
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
23
43
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Subseasonal Great Plains Rainfall via Remote Extratropical

Teleconnections: Regional Application of Theory-guided Causal

Networks

Kelsey Malloy1 and Ben P. Kirtman2

1Department of Applied Physics and Applied Mathematics, Columbia University
2University of Miami

November 23, 2022

Abstract

Long-range U.S. summer rainfall prediction skill is low. Monsoon variability, especially over the West North Pacific Monsoon

(WNPM) and/or East Asian Monsoon (EAM) region, can influence U.S. Great Plains hydroclimate variability via a forced

Rossby wave response. Here we explored subseasonal monsoon variability as a source of predictability for Great Plains rainfall.

The boreal summer intraseasonal oscillation is related to Great Plains convection and Great Plains low-level jet (LLJ) anomalies

as well as a cross-Pacific wave train. Using a causal effect network, we found that the time between BSISO-related geopotential

height anomalies and Great Plains rainfall anomalies is about 2 weeks; therefore, BSISO convection may be a valuable forecast

of opportunity for subseasonal prediction of Great Plains convection anomalies. More specifically, causal link patterns/maps

revealed that the above-normal weekly EAM rainfall, rather than WNPM rainfall or general geopotential height activity over

the East Asia, was causally linked to Great Plains LLJ strengthening and active Great Plains convection the following week.
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Key Points:7

• Subseasonal monsoon variability via the boreal summer intraseasonal oscillation8

is linked to rainfall signals over U.S. Great Plains and its associated dynamical9

drivers.10

• An algorithm that specializes in identifying cause-and-effect relationships verified11

a pathway from regional monsoon rainfall to Great Plains rainfall, which takes ap-12

proximately 2 weeks.13

• Weekly rainfall over the East Asian monsoon region is causally linked to the trig-14

gering of a Rossby wave pattern, Great Plains low-level jet strengthening, and ac-15

tive Great Plains convection about one week later.16
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Abstract17

Long-range U.S. summer rainfall prediction skill is low. Monsoon variability, especially18

over the West North Pacific Monsoon (WNPM) and/or East Asian Monsoon (EAM) re-19

gion, can influence U.S. Great Plains hydroclimate variability via a forced Rossby wave20

response. Here we explored subseasonal monsoon variability as a source of predictabil-21

ity for Great Plains rainfall. The boreal summer intraseasonal oscillation is related to22

Great Plains convection and Great Plains low-level jet (LLJ) anomalies as well as a cross-23

Pacific wave train. Using a causal effect network, we found that the time between BSISO-24

related geopotential height anomalies and Great Plains rainfall anomalies is about 2 weeks;25

therefore, BSISO convection may be a valuable forecast of opportunity for subseasonal26

prediction of Great Plains convection anomalies. More specifically, causal link patterns/maps27

revealed that the above-normal weekly EAM rainfall, rather than WNPM rainfall or gen-28

eral geopotential height activity over the East Asia, was causally linked to Great Plains29

LLJ strengthening and active Great Plains convection the following week.30

1 Introduction31

Understanding summertime continental U.S. (CONUS) hydroclimate predictabil-32

ity on the subseasonal-to-seasonal (S2S) timescale has been challenging, and relation-33

ships between tropical remote forcing and mid-latitude circulation are difficult to assess34

due to the overall weak signals of the summer season (Trenberth et al., 1998; S. Zhou35

et al., 2012). Many studies suggest that Asian summer monsoon (ASM) variability on36

the seasonal-to-interannual timescale, especially over the West North Pacific (WNPM)37

and/or East Asian Monsoon (EAM) region, can influence CONUS hydroclimate via a38

quasi-stationary Rossby wave response (Di Capua, Runge, et al., 2020; Lopez et al., 2019;39

Kornhuber et al., 2019; Malloy & Kirtman, 2022a, 2022b, manuscript submitted; Yang40

et al., 2020; Zhu & Li, 2016, 2018). The Great Plains low-level jet (LLJ) is the promi-41

nent transporter of moisture into that region, and large-scale LLJ anomalies are typi-42

cally associated with rainfall events (Arritt et al., 1997; Higgins et al., 1997; Cook et al.,43

2008; Weaver & Nigam, 2008; Weaver et al., 2009; Nayak & Villarini, 2017; Algarra et44

al., 2019; Malloy & Kirtman, 2020). The upper-level pattern associated with the monsoon-45

forced Rossby wave response can often align (constructively interfere) with the Great Plains46

LLJ to amplify Great Plains rainfall signals (Malloy & Kirtman, 2022b, manuscript sub-47

mitted).48

The ASM also exhibits subseasonal variability, typically called the boreal summer49

intraseasonal oscillation (BSISO), and it is the dominating mode of tropical convection50

over ASM region and western Pacific (Yasunari, 1979, 1980; S. S. Lee & Wang, 2016).51

Moon et al. (2013) and Krishnamurthy et al. (2021) identified the monsoon intraseasonal52

oscillation as a source of subseasonal predictability over CONUS in the summer in ob-53

servations and/or climate forecast models. Few studies have explored the dynamical path-54

way between BSISO-related anomalies and Great Plains rainfall anomalies, such as un-55

derstanding the timescale of Rossby wave initiation and propagation to influence North56

American features, such as the Great Plains LLJ.57

In many of these studies, climate models were used to quantify the monsoon re-58

sponses, usually by prescribed heating, and were compared to observations (Lopez et al.,59

2019; Malloy & Kirtman, 2022a, 2022b, manuscript submitted; Yang et al., 2020). In this60

case, causality is implied (amongst natural variability or chaos). For example, the EAM61

heating causes the elongated anomalous ridge over the North Pacific, anomalous trough62

over western North America, and anomalous ridge over eastern North America from the63

set of experiments in Malloy and Kirtman (2022a). However, there are also ways to quan-64

tify causal links via data-driven methods i.e. using observations alone. Causal discov-65

ery methods, such as causal effect networks (CENs), are becoming popular as a way to66

map physical links in the climate system within an inputted time series of data (Runge67
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et al., 2014; Runge, 2018; Runge et al., 2019; Runge, 2020; Kretschmer et al., 2016). Us-68

ing CENs, Di Capua, Kretschmer, et al. (2020) found that there was a link between the69

North Atlantic Oscillation (NAO), circumglobal teleconnection (CGT), and ASM vari-70

ability, as well as between the BSISO and ASM variability. Di Capua, Runge, et al. (2020)71

suggested that the WNPM may force the North Pacific circulation that subsequently in-72

fluences temperature and rainfall anomalies over North America.73

CENs effectively determine causal links while removing the effects from autocor-74

relation, indirect (spurious) links, or common drivers, which maintaining a high detec-75

tion power over other techniques, such as Granger causality model (Runge, 2018; Runge76

et al., 2019; Runge, 2020). There are many assumptions in using CENs, including that77

causality can only be determined among the given drivers. Adding or removing drivers78

can change the conditional (in)dependence and hence change the linkages. Therefore,79

knowledge of the physical system beforehand, including relevant variables and timescales,80

is essential for interpreting the output of the algorithm.81

The objective of this study is to apply CENs to the identify the remote drivers of82

the Great Plains LLJ and rainfall anomalies on the subseasonal timescale. This extends83

upon the methodology from Di Capua, Kretschmer, et al. (2020) and Di Capua, Runge,84

et al. (2020) by applying it to understand more regional-scale mechanisms. We also suc-85

cessfully isolate the impacts from interrelated drivers in the CEN, shedding light on the86

source of U.S. Great Plains hydroclimate predictability.87

2 Data and Methods88

2.1 Observational Datasets89

This study focuses on the extended summer season (May through September), though90

April was considered for the lead-lag correlation analysis and CEN. Pressure-level merid-91

ional wind, zonal wind, geopotential height were taken from the European Centre for Medium-92

Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERA5). ERA5 atmo-93

spheric data is provided hourly on a 0.25° latitude/longitude grid (Hersbach et al., 2020),94

and it is recalculated to daily averages. U.S. precipitation data were taken from the CPC95

Global Unified Gauge-based Analysis, provided on a 0.5° latitude/longitude grid over land96

(Chen et al., 2008; Xie et al., 2007). Outgoing Longwave Radiation (OLR) data, used97

as a proxy for convection, were taken from the interpolated daily OLR version 1.2 from98

National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR),99

accessed from https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso100

?id=gov.noaa.ncdc:C00875.101

Because this study is focused on intraseasonal variability, for every variable, we re-102

moved the centered 120-day moving mean at every grid point in addition to removing103

the annual cycle. Then we took the centered 10-day running mean of the variables to104

focus on large-scale, low-frequency features. For the CEN analysis, we used the filtered105

data and resampled the data as weekly averages; using weekly data is a practical approach106

for subseasonal predictability analysis in order to filter short-term temporal fluctuations107

(Di Capua, Kretschmer, et al., 2020; Krishnamurthy et al., 2021).108

2.2 Potential Drivers109

The Great Plains precipitation index is defined by averaged precipitation anoma-110

lies within the 35-50°N, 85-105°W domain, and the Great Plains LLJ index is defined111

by the averaged V850 anomalies within the 25-35°N, 90-102°W domain. These domains112

are slightly larger than in previous literature (Weaver & Nigam, 2008; Malloy & Kirt-113

man, 2020) to account for shifts eastward, which may be more important for EAM-forced114

Great Plains LLJ variability that is coupled to the upper levels (Malloy & Kirtman, 2022b,115
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Table 1. Potential Drivers to Great Plains Rainfalla

Name Identifier Index Calculation

Great Plains precipitation GP rainfall Precipitation*[35-50°N, 85-105°W]

Great Plains Low-level Jet GPLLJ V850*[25-35°N, 90-102°W]

Pacific-North America High-
Low dipole

PNA-HL (Z200*[35-60°N, 135-165°W] -
Z200*[35-60°N, 100-130°W])

North Pacific Low NPac-L Z200*[35-60°N, 160°E-170°W]

East Asian Monsoon Low EAM-L Z200*[25-50°N, 90-130°E]

East Asian Monsoon precipi-
tation

EAM rainfall Precipitation*[20-30°N, 100-125°E]

West North Pacific Monsoon
precipitation

WNPM
rainfall

Precipitation*[0-20°N, 90-120°E]

aThe Great Plains precipitation index (italicized) included here as predictand.
Index is calculated by taking the domain-averaged anomalies of the variable.

manuscript submitted). In addition, we defined various other indices to input into the116

CEN as potential drivers based on the lagged correlation analysis. All inputs, or poten-117

tial drivers, to the Great Plains LLJ and Great Plains rainfall are outlined in Table 1118

and can be visualized in Figure 3 boxes.119

2.3 Causal Effect Networks120

The CEN is constructed by first applying the Peter and Clark Momentary Con-121

ditional Independence (PC-MCI) algorithm (Spirtes et al., 2000; Runge et al., 2014, 2019).122

This is a two-step procedure: (1) the PC step finds the relevant drivers, or “parents”,123

of each variable via an iterative independence testing, and (2) the MCI step removes spu-124

rious or common parents by conditioning the partial correlations between parents and125

variables on the parents of the parents.126

Start with a set X of n variables that are timeseries of anomalies. The PC algo-127

rithm first calculates the correlation between the ith variable in X and the rest of the128

variables in X at time lag τ . The significant correlations with the ith variable form a129

set of potential parents X0
i at time lag τ . Then, it calculates the partial correlation be-130

tween the ith variable and each potential parent in X0
i , but with a condition that the131

first variable in X0
i that has the strongest correlation with the ith variable. If a, b, and132

c are variables in X, the partial correlation between a and b conditioned on c is calcu-133

lated by performing a linear regression of a on b and b on c, then correlating the resid-134

uals. Variables a and b are conditionally dependent given c, i.e. their correlation can-135

not be explained by the influence of c (not spurious link) if the resulting partial corre-136

lation is significant at threshold α. This may reduce the set of parents for the next it-137

eration X1
i . The process is repeated for this set of parents but with now two conditions,138

leading to a next (possibly reduced) set of parents X2
i . When the number of parents is139

equal to or greater than the number of conditions needed to calculate partial correlation,140

the algorithm converges.141

The MCI step calculates the partial correlation between each variable and its par-142

ents at different time lags conditioned on both the set of parents and the parents of the143

parents, essentially removing common driver effects and reducing to a final set of causal144

parents.145
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The CEN calculates these causal relationships by performing a standardized mul-146

tiple regression of each variable with its parents. The final link is represented as the change147

in standard deviation (σ) of variable at time t if the parent was raised to 1σ at time t-148

τ . More detail of this algorithm and its comparison to other causality methods can be149

found in Runge et al. (2019); the PC-MCI algorithm is freely available at https://github150

.com/jakobrunge/tigramite.151

There are many assumptions to using the CEN, including that causal links are de-152

termined relative to the chosen set of variables. Removing or adding variables may change153

the CEN, and therefore, it is important for the user to understand the physical system.154

Other assumptions include stationarity of relationships and near-linear interactions.155

In this study, the CEN visualizes the causal links with a time lag of one week. Con-156

temporaneous links are also visualized with no causality direction inferred. The winter157

season is masked, which means that timescales of variables are restricted to MJJAS sea-158

son, but the parent (and conditional) timeseries may include April. We set α = 0.05, which159

is the significance threshold as explained above, and τmax = 3 weeks, which is maximum160

time delay, though we find that the results are not sensitive to the choice of τmax between161

2 and 5.162

2.4 Causal Maps163

Finally, we experiment with causal maps, which plots the link coefficient from the164

CEN spatially (Di Capua, Runge, et al., 2020). Two one-dimensional timeseries are cho-165

sen that have a theoretical relationship with a three-dimensional field. The CEN deter-166

mines the causal link between one of the one-dimensional timeseries and a timeseries of167

a gridpoint from the three-dimensional field, conditioned on the other one-dimensional168

timeseries. To distinguish between the WNPM- and EAM-forced patterns, as well as the169

EAM- and EAM-L-forced patterns, we use the weekly WNPM, EAM, and EAM-L time-170

series, and the three-dimensional fields of interest are weekly Z200, V850, and OLR. Time171

lags of 1 and 2 weeks are explored, but, because the 2-week lagged patterns lack statis-172

tical significance over CONUS, only the 1-week lagged patterns are presented here.173

3 Results174

3.1 Link Between BSISO and Great Plains Rainfall175

Before constructing the CEN, we first establish the potential influence of subsea-176

sonal monsoon variability on CONUS hydroclimate. Composites of OLR and U200 anoma-177

lies for the combined BSISO phases (phases 8+1, 2+3, 4+5, and 6+7) are depicted in178

Figure 1, highlighting the northeastward propagation of the regions of active and inac-179

tive convection as well as its influence on jet stream anomalies over the North Pacific.180

In particular, phases 2+3 are associated with active convection (negative OLR) over the181

equatorial Indian Ocean and weak wet anomalies over the EAM region, which corresponds182

with strengthening or northward displacement of the jet stream over East Asia at 55°N183

(Figure 1b). During phases 4+5, active convection over East Asia strengthens slightly184

and the positive U200 anomalies are extended over the North Pacific (Figure 1c). Com-185

posites of phases 6+7 and 8+1 present opposite patterns to 2+3 and 4+5, respectively.186

The location of above-normal convection in the ASM region, indicated by BSISO187

phase, is related to the anomalous probability of Great Plains rainfall events, Great Plains188

LLJ events, and height patterns over the northeastern Pacific-western North America189

regions (Figure 2). For example, there is a increased (decreased) probability of a below-190

normal (above-normal) rainfall event ∼3 weeks after BSISO phase 3 (Figure 2a,b). The191

anomalous probabilities for the rainfall events coincide with the expected anomalous prob-192

abilities for the Great Plains LLJ and PNA events (Figure 2b-f). For example, days with193
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increased probability for the below-normal rainfall event are generally days with an in-194

creased probability for strong Great Plains LLJ event and PNA+ pattern. This is also195

true for the above-normal Great Plains rainfall events. Overall, there is an inferred prop-196

agation of the signal from the BSISO on these timescales, as seen by the diagonal stripes197

of increased or decreased anomalous probability.198

This is further analyzed by investigating the lagged spatial correlation between Great199

Plains rainfall at T = 0 and the OLR, V850, and Z200 anomaly fields at 0, 10, and 20200

days before. The correlation between the Great Plains precipitation index and OLR anoma-201

lies at T = 0 demonstrates the active convection, and hence the precipitation, over the202

northern Plains (Figure 3a). This corresponds with the strong anomalous southerly flow203

over the region (Figure 3d) and anomalous low pressure over western North America (Fig-204

ure 3g). Over the monsoon region and North Pacific, there is a negative correlation with205

OLR anomalies at 30°N between 90°E and 150°E (Figure 3a, magenta domain) in ad-206

dition to a positive correlation with EAM-related southerly flow (Figure 3e, black con-207

tour outline). A wave train is correlated with the Great Plains precipitation, including208

our PNA-HL pattern and NPac-L feature (Figure 3g, orange boxes). The PNA-HL pat-209

tern has been identified before as an important precursor for Plains rainfall events (Rogers210

& Coleman, 2003; Harding & Snyder, 2015; Patricola et al., 2015; Mallakpour & Villar-211

ini, 2016; Nayak & Villarini, 2017; Malloy & Kirtman, 2020).212

The correlation between the Great Plains precipitation index and these field anoma-213

lies at T = -10 (10 days before) reveals that some of the variability of Great Plains rain-214

fall can be due to this cross-Pacific wave train that can be forced/modulated by EAM215

rainfall (Figure 3b,e,h). The correlation with negative OLR and positive V850 anoma-216

lies over the EAM region is -0.1 to -0.2, and the wave train pattern is present, includ-217

ing a ∼0.2 correlation with the EAM-L and NPac-L features (Figure 3h, left and right218

orange domains, respectively). There is also a correlation with positive OLR over the219

WNPM region 10 days before Great Plains precipitation events, showing an OLR pat-220

tern similar to that of combined phases 8+1 of the BSISO (cf. Figure 1a). In general,221

the correlations at T = -20 are somewhat opposite to T = 0 and T = -10, respectively.222

These results suggest that the BSISO influences Great Plains rainfall on subsea-223

sonal timescales via a cross-Pacific Rossby wave train. We are motivated to test these224

linkages with a causal discovery algorithm and to confirm if the pathway from EAM rain-225

fall to Great Plains rainfall exists and is considered causal. This method will also ap-226

proximate the timeframe on which the BSISO-related rainfall anomalies lead to Great227

Plains anomalies (e.g. within ∼2 weeks, cf. Figure 3).228

3.2 Causal Effect Network for Great Plains Rainfall229

Because of the relatively large number of potential drivers, we simplify the discus-230

sion of the causal network by separating it into three spatial domains: over East Asia231

and western North Pacific, over the mid-latitude North Pacific, and over central-eastern232

North Pacific and North America. First, we test for a causal pathway between the WNPM233

rainfall, EAM rainfall, EAM-L feature, and NPac-L feature (Figure 4). There is a con-234

temporaneous negative link between weekly-averaged WNPM rainfall and EAM rain-235

fall, and a positive contemporaneous link between weekly-averaged EAM rainfall and the236

EAM-L feature. A strengthening of the weekly-averaged EAM-L by 1σ leads to a 0.38σ237

strengthening in the NPac-L feature the following week. The EAM-L and NPac-L fea-238

tures also have a contemporaneous link. This CEN indicates that the excitation of the239

Rossby wave activity over the North Pacific often depends on the presence of the EAM-240

L feature.241

Next we consider the pathway between the different geopotential height features242

over the North Pacific (Figure 5). A strengthening of the NPac-L by 1σ leads to a 0.1σ243

strengthening in the PNA-HL pattern the following week, suggesting that the full cross-244

–6–



manuscript submitted to JGR: Atmospheres

Pacific Rossby wave train pathway may take up to 2 weeks. The contemporaneous links245

between these features demonstrate persistence which makes these relationships com-246

plex. For example, the contemporaneous negative link between the EAM-L and PNA-247

HL is also found in Figure 3i: by the time the Rossby wave reaches North America, the248

geopotential heights over EAM region are reversed.249

Finally, the pathway between NPac-L and the Great Plains LLJ and Great Plains250

rainfall are visualized in the CEN (Figure 6). A strengthening of the PNA-HL by 1σ leads251

to a 0.16σ increase in the Great Plains rainfall and 0.09σ strengthening of the Great Plains252

LLJ the following week. However, a strengthening of the NPac-L by 1σ leads to a 0.2σ253

increase in the Great Plains rainfall and 0.14σ strengthening of the Great Plains LLJ254

the following week, which are greater causal links. Considering the contemporaneous link255

between PNA-HL and Great Plains rainfall and the PNA-HL and Great Plains LLJ are256

strongly positive, it is likely that the PNA-HL influence on these indices operates on sub-257

weekly timescales. However, this demonstrates that the NPac-L may assist in longer-lead258

prediction of the Great Plains LLJ and rainfall.259

The CEN captured the intricacies of the relationships between these indices and260

their influence on the Great Plains LLJ and Great Plains rainfall. In addition, it demon-261

strated that the rainfall over the BSISO region is linked to a EAM-L feature that can262

generate a wave train response over the North Pacific that influences rainfall anomalies263

over the Great Plains. This can occur on a ∼2-week timescale, potentially advantageous264

for understanding prediction on the subseasonal timescale.265

Because of the contemporaneous relationship between the WNPM rainfall, EAM266

rainfall, and the EAM-L, it is difficult to assess the true causality between these features267

and downstream impacts. This motivates the use of causal maps to separate the pat-268

terns between WNPM and EAM rainfall as well as between EAM rainfall and EAM-L.269

3.3 Causal Maps270

By comparing the causal maps for Z200, V850, and OLR (Figures 7-9) with the271

lag correlation patterns from Figure 3, it is evident that EAM rainfall variability con-272

tributes to Great Plains rainfall variability on weekly timescales. First, we consider the273

causal linkages between the WNPM rainfall, EAM rainfall, and EAM-L feature at T =274

-1 (one week before) and the Z200 field at T = 0. After removing the signal from EAM275

rainfall, WNPM rainfall affects the Z200 field mostly in the tropics and subtropics, with276

a 1σ increase in WNPM rainfall causally linked to ∼0.2σ anomalous ridging across the277

central-eastern tropical Pacific (Figure 7a). After removing the signal from the WNPM,278

EAM rainfall affects the mid-latitude Z200 field, with a 1σ increase in EAM rainfall causally279

linked to a ∼0.15-0.2σ anomalous troughing over the WNPM region and North Pacific280

as well as ∼0.15σ anomalous ridging at higher latitudes in East Asia (Figure 7b). This281

pattern is similar to the EAM rainfall causal map with the EAM-L signal removed (Fig-282

ure 7c), but the removal of the EAM-L feature reduces the magnitude of the links. Fi-283

nally, after removing the signal from EAM rainfall, the EAM-L impact on the Z200 field284

is prominent, with a 1σ strengthening of the EAM-L causally linked to ∼0.2 anomalous285

ridging over high-latitude East Asia and 0.3-0.4σ anomalous troughing over the mid-latitude286

Pacific - including the NPac-L feature - and the Pacific Northwest (Figure 7d). The map287

of causal links between the EAM rainfall and the Z200 field help explain the Z200 pat-288

terns at T = 0, and perhaps T = -10, from the lag correlations (cf. Fig 3g,h) over the289

EAM region and North Pacific. The wave train over North America is not explained causally290

by the WNPM, EAM or EAM-L, suggesting that maybe this wave train is forced locally,291

perhaps by feedbacks from Great Plains rainfall. Nevertheless, EAM rainfall can gen-292

erate the upstream Rossby wave activity that affects this region.293

Next, we consider causal linkages with the V850 field. WNPM impacts to V850 are294

most evident in the WNPM and EAM regions as well as the central tropical Pacific (Fig-295
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ure 8a). After removing either the WNPM or EAM-L signal, the causal linkages between296

EAM rainfall and V850 field are relevant to North America, with a 1σ increase in EAM297

rainfall leading to a ∼0.15σ strengthening of the Great Plains LLJ (Figure 8b,c). EAM298

rainfall also impacts flow over the high-latitude Bering Sea/Alaska region. The causal299

linkages between the EAM-L and V850 field are prevalent over the EAM region and North300

Pacific. In particular, a 1σ strengthening in the EAM-L is causally linked to a 0.1-0.2σ301

strengthening of the low-level EAM flow. Once again, the EAM rainfall causal links ex-302

plain more of the lag correlation patterns over North America (cf. Figure 3d,e), though303

the EAM-L is likely playing a role in amplifying the EAM or its signals.304

The causal maps for the OLR field further demonstrate the influence of EAM rain-305

fall. While WNPM rainfall impacts to OLR are mostly constrained to the subtropics and306

tropics (Figure 9a), the EAM rainfall links to OLR are most evident over the North Pa-307

cific and North America (Figure 9b). A 1σ increase in EAM rainfall is causally linked308

to a 0.1-0.2σ decrease in OLR (active convection) over the Great Plains. Patterns and309

link magnitudes are similar for the EAM rainfall impacts with the EAM-L signal removed310

(Figure 9c). Interestingly, the EAM-L is causally linked to OLR over the EAM region311

and Pacific Northwest (Figure 9d). A 1σ strengthening of the EAM-L may lead to a 0.1-312

0.2σ increase in EAM rainfall in addition to 0.1-0.2σ increase in Pacific Northwest rain-313

fall. These OLR patterns agree with the Z200 patterns from the EAM-L forcing (cf. Fig314

7d), i.e. active convection is expected in these regions with that upper-level geopoten-315

tial height pattern. The map of causal links from the EAM rainfall is helpful to explain316

the OLR patterns over the Great Plains region from the T = 0 lag correlations (cf. Fig317

3a), whereas the map of causal links from the EAM-L feature is helpful for describing318

the OLR patterns over North Pacific and Pacific Northwest at T = -10 days (cf. Fig 3b).319

In brief, EAM rainfall and EAM-L feature contribute to Z200 and OLR patterns320

over the mid-latitude Pacific and/or North America with a one week lag. However, EAM321

rainfall is more directly linked to Great Plains rainfall variability on this timescale, while322

EAM-L may modulate or amplify EAM-forced activity (or vice versa). Strong upper-323

level circulation anomalies over North America from Figure 3i were not explained by the324

monsoons nor the EAM-L feature, suggesting that localized feedbacks by the Great Plains325

rainfall itself might be forcing or amplifying that pattern.326

3.4 Rossby Wave Source Anomalies327

To further interpret the causal maps and contextualize these results with respect328

to potential dynamical mechanisms, we consider the composited 200-hPa Rossby wave329

source (RWS) anomalies during upper tercile WNPM or EAM days, which we calculated330

using the filtered daily data. The RWS term describes vorticity advection by the diver-331

gent wind and vortex stretching by the divergent wind (Sardeshmukh & Hoskins, 1988).332

RWS anomalies provide information about the production and origin of teleconnection333

wave patterns, which has been useful for explaining summertime circulation variability334

(Fuentes-Franco et al., 2022; Lopez et al., 2019; O’Reilly et al., 2018). We hypothesize335

that the magnitude and/or location of the diabatic heating from EAM generates a RWS336

with greater magnitude than from the WNPM heating, explaining the greater mid-latitude337

response and resulting teleconnection from EAM rainfall (cf. Figs. 7-9).338

Strong WNPM days are associated with weak Rossby wave forcing over the West339

North Pacific region (Figure 10a). In contrast, for EAM days, there is a relatively strong340

negative 200-hPa RWS anomaly (shaded) collocated with EAM-related divergence (gray341

contours; Figure 10b). U200 anomalies suggest jet stream perturbations due to the di-342

vergence being close to the East Asian jet. The Z200 response from the lagged correla-343

tion analysis (cf. Fig. 3g) and causal maps (cf. Fig. 7b,c) can be explained by this tele-344

connection excitation from EAM-related divergence, likely due to release of diabatic heat-345

ing.346
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4 Summary and Discussion347

Here we explored the subseasonal predictability of Great Plains rainfall with a theory-348

guided application of CENs. Using a traditional lead-lag analysis approach, we found349

that the BSISO is related to Great Plains rainfall, the Great Plains LLJ, and PNA-HL350

pattern via a cross-Pacific wave train. The time between EAM-L anomalies potentially351

influencing Great Plains rainfall anomalies is ∼2 weeks; therefore, BSISO forcing or mod-352

ulation of the EAM-L may be valuable forecast of opportunity for subseasonal predic-353

tion of Great Plains rainfall. Causal link patterns and associated RWS anomalies from354

the EAM rainfall revealed that the EAM is causally linked to excitation of Rossby wave355

patterns, leading to downstream Great Plains LLJ and rainfall anomalies. Anomalous356

geopotential height activity over EAM region (e.g. EAM-L pattern) may have a role in357

modulating the EAM-related patterns.358

We applied similar techniques to Di Capua, Kretschmer, et al. (2020) and Di Ca-359

pua, Runge, et al. (2020) to understand subseasonal North American hydroclimate vari-360

ability, and we focus on the EAM as a regionally significant branch of the ASM based361

on results from Malloy and Kirtman (2022a) and Malloy and Kirtman (2022b, manuscript362

submitted). The subseasonal patterns related to WNPM and EAM convection in Fig-363

ure 3 are different from the seasonal EAM-forced patterns from Malloy and Kirtman (2022a)364

and Malloy and Kirtman (2022b, manuscript submitted), demonstrating the importance365

of timescale for quantifying impacts (Yang et al., 2020). In addition, the definition/index366

and spatial scale of the drivers may affect interpretation of results; for instance, the WNPM367

in Di Capua, Runge, et al. (2020) was defined by maximum covariance analysis between368

tropical OLR and mid-latitude upper-level heights, highlighting their different approach369

in defining this region of active convection and its remote impacts. Nevertheless, our causal370

map results generally agree with the patterns from their study.371

There are limitations to using the CEN, such as the causal links are only determined372

based on the set of drivers here. Adding other known influences of Great Plains rain-373

fall, such as the NASH (W. Li et al., 2011; L. Li et al., 2012; Wei et al., 2019; Nieto Fer-374

reira & Rickenbach, 2020; Malloy & Kirtman, 2022b, manuscript submitted), may change375

the CEN. In addition, despite the ease of using weekly-averaged indices for the CEN, there376

are drawbacks. Linkages considered contemporaneous on this weekly timescale may ac-377

tually be causal on a sub-weekly timescale. For instance, the contemporaneous link be-378

tween EAM rainfall and EAM-L (Figure 4) and the contemporaneous link between the379

Great Plains LLJ and rainfall (Figure 6) may be considered causal on daily timescales.380

Interestingly, the EAM-L feature was important for modulating Rossby wave ac-381

tivity over the North Pacific, even when removing the influence of EAM. This suggests382

that the EAM-L feature can be forced by non-EAM activity. The EAM is only a regional383

branch of the ASM system. Other sub-monsoonal systems via the CGT might be im-384

pacting the variability of geopotential height activity over the EAM region (Di Capua,385

Kretschmer, et al., 2020; Ding & Wang, 2005; Ding et al., 2011; Zhao et al., 2018; Ko-386

rnhuber et al., 2019; F. Zhou et al., 2020), and on different timescales, which should be387

explored further. F. Zhou et al. (2020) suggested that the EAM might maintain the CGT388

through latent heat release, which is supported in our causal map results. In addition,389

other aspects of subseasonal variability unrelated to the monsoon might be involved. For390

example, the NAO has been shown to modulate upper-level circulation over Eurasia (Di Ca-391

pua, Kretschmer, et al., 2020; Syed et al., 2012; Wang et al., 2018).392

Future work should address the subseasonal predictability of summer Great Plains393

rainfall via the BSISO or, more generally, wave activity over the EAM region, in climate394

forecast models. The CEN and causal maps with model data may reveal dissimilar ca-395

sual linkages from observations, which would be valuable for understanding model bi-396

ases of these teleconnections. Additionally, noting the influence of El Niño-Southern Os-397

cillation on monsoon variability (Ding et al., 2011; F. Liu et al., 2016; Malloy & Kirt-398
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man, 2020) and general summertime predictability over CONUS (J. Y. Lee et al., 2011;399

Y. Liu et al., 2019; F. Zhou et al., 2020; Krishnamurthy et al., 2021), it would be advan-400

tageous to investigate the potential impacts warm or cool phases have on the causal path-401

ways and link magnitudes.402

5 Open Research403

5.1 Data Availability Statement404

All data in this study is available online. ERA5 data can be accessed through their405

website https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5406

(Hersbach et al., 2020). The CPC Global Unified Gauge-based Analysis data was pro-407

vided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl408

.noaa.gov (Chen et al., 2008; Xie et al., 2007). OLR data was taken from the National409

Oceanic and Atmospheric Administration (NOAA) Climate Data Record from https://410

www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:411

C00875 (H.-T. Lee & Program, 2011).412

The PC-MCI algorithm is publicly available and can be found by going to https://413

github.com/jakobrunge/tigramite.414
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Figure 1. Composited anomalies of OLR (shaded) and U200 (purple contours) anomalies for

BSISO combined phases (a) 8+1, (b) 2+3, (c) 4+5, and (d) 6+7. U200 anomalies are contoured

every 1 m s−1 between -5 and 5 m s−1.

Figure 2. Anomalous probability of the following events for days after a BSISO phase: (a)

below-normal Great Plains rainfall, (b) weak Great Plains LLJ, (c) PNA+ pattern, (d) above-

normal Great Plains rainfall, (e) strong Great Plains LLJ, and (f) PNA- pattern. White dots

denote statistical significance at the 90% confidence level determined by bootstrapping method

with 1000 iterations.

Figure 3. Lag correlation between Great Plains precipitation index at T = 0 and (a-c) OLR

anomalies at T = 0, -10, and -20 days, (d-f) V850 anomalies at T = 0, -10, and -20 days, and

(g-i) Z200 anomalies at T = 0, -10, and -20 days. Pink domains indicate the Great Plains precip-

itation, EAM rainfall, and WNPM rainfall indices. Green domain indicates the Great Plains LLJ

index, and black contour outline highlight the southerly flow over the relevant BSISO region. Or-

ange domains indicate the EAM-L, NPac-L, and PNA-HL indices. Stippling indicates statistical

significance at the 90% confidence level and a correlation value > 0.05 or < -0.05. See Table 1 for

more information about indices.

Figure 4. Causal effect network between WNPM rainfall, EAM rainfall, EAM-L, and NPac-L.

Color of individual nodes indicates autocorrelated σ change from one week to the next. Color of

lines or arrows indicate the σ change. Arrows indicate the direction of causality, with strength

of σ change annotated on arrow, with lag of one week. Dashed lines are contemporaneous links,

which, by themselves, do not imply causality.

Figure 5. Same as Fig. 4, but for the causal effect network between EAM-L, NPac-L, and

PNA-HL.

Figure 6. Same as Fig. 4, but for the causal effect network between NPac-L, PNA-HL, Great

Plains LLJ, and Great Plains rainfall.
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Figure 7. Causal maps showing the causal link value between (a) WNPM rainfall at T = -1

(one week before) and Z200 at every grid point, with EAM rainfall conditioned out, (b) EAM

rainfall at T = -1 and Z200 at every grid point, with WNPM rainfall conditioned out, (c) EAM

rainfall at T = -1 and Z200 at every grid point, with EAM-L conditioned out, and (d) EAM-L

at T = -1 and Z200 at every grid point, with EAM rainfall conditioned out. Causal link value is

interpreted the same as arrows in Figs 4-6. Only values with significance at 95% confidence level

and a magnitude > 0.05 are shown.

Figure 8. Same as Fig. 7, but for links with V850 at every grid point.

Figure 9. Same as Fig. 7, but for links with OLR at every grid point.

Figure 10. 200-hPa Rossby Wave Source anomaly (shaded), with 200-hPa divergence

anomaly (gray contours) and U200 anomaly (black contours) overlaid, for (a) upper tercile

WNPM days and (b) upper tercile EAM days. Divergence anomalies are contoured every 2 x

10−6 s−1 between 0 and 4 x 10−6 s−1, and U200 anomalies are contoured every 1 m s−1 between

-3 and 3 m s−1.
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