in Europe, under a warmer climate. Yet, our understanding of the 57 



 

effects of global warming on fire has been limited to single fire-regime components, thereby 58 

ignoring how fire regimes might change in the future.  59 

Fire-regime components such as the frequency, intensity, seasonality, and size control the effects 60 

of fire on the landscape, collectively shaping the so-called pyroregions (Cochrane & Bowman, 61 

2021; Morgan et al., 2001). Pyroregions are usually defined as broad spatio-temporal units sharing 62 

similar distributions of the aforementioned components (Krebs et al., 2010). In this sense, 63 

pyroregions provide a level of generalization that may aid in understanding fire regimes among 64 

both technical and non-technical audiences (Boulanger et al., 2013; Galizia et al., 2021a). 65 

Pyroregions are also useful tools for developing fire policies that aim to adapt burnable landscapes 66 

to future climate conditions (Cochrane & Bowman, 2021). While previous efforts have focused on 67 

delineating historical or current pyroregions (Archibald et al., 2013; Galizia et al., 2021a; Pausas, 68 

2022; Rodrigues et al., 2020), little is known about their future changes in response to global 69 

warming. Here, we hypothesize that the future climate may not only increase burned area but also 70 

alter the current pyrogeography with a potential expansion of fire-prone regions and even the 71 

emergence of new fire regimes.  72 

Drawing from a remote-sensing dataset of individual fires, we developed a European 73 

pyrogeography based on a range of fire-regime components to better understand how, where and 74 

when global warming may reshape fire regimes across the continent. We built empirical models 75 

linking each fire-regime component with climate and environmental variables for the historical 76 

period, and future 2°C and 4°C global warming scenarios. We then delineated the pyroregions 77 

based on a clustering of the simulated fire-regime components and examined how these 78 

pyroregions might change in the future.  79 

2 Materials and Methods 80 

2.1 Fire data 81 

We used the GlobFire (Artés et al., 2019) data, a daily remote sensing dataset of individual fires 82 

built from the pixel-based burned area MODIS product MCD64A1 Collection 6 (Giglio et al., 83 

2018) at 500-m resolution over the period 2001-2018. GlobFire provides information beyond the 84 

burned area MODIS product, such as the perimeter and spatial extent of each fire patch. GlobFire 85 

dataset presented a reasonable agreement with ground-based fire data, especially for fires larger 86 

than 100 ha (Campagnolo et al., 2021; Galizia et al., 2021b). We excluded fire data located within 87 

artificial lands (i.e. agriculture and urban) using Corine land cover data (European Union, 2018) 88 

because they generally do not put ecosystems at risk. Additionally, we used daily fire radiative 89 

power (FRP) of pixel-based MODIS product MCD14ML (Giglio, 2006) at 1-km resolution over 90 

the period 2001-2018. The FRP measures the radiant energy released per unit time from vegetation 91 

biomass burning (Wooster et al., 2021) and has been extensively used as a proxy of fire intensity 92 

(Archibald et al., 2013; Laurent et al., 2019; Pausas, 2022). Following Laurent et al. 2019, we 93 



 

performed a spatio-temporal matching between FRP and GlobFire databases at an annual timescale 94 

and 1-km resolution and excluded FRP pixels without individual fire data. 95 

2.2 Climate data 96 

We used the observed fire-weather index (FWI) (Van Wagner, 1987) data from the C3S Climate 97 

Data Store (CDS; https://cds.climate.copernicus.eu/) at 25-km resolution over the period 1980-98 

2018, given its strong correlations with fire activity across Europe (Bedia et al., 2015; Galizia et 99 

al., 2021a; Pimont et al., 2021). FWI is calculated using weather variables from the ECMWF ERA5 100 

reanalysis dataset (Vitolo et al., 2020). Simulated FWI were extracted from the CDS at 11-km 101 

resolution over the period 1980-2098. Projections were computed using one regional climate 102 

model coupled with six global climate models (GCMs; Table S1) from the EURO-CORDEX 103 

(Jacob et al., 2014) initiative. Given that much of the variability across models arises from GCMs, 104 

our approach should capture most of the uncertainty in future projections. 105 

We regridded the projected FWI onto a common 25-km resolution grid and averaged both 106 

observed and projected FWIs onto an annual timescale. We bias-corrected the projected FWI by 107 

applying the equidistant quantile mapping (Li et al., 2010) method to each climate model. This 108 

ensures that the distributions of projected FWI matched the observed FWI while preserving future 109 

changes in FWI from this reference period. Using a delta change bias correction procedure yielded 110 

similar results (Figure S8). Note that we bias-corrected directly the FWI values to avoid an 111 

underestimation of extreme values when correcting first the individual meteorological variables 112 

(Jain et al., 2020). We then reaggregated observed and projected fire weather data onto a common 113 

50-km resolution grid for fire modeling purposes. 114 

We estimated the global warming dates (2 and 4 °C) for each climate model following the 115 

procedure described in Jacob et al. (2014). Global warming levels are largely independent of the 116 

choice of future emissions scenario and aligned with the Paris agreement targets (Hausfather et al., 117 

2022). Warming levels correspond to the period over which time-averaged global mean 118 

temperature (20-year window) reaches 2 and 4 °C, compared to the ’preindustrial’ period 1881-119 

1910 (Table S2). Finally, we computed the multimodel mean by taking the average of the FWI 120 

from the six climate models for each warming scenario. 121 

2.3 Environmental data 122 

We used the Corine land cover data from Copernicus Land Monitoring Service 123 

(https://land.copernicus.eu/pan-european/corine-land-cover) at 100-m resolution from the period 124 

2000-2018. We computed the land cover distribution as the percentage area of the 50-km grid cell 125 

covered by different vegetation and anthropogenic classes across Europe (Table S2). To account 126 

for land cover changes through time we computed land cover distributions averaging the Corine 127 

dataset over the studied period. We omitted from our analysis grid cells with more than 80% of 128 

non-burnable land cover (i.e. anthropogenic lands), following Abatzoglou et al (2019). 129 

Additionally, we retrieved topographic data from the GTOPO30 raster digital elevation model 130 

(https://earthexplorer.usgs.gov/) at 1 km resolution. We computed the topographic slope as the 131 



 

percent of rise in elevation calculated from the altitude layer and regridded onto a common 50-km 132 

resolution grid. 133 

2.4 Fire-regime components 134 

Fire-regime components represent the statistical fire characteristics that collectively shape the so-135 

called pyroregions (Krebs et al., 2010). We aggregated daily fire data onto a 50-km grid at an 136 

annual timescale to compute six fire-regime components: burned area (in ha), number of fires (in 137 

n), percentage of large fires (fires > 100 ha; in %), percentage of fires during the cool season (fires 138 

in November–April period; in %), length of fire period (in months), and fire intensity (in MW), 139 

following Galizia et al. (2021a) (see Table S3). These components were used in previous studies 140 

for the characterization of fire regimes (Archibald et al., 2013; Chuvieco et al., 2008; Pausas, 2022) 141 

and represent the spatial and temporal patterns of fire extent, frequency, seasonality, intensity, and 142 

size distribution over the study period. 143 

2.5 Modeling fire-regime components 144 

Statistical models linking climate and environmental conditions to fires have received much 145 

attention under the global warming context (Abatzoglou et al., 2021; Barbero et al., 2014; Pimont 146 

et al., 2021; Riviere et al., 2022; Turco et al., 2018, 2019). We sought here to develop individual 147 

statistical models for each fire-regime component to simulate historical and future fire activity in 148 

Europe. We used generalized additive models (GAMs), a supervised learning data modeling 149 

method (James et al., 2013) that allows nonlinear responses to explanatory variables to be 150 

estimated through different smoothed functions and distribution types. GAMs were extensively 151 

used to simulate fire-regime components, such as the area burned (Joseph et al., 2019; Pimont et 152 

al., 2021) and fire frequency (Ager et al., 2018; Preisler et al., 2008; Woolford et al., 2021). Each 153 

fire-regime component was simulated at the annual scale in a 50-km grid with relevant explanatory 154 

variables, such as climate, land cover, topography, and grid coordinates (i.e. spatial effect) over 155 

the period 2001-2018 (Table S3). In order to deal with the large proportions of zeros in our data, 156 

we used Tweedie and negative binomial regression as GAMs to link the fire-regime components 157 

with the explanatory variables (Wood et al., 2016). For more technical details about smoothing 158 

and GAMs, see (Wood et al., 2016). Note that we assumed that the percentage of fires during the 159 

cool season will remain unchanged (i.e. stationary) in the future as no significant relationship was 160 

found between this variable and climate conditions or land cover types (Galizia et al., 2021a), 161 

indicating that these are generally intentional fires under control. For each fire-regime component 162 

model, we selected the most relevant explanatory variables based on the stepwise approach based 163 

on a trade-off between accuracy and complexity of the models using the Akaike information 164 

criterion (AIC). Only variables with significant influence on a specific fire-regime component 165 

were selected. We simulated each fire-regime component under the historical period (2001-2018) 166 

and for two different global warming levels (2 and 4 °C). For the future projections, we considered 167 

the respective 20-year window of each model (Table S2). FWI was the only time-varying 168 

explanatory variable in the models, the others were considered stationary as FWI projections and 169 

land cover projections were derived from different climate models. 170 

We evaluated the predictive performance of the models with an independent dataset i.e., excluding 171 

a test period of 5 years (~30% of the data) when computing the model parameters (Turco et al., 172 

2018). We compared model predictions with observations aggregated across temporal and spatial 173 



 

scales to assess how the models perform in practice. The goodness-of-fit between predictions and 174 

observations was measured with the root-mean-square error (RMSE), coefficient of determination 175 

(R2), and its significance values (p).  176 

2.6 Delineating the European pyrogeography 177 

We delineated the European pyrogeography based on the projections of temporally averaged fire-178 

regime components at the grid cell level over both historical and future (20-years period) periods. 179 

The pyrogeography was designed through a fuzzy version of the K-means clustering algorithm 180 

(Pal et al., 1996). Fuzzy clustering algorithms have the advantage over other clustering methods 181 

to provide the probability of each observation to belong to a specific cluster. To do so, fire-regime 182 

components were first rescaled into Z-scores with a zero mean and a unit variance, as 183 

recommended in most clustering approaches (Galizia et al., 2021a; Rodrigues et al., 2020). The 184 

clustering strategy consisted of a Euclidean distance as a dissimilarity measure. The optimal 185 

number of clusters was determined using the highest-ranked number of clusters out of 30 indices 186 

available in the nbClust R package (Charrad et al., 2014). We computed the spatial agreement 187 

between the pyrogeography from observed and predicted fire-regime components. 188 

2.7 Future changes in the European pyrogeography 189 

We analyzed future changes in the spatial distribution of the pyrogeography with 2 and 4°C  global 190 

warming levels. To assess the uncertainty of future climate projections, we simulated the 191 

pyrogeography using each climate model separately, and grid cells for which all models agreed on 192 

the simulated pyroregion were indicated with a dot. Additionally, we examined the probability of 193 

pyroregions occurrence to assess the degree to which each grid cell belongs to a specific 194 

pyroregion for each scenario. We then computed the difference in pyroregions probability between 195 

each warming scenario and the historical period. Finally, we averaged probabilities across 196 

longitudes and smoothed the signal using a polynomial filter to assess future changes across a 197 

north-south gradient.  198 

4 Results 199 

4.1 Modeling fire-regime components 200 

We built statistical models based on climate and environmental factors for five different fire-201 

regime components: burned area, number of fires, percentage of large fires, length of fire period, 202 

and fire intensity. These models reproduced to a large extent fire-regime components at the grid-203 

cell level (50-km at annual timescale) across the European continent (Table S1). When averaged 204 

temporally over the historical period (2001-2018), the spatial agreement between model outputs 205 

and observations ranged from an R2 of 0.40 to 0.79 depending on fire-regime components (Figure 206 

1A, Figure S1, and Table S1), partly because of the presence of the spatial effect. When averaged 207 

spatially across the continent, interannual correlations were however much lower (R2 ranged from 208 

0.22 to 0.43) (Table S1 and Figure S2). This lower temporal agreement between observations and 209 

simulations was expected due to the contrasted fire regimes within such a large domain and the 210 



 

stochasticity at play amongst fire seasons. This has however limited impact on our study given our 211 

objectives to reproduce the averaged fire-regime components over 20-year periods. 212 

 213 

Figure 1. Fire-regime components and partial effects of the statistical fire models. (a) Observed and 214 

predicted burned area, number of fires, percentage of large fires, length of fire period, and fire intensity 215 

averaged over the historical period (2001–2018). R-squared (R2) represents the spatial agreement with 216 

observations and significance level. Regions with more than 80% of non-burnable land cover are shaded in 217 

grey. Note the non-linear colorscales. Observed percentage of fires during the cool season is presented in 218 

Figure S3. (b) Response curves of the models showing the effects of FWI, wildlands cover (%), slope (%), 219 

urban cover (%), and wildland-human interfaces (%) on each fire-regime component. The shading shows 220 

the 95% confidence interval. Note that only predictor/predicated couples with significant responses are 221 

shown. For the spatial effect see Figure S4. 222 

FWI was the dominant driver of all fire-regime components on such spatio-temporal scales (Figure 223 

1b). For instance, burned area, fire intensity, length of fire period, and the number of fires were all 224 

positively correlated with annual FWI, in agreement with previous studies (Abatzoglou et al., 225 

2018; Bedia et al., 2015; Ruffault et al., 2020), but their responses seem to level off beyond a 226 

certain threshold, as already observed at finer temporal and spatial scales (e.g. Pimont et al., 2021). 227 

Overall, environmental factors, such as wildland cover and topographic slope, also exerted a 228 

positive effect on fire activity as documented in previous regional studies (Boulanger et al., 2018; 229 



 

Pimont et al., 2021). Conversely, burned area and length of fire period were found to decrease in 230 

regions where urban land cover exceeds 20% due to the fragmentation of the landscape decreasing 231 

fuel continuity and load (Laurent et al., 2019). Interestingly, fire intensity also decreases at 232 

wildland human interface exceeding 40%, and at steeper slopes. Note that the use of the spatial 233 

effect (grid coordinates) improved the accuracy of the statistical fire models since this implicitly 234 

accounted for interactions among the explanatory variables, which were not explicitly modeled 235 

here.  236 

4.2 Projecting future fire-regime components 237 

We simulated each fire-regime component under both 2 and 4 °C global warming periods (20-year 238 

window) using the multimodel mean of FWI computed from six paired GCM-RCMs projections 239 

while keeping the other predictors stationary (Figure 2). As expected, FWI was projected to 240 

increase in response to global warming, with the highest changes in the Mediterranean basin and 241 

rather limited increases in northern Europe (i.e. > 50º N) due to the future increase in summer 242 

precipitation in response to large-scale circulation changes (de Vries et al., 2022). The warm 243 

season may indeed become wetter across these latitudes thereby dampening the effect of rising 244 

temperatures on the FWI (Bedia et al., 2015; Carnicer et al., 2022; Krikken et al., 2021).  245 

 246 

Figure 2. Observed FWI and future changes under different global warming levels. (a) Mean annual FWI  247 

during the historical period (2001-2018) and (b) absolute changes in the annual FWI multimodel mean with 248 

respect to the historical period in response to a 2°C and 4°C global warming scenario. 249 

All fire-regime components clearly increased across southern Europe in a warmer world (Figure 250 

3). Regions such as the northwest of the Iberian Peninsula and the western Balkans presented 251 

substantial changes under the 2 °C global warming scenario. Larger increases in fire activity were 252 

foreseen under the 4 °C warming scenario, with a lengthening of the historical fire season by about 253 

3 months in northern Portugal and western Balkans. Other regions, such as northern Spain, western 254 

Pyrenees, and southern Italy, showed substantial changes as well in that scenario. Similar to (Turco 255 



 

et al., 2018), we found an increase in the burned area exceeding 50% across the northern Iberian 256 

Peninsula beyond a 2°C global warming level (Figure S5). Alongside the burned area, our analysis 257 

showed large increases in fire frequency, fire intensity, the length of fire season, and percentage 258 

of large fires. Yet, there was no notable increase in fire activity across central and northern Europe 259 

(i.e. > 50º N) due to the limited change in FWI.  260 

 261 

Figure 3. Changes in projected fire-regime components under different global warming levels. Absolute 262 

changes in projected fire-regime components in response to a 2°C and 4°C global warming scenario with 263 

respect to the historical period (2001-2018). 264 

Although changes in fire-regime components are mostly expected across southern Europe due to 265 

the large signal of change in the FWI, the spatial patterns of changes did not entirely match those 266 

of the FWI (see Figure 2 and 3) as the climate-fire relation is mediated, on finer scales, by other 267 

bottom-up drivers.   268 

4.3 Historical and future European pyrogeography 269 

We then delineated the European pyrogeography based on a clustering of the temporally averaged 270 

fire-regime components over both the historical and future periods. We identified five different 271 

pyroregions representative of fire regimes prevailing in Europe (Figure 4). A Cool-season fire 272 

pyroregion (hereafter CSF) is characterized by moderate fire activity and with a large percentage 273 

of very low-intensity fires occurring during the November–April period (Figure 4d). A Low fire-274 

prone pyroregion (hereafter Low-FP) is characterized by very low fire activity and dominated by 275 

low-intensity fires. A Fire-prone pyroregion (hereafter FP) is characterized by moderate fire 276 

activity with moderate fire intensity, and a high proportion of large fires. A Highly fire-prone 277 

pyroregion (hereafter High-FP) features a high fire occurrence with high fire intensity and a long 278 

fire period. Finally, an Extremely fire-prone pyroregion (hereafter Extremely-FP) displays the 279 

highest fire incidence, fire intensity, and the longest fire period, characterizing the most fire-280 

affected region in Europe. Note that FP, High-PF, and Extremely-FP presented a substantial 281 



 

percentage of cool-season fires (~10%), suggesting a bimodal fire season as seen in other regional 282 

analyses (Benali et al., 2017; Pimont et al., 2021). Conversely, in Low-FP, all fires occurred during 283 

the warm period.  284 

Over the historical period, the CSF was scattered across Europe, including parts of the Alps, 285 

Pyrenees, Scotland, Romania, and the Baltics (Figure 4a). The Low-FP was found mostly across 286 

northern and parts of central Europe. The FP was identified mostly across Spain, southern Portugal, 287 

southern France, Italy, and parts of the Balkans. The High-FP was found in the northwestern part 288 

of the Iberian Peninsula, Sicily, and parts of the Balkans. Finally, the Extremely-FP was located 289 

mostly in northern Portugal. This historical pyrogeography built from modeled fire-regime 290 

components presented a reasonable spatial agreement (i.e. 86% of all grid cells were correctly 291 

classified) when compared with the pyrogeography built from observed fire-regime components 292 

(see Figure S6). Additionally, this pyrogeography exhibited spatial patterns in line with those 293 

reported in previous regional studies in southern Europe (Calheiros et al., 2021; Fréjaville & Curt, 294 

2017; Moreno & Chuvieco, 2013; Rodrigues et al., 2020). 295 

In the 2°C global warming scenario, the spatial extent of High-FP and Extremely-FP expanded by 296 

71% and 43%, while Low-FP and FP decreased by ~ 2% and 6%, respectively (Figure 4b). More 297 

acute changes arose with a 4°C warming, with High-FP and Extremely-FP increasing up to 197% 298 

and 129% in extent, while Low-FP, FP, and CSF decreased by ~ 5%, 7%, and 21%, respectively 299 

(Figure 4c). In absolute terms, High-FP and Extremely-FP together increased by 116,410 km2 in 300 

a 2°C warming and 324,285 km2 in a 4°C warming. This represents an expansion of 1 to 3 times 301 

the size of Portugal. Overall, the main transitions occurred across southern Europe, with less fire-302 

prone pyroregions (Low-FP and CSF) switching to more fire-prone pyroregions (FP and High-FP) 303 



 

and fire-prone (FP) switching to higher fire-prone pyroregions (High-FP and Extremely-FP), 304 

indicating an intensification of fire activity in regions already at risk (see Figure S7).  305 

 306 

Figure 4. Historical and future pyrogeography under different global warming levels. Projected 307 

pyrogeography based on simulated fire-regime components for (a) the historical period (2001-2018), (b) 308 

the 2°C, and (c) 4°C global warming scenarios. Values in the top left represent the relative extent of each 309 

pyroregion and relative changes (in %) in pyroregion extents among the scenarios. Dots indicate grid cells 310 

where the pyrogeography agrees with all individual climate model projections. (d) Distribution of fire-311 

regime components (i.e. median and interquartile range) in each pyroregion. 312 

For a deeper understanding of future potential switches induced by climate change, we also 313 

examined, for each warming scenario, how the probabilities of grid cells to be classified in a given 314 

pyroregion may change (Figure 5). Unlike categorical changes (i.e. hard clustering) seen in Figure 315 

4, which were mostly clumped in specific regions of southern Europe, large changes in the 316 

probability of pyroregions occurrence emerged along the northern edge of historically fire-prone 317 

regions (i.e. 40-45º N). We found an increased probability of FP expanding towards the north, 318 

while High-FP may expand to the east and south. However, future increases in FWI were too 319 



 

limited to trigger categorical changes in more mesic forested zones such as central and northern 320 

Europe.  321 

 322 

Figure 5. Changes in probability to belong to each pyroregion under different global warming levels. (a) 323 

Absolute changes in pyroregions probability were computed for each warming scenario with respect to the 324 

historical period (2001-2018). The probability of occurrence (0-1) indicates the degree to which grid cells 325 

belong to each pyroregion and (b) Changes in the latitudinal average probability computed from weighted 326 

regression (smooth) across the latitudinal gradients for each warming scenario. 327 

Building upon previous studies projecting an increase in fire frequency and burned area across 328 

southern Europe due to global warming (Dupuy et al., 2020; Ruffault et al., 2020; Turco et al., 329 

2018), our study provided two important new insights. First, we considered a range of fire-regime 330 

components, going beyond the single burned area metric examined in most studies. By including 331 

fire frequency, intensity, size distribution, and seasonality we presented different spatial patterns 332 

of fire that have been shown to shape collectively the pyroregions (Bowman et al., 2020; Krebs et 333 

al., 2010). For instance, we found that fire regimes in the southern Iberian peninsula were 334 

dominated by large but less frequent fires than in northern Portugal which featured the highest fire 335 

activity in Europe. In mountainous and/or traditionally agricultural regions, such as the Pyrenees, 336 

parts of the Alps, and Scotland, burned area can be substantial but originates mostly from cool-337 

season fires due to human-related activities, which were not found to be related to climate 338 

conditions (Galizia et al., 2021a). Additionally, the magnitude of future changes was found to vary 339 

substantially across the fire-regime components (Figure S5). The highest changes were found in 340 

fire intensity and percentage of large fires, while changes in the number of fires were more limited. 341 

Second, we projected future changes in pyroregions in a spatially and temporally explicit approach 342 

at a pan-European level, relying on a statistical modeling framework able to reproduce historical 343 

patterns. Spatially and temporally explicit studies provide an optimal view of fire regimes being 344 



 

more relevant for fire management since they indicate where and when changes may occur 345 

(Boulanger et al., 2013; Rodrigues et al., 2020).  346 

Our findings highlighted the importance of climate as a primary control of fire regimes, as 347 

observed in previous studies examining burned area (Abatzoglou et al., 2018; Jones et al., 2022; 348 

Rogers et al., 2020), but also indicated that climate alone cannot explain all of the variation in fire 349 

regimes throughout Europe. Other factors, such as the location, land cover, urban cover and 350 

topography controlled to some extent fire regimes across space. Future changes projected in the 351 

European pyrogeography agreed with other studies indicating that most of the future increases are 352 

expected in the most fire-affected areas today (Carnicer et al., 2022; Jones et al., 2022; Riviere et 353 

al., 2022). Additionally, our findings indicated that regions with a great extent of fuel available to 354 

burn in the transition zones (40-45° N) were more likely to shift towards a more fire prone regime 355 

in a warmer and drier climate.  356 

This work extends previous regional or national studies that had delineated historical fire regimes 357 

across parts of Europe (Fréjaville & Curt, 2017; Resco de Dios et al., 2022; Rodrigues et al., 2021) 358 

and shows how global warming might alter fire regimes in Europe, providing valuable insights 359 

into the implementation of relevant policies on a continental scale. We reported on a strong 360 

intensification and expansion of the most fire prone regions (High-FP and Extremely-FP) across 361 

southern Europe in a warmer world. This shed light on potential concerns raised by firefighting 362 

and fire management services, which were devised based on historical records or experiences. An 363 

increase in the area burned, fire intensity, and lengthening of fire period up to 3 months in parts of 364 

the Balkans, northern Iberian Peninsula, Italy, and western France may overwhelm national fire 365 

suppression capacities. Observations alone may become insufficient to cope with fire in a warmer 366 

climate in some regions of Europe (Taylor, 2020). In this sense, the pyrogeography developed here 367 

may help in prioritizing fire management and develop consistent risk mitigation strategies across 368 

pyroregions. Pyroregions combined with fire danger forecasts can be seen as broad management 369 

units to mitigate the negative effects of fire in the short term. Additionally, it may also facilitate 370 

country-to-country cooperation for fire management and suppression (Bloem et al., 2022) when 371 

pyroregions span geopolitical borders, fostering and strengthening partnerships among fire-372 

affected regions within the European Union Civil Protection Mechanism. Finally, combining the 373 

pyrogeography with exposure and vulnerability maps would be the first step into a fire risk 374 

assessment on a pan-European scale. 375 

The classification of fire-regime components into pyroregions is widely thought to capture the 376 

spatial heterogeneity of fire regimes providing a level of generalization that aids in understanding 377 

the fire patterns (Boulanger et al., 2013; Bowman et al., 2020). This implies using a coarse 378 

spatiotemporal resolution in order to identify persistent fire patterns (i.e. historical range of 379 

variability). However, fires are often characterized by many low-intensity events and a few high-380 

intensity events responsible for most of the societal and ecological impacts (Le Breton et al., 2022). 381 

The latter is obviously masked in such coarse resolution analysis (Krebs et al., 2010). Our approach 382 

is thus likely to underestimate the occurrence of individual extreme fire events generally associated 383 

with specific meteorological conditions (Ruffault et al., 2020). Flash droughts and/or critical 384 

synoptic-scale fire weather conditions facilitate the occurrence of extreme fire on sub-annual 385 

timescales, features that are not evident in annual resolution (Barbero et al., 2019; Pimont et al., 386 

2021). Additionally, climate projections are known to underestimate the observed trends in fire 387 

weather conditions across Europe (Jones et al., 2022). In this sense, our study should be viewed as 388 



 

a conservative estimate of the effect of climate change on fire regimes. We note that the 389 

methodology developed here has some other limitations. First, we assumed that the percentage of 390 

cool-season fires will remain unchanged in the future. In Europe, cool-season fires are mostly 391 

related to anthropogenic activities, however, no correlation was found between those fires and 392 

anthropogenic variables over the historical period, hampering reliable projections. Second, we 393 

considered the environmental and human-related variables as stationary in our future simulations. 394 

Indeed, a warming climate may temper increases in fire activity by decreasing fuel availability in 395 

dry regions through aridification (Mauri et al., 2022; Pausas & Paula, 2012). Conversely, this may 396 

boost fire activity in other regions through transitions from forested systems to more flammable 397 

vegetation types (i.e. shrublands), or through increasing dead fuel from drought-induced forest 398 

diebacks (Liang et al., 2017; Masrur et al., 2022). Additionally, an increase in fuel accumulation 399 

due to systematic fire suppression (Moreira et al., 2020; Parisien et al., 2020) could exacerbate the 400 

signal of climate change on fire activity, particularly high-intensity fires. To overcome these 401 

limitations, studies that explicitly account for interactions among fire, climate, vegetation, and 402 

anthropogenic factors have been implemented using dynamic global vegetation models (Hantson 403 

et al., 2016). Yet, such models often struggle to represent interannual variations in fire activity and 404 

observed trends (Forkel et al., 2019; Jones et al., 2022). Finally, previous research has shown that 405 

new fire suppression policies may be able to reshape the functional climate-fire relationship (e.g. 406 

Ruffault & Mouillot, 2015). In this sense, continued efforts are still needed to better understand 407 

the roles played by top-down climate and bottom-up environmental and anthropogenic factors in 408 

shaping current and future fire regimes across Europe.  409 

5 Conclusions 410 

This work is the first to project future changes in fire regimes on a pan-European scale. The 411 

developed pyrogeography synthesized the complexity of fire patterns enabling a better 412 

understanding of the pan-European fire regimes. This is crucial in the context of global change 413 

since it provides a baseline to investigate temporal and spatial changes in fire regimes under 414 

different warming scenarios. Additionally, by examining future changes under policy-relevant 415 

warming levels of 2°C and 4°C, we provided insights into how the success or failure of climate 416 

policies would translate to fire hazards in Europe. 417 

In summary, we found a substantial increase in all fire-regime components across southern Europe 418 

in a future warmer climate, indicating a strong amplification of fire in regions already at risk. We 419 

showed that under global warming, pyroregions are likely to shift towards more fire prone regimes 420 

across parts of southern Europe, potentially triggering a wide range of ecological and socio-421 

economic issues. Additionally, regions on the northern edge of historically fire-prone areas (i.e. 422 

40-45º N) were found to be the most sensitive to a warming climate. 423 

These projected changes have direct implications for both short-term risk management, long-term 424 

risk mitigation implemented by the European Union Civil Protection mechanisms, as well as 425 

climate adaptation across these regions. This notably includes increased community preparedness, 426 

optimized resource allocation (personnel and equipment), resource sharing, and enhanced fuel 427 

management. Policies based on a specified fire-regime target should help develop better fire 428 



 

prevention and suppression strategies supporting fire managers to minimize the negative impacts 429 

of fire.  430 
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