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Abstract

Under Climate change, especially Global Warming, the increased intensity and frequency of extreme precipitation events in

more local areas have illustrated the importance of having a building-scaled flood forecasting system for urban risk management

strategies. However, a building-scaled hydrodynamic model is rarely employed in operational forecasting, and the expositions of

buildings’ contribution to the flood dynamics in the urban environment are unsatisfactory. The present study aims to propose

a framework for an operational flood forecasting system for the urban environment. We construct a parameter selection module

to capture the time-varying nature of parameters in an operational hydrologic model. This framework was further applied with

a focus on riverain flooding induced by Hurricane Ida. We find that the model would return similar or even better results

by considering the time-varying nature of parameters. Besides, the prior hydro-conditions dominate the optimal parameter

selection for a hydrologic model. The simulation results illustrate that excluding buildings from the computational mesh

predicts shallower and slower flooding. We also find that adjusting manning’s roughness would return comparable floodwater

depth and duration but will cause significant bias in the simulated velocity and further impact the accuracy of advanced flood

risk assessments.
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Abstract

Under Climate change, especially Global Warming, the in-
creased intensity and frequency of extreme precipitation
events in more local areas have illustrated the importance
of having a building-scaled flood forecasting system for
urban risk management strategies. However, a building-
scaled hydrodynamic model is rarely employed in opera-
tional forecasting, and the expositions of buildings’ con-
tribution to the flood dynamics in the urban environment
are unsatisfactory. The present study aims to propose a
framework for an operational flood forecasting system for
the urban environment. We construct a parameter selec-
tion module to capture the time-varying nature of param-
eters in an operational hydrologic model. This framework
was further applied with a focus on riverain flooding in-
duced by Hurricane Ida. We find that the model would re-
turn similar or even better results by considering the time-
varying nature of parameters. Besides, the prior hydro-
conditions dominate the optimal parameter selection for a
hydrologic model. The simulation results illustrate that
excluding buildings from the computational mesh predicts
shallower and slower flooding. We also find that adjusting
manning’s roughness would return comparable floodwater
depth and duration but will cause significant bias in the
simulated velocity and further impact the accuracy of ad-
vanced flood risk assessments.
1. Introduction
As the climate changes, global warming enhances the potential of extreme
weather, for example, bringing more precipitation falling to the northern ar-
eas and mountainous regions in the northeastern United States (Melillo et al.,
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2014). The increase in intensity and frequency of rainfalls intensified local flood-
ing (Kundzewicz et al., 2014), and better local flooding forecasting systems are
needed to address this growing threat. There is a growing body of literature
that recognizes the importance of having local-scaled flood forecasting models
on local flood risk management strategies (Bessar et al., 2021; Ehret et al., 2008;
Rehman et al., 2019; Xing et al., 2019)

Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and
River Analysis System (HEC-RAS) have been widely applied in inland flood-
related research, such as compound flooding (F. Saleh et al., 2017), flash flooding
(Alsubeai & Burckhard, 2021; Nguyen et al., 2015) and riverine flooding (Balb-
hadra et al., 2022; Ramachandran et al., 2019; Ynaotou et al., 2021). However,
due to the computational cost, urban features like buildings are usually not
included in the computational mesh. Thus, the expositions of buildings’ con-
tribution to the flood dynamics in the urban environment are unsatisfactory.
Generally, Building’s impacts on flooding dynamics, especially on flood depth,
can be de-biased by model calibration, for example, adjusting manning’s rough-
ness (Garrote et al., 2021). However, the calibration will lead to over or under-
estimation of the flood velocity of the neighboring region of building features
(Beretta et al., 2018). Flood velocity plays an important role in advanced flood
damage and risk assessment in the built environment. For example, Specific En-
ergy Height with a high correlation to building damage level requires both flood
depth and velocity for calculation (Kreibich et al., 2009; Marvi, 2020; Schwarz
& Maiwald, 2008). Moreover, findings from several studies suggest that flood
velocity and duration contribute significantly to structural failure and building
collapse during flooding (Gallegos et al., 2012; Jansen et al., 2020; Marvi, 2020;
Sweet et al., 2017; Thieken et al., 2005). Besides, flood depth and flood velocity
are dominant features in the human instability estimation during flooding (Mi-
lanesi et al., 2014; Wang & Marsooli, 2021b; Xia et al., 2014). All these studies
about flood vulnerability for buildings and human bodies have spurred the need
to predict better not only flood depth but also flood velocity for flood damage
estimation and risk mitigation. Thus, with the growing computational power at
the hands of hydrologists, it is necessary to include as many flood-related urban
features as possible into urban hydrodynamic models.

Operational flood forecasting systems in the built environment are increasingly
used by different agencies for emergency response during urban flooding. Exten-
sive research has tried to couple HEC-HMS and HEC-RAS in flood conditions
forecasting and hindcasting (Abdessamed & Abderrazak, 2019; Alsubeai & Bur-
ckhard, 2021; F. Saleh et al., 2017; Thakur et al., 2017). The reliability of
the hindcasting simulation obtained using observed meteorological conditions
depends on obtaining optimal parameter sets by calibration, a process to force
the simulated flows to match historical observations. In a forecasting context,
the accuracy of HEC-HMS hinges on the reliability of the meteorological inputs
and the optimal set of model parameters during the forecast initiation phase.
However, the optimal set of model parameters is time-varied because of the vari-
ation in soil moisture conditions. This time-varying nature in model parameters
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should be captured in a framework designed for operational flood forecasting.

The first objective of this paper is to design and construct an integrated model
framework for operational flood forecasting for the built environment. The sec-
ond objective is to evaluate the urban features’ contribution to the simulated
flood characteristics in the built environment through a case study in Manville
Township of New Jersey in the United States. More specifically, we first con-
structed an integrated model framework including buildings in the model grids.
A 2-dimensional building scale hydrodynamic model coupled with HEC-RAS
and HEC-HMS forms the core of this framework. Both HEC-HMS and HEC-
RAS models are calibrated and validated with historical events. We then devel-
oped a new dynamic calibration approach, called parameter selection module
for HEC-HMS, that the parameters would be defined based on the prior and
subsequence hydro-conditions of the simulation time instead of assuming con-
stant optimal parameters after calibration. This calibration approach would
capture the time-varying nature of the hydrologic model parameters and con-
tribute to decreasing the uncertainty caused by the varying soil moisture in an
operational forecasting system. Finally, the flood conditions of Hurricane Ida in
2021 in the study area are reconstructed and compared based on computational
grids including and excluding building features.

2. Materials and Methods
2.1 Study Areas and Hurricane Ida

Hurricane Ida landed in Louisiana on August 29th, 2021, as an “extremely dan-
gerous” category 4 storm with sustained winds of 150 mph. While it weakened
into a tropical storm after it landed, Ida still brought torrential rains to the
great New York metropolitan area at the night on September 1st, 2021, causing
numerous flash flood warnings and other water emergencies.

This study focuses on the Manville Township, located on the confluence of the
Raritan River main stem and its tributary Millstone River (Figure 1). Manville
has historically been prone to flood hazards induced by heavy precipitation
during extreme weather events such as tropical cyclones. During Hurricane Ida
in 2021, Manville Township was one of the areas that were severely affected
by riverine flooding. The water depth in the nearby Raritan River reached a
record of 8.43 meters, shattering the previous record of 8.26 meters during the
Hurricane Floyd in 1999. The widespread flash flooding caused significant delays
in search and rescue operations because many roads were impassable during the
height of the storm. In Manville, 40% of the population are Minors under the
age of 18 and seniors over the age of 65 (Bureau United States Census, 2021),
and they are particularly vulnerable to flood events. An obvious way of reducing
such vulnerability is to have reliable and accurate flood damage predictions and
assessments, from which effective rebuilding strategies can be identified.
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Figure 1. (a) Manville Township, New Jersey, United States (red square) and
the track of Hurricane Ida (red dash line) attacking New Jersey in the evening
on September 1st. (b) The domain of the HEC-RAS model (black domain),
the HEC-HMS (blue domain) model and its sub-basins (gray polygons), the
Manville township municipal boundary (red domain), the locations of 17 rain
gauges (blue dots), 5 USGS discharge gages (yellow triangles), and 4-type Land
Use Covered layer used in the integrated model. (c) The observed river discharge
was measured at Raritan River near the Manville Township before and after
hurricane Ida.

2.2 Integrated model framework

The constructed flood model framework integrates a calibrated regional hydro-
logic modeling (HEC-HMS) and a calibrated 2-D hydrodynamic model (HEC-
RAS) (Figure 2).
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Figure 2. Model framework

The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS)
is a widely used conceptual semi-distributed hydrological model in rainfall-runoff
related hydrological studies (City of New York, 2013; Hamdan et al., 2021;
Ramaswamy & Saleh, 2020; Romali et al., 2018; F. Saleh et al., 2017; Zhang et
al., 2013). It is designed to simulate the watershed runoff process by defining
each basin using a series of empirically derived parameters that control the
relationship between the system input and output (USACE, 2000).

The flood conditions including flood propagation and inundation level are sim-
ulated using the latest HEC-RAS 6 Hydrodynamic model. It solves the origi-
nal shallow water equations (2-D Saint Venant Equations) using implicit finite
volume algorithms (Brunner, 2021). HEC-RAS uses the sub-grid bathymetry
method, achieved by calculating the relationship of the water depth vs. vol-
ume of each computational cell in the preprocessing. It keeps the details of
the topography in the relatively coarse computational grid and allows a better
representation of flow simulation (Brunner, 2021; F. Saleh et al., 2017). HEC-
RAS has wide applications in flood-related studies, including but not limited to
compound flooding (Loveland et al., 2021; F. Saleh et al., 2017), inland flash
flooding (Abdessamed & Abderrazak, 2019; Buta et al., 2017; Costabile et al.,
2020; Tamiru & Dinka, 2021), dam breach flooding (Bharath et al., 2021; Pso-
miadis et al., 2021), and sediment transportation (Shabani et al., 2021). In
this study, a purely 2-D flow domain of HEC-RAS is selected using hydrologic
conditions simulated by HEC-HMS boundary conditions.

In this integrated model framework, we creatively added a parameter selec-
tion module that is capable of automatically setting the optimal HEC-HMS
parameter event by event to ensure the parameters represent the soil moisture
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conditions as accurately as possible. Details about the module construction and
application will be introduced in the following sections.

2.2.1 HEC-HMS model setup

The HEC-HMS domain covers 80% (152.94 km2) of the Raritan River Basin
area (Figure 1), and it was delineated into 38 sub-basins based on the flow
direction and accumulation estimated from a digital elevation model (DEM).
Each sub-basin is parameterized by a series of empirically derived parameters.
In this study, the meteorological forcing for HEC-HMS such as precipitations is
obtained from 15 United States Geological Survey (USGS) rain gages. They are
assigned to the corresponding basins based on their distances to the basins. The
Clark Unit Hydrograph method is used in the transform component to account
for the characteristics of each basin over the study area. The recession method is
used in the baseflow component to account for the groundwater contributions to
the stream flow. The constructed HEC-HMS estimates the infiltration capacity
and precipitation excess of each basin based on the Soil Conservation Service
(SCS) curve number (CN) method. The default SCS CN value of each sub-
basin is calculated based on the soil group raster dataset (ROSS et al., 2018),
and the land use cover shapefile dataset (NJDEP, 2015) in ArcGIS (USACE,
2000). Both the Muskingum equations and the Lag equations are applied in
the river routing components. Since the soil moisture variation could make
differences in the estimated runoff by HEC-HMS (Firas Saleh et al., 2016), some
critical parameters, such as initial abstraction, curve number, and impervious,
are calibrated based on the observed flow data obtained from USGS gauges, to
find the optimal combination of parameters.

2.2.2 HEC-RAS model setup

The HEC-RAS 2-D model domain covers part of the Raritan River Basin from
the confluence of North Branch and South Branch in Branchburg to the Raritan
River near Bound Brook Township, bounded by three major freshwater inputs,
including the west bound of Raritan River, Royce Brook, Millstone River and
Green Brook (Figure 1).

The creation of the model computational mesh and the model implementation
requires detailed terrain information of the study area. The terrain information
used in this study is mainly based on the combination of two DEMs and one re-
constructed raster dataset. The first DEM is CoNED Topo-bathymetric Model
for New Jersey and Delaware, 1880 to 2014 (OCM Partners, 2021), with a 1
meter spatial resolution and vertical accuracy ranging from 0.15 to 0.2 meter in
root mean square error (RMSE). To improve the representation of bathymetry
information in the first DEM dataset in the Raritan River main channel, sound-
ing survey-based bathymetry information is necessary to be considered. Thus,
the second DEM is the most recent Raritan River bathymetry dataset created by
Rutgers University (Hunter, 2019) based on sounding surveys and NOAA navi-
gational chart, with a 10-meter spatial resolution. A raster dataset of building
footprints with a 1-meter spatial resolution was created based on the building
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footprint data from Microsoft (Microsoft, 2021). The raster data is then merged
onto the unified DEM to include the building features into the background ge-
ometry information.

The computational mesh for the HEC-RAS 2-D flow area contains 0.46 million
cells in total, with spatially varied resolutions. In the study area, to resolve the
building features, the mesh resolution is set to 10m x 10m. A coarser resolution
(50m x 50m) in the rest of the domain area is used to save the computational
expense.

The manning’s roughness coefficient (N) and percent of impervious are esti-
mated based on the land use cover dataset (NJDEP, 2015). They are treated
as calibration parameters following the suggested range of values for each land
cover type (U.S. Army Corps of Engineers, 2021) as shown in Table 3.

With an objective to evaluate the building features’ influences on flood simula-
tion results, the HEC-RAS model grid is set to include and exclude buildings
in the background geometry information, respectively (Table 1). It has been
suggested that in the case of excluding buildings, forcing the manning’s rough-
ness to 10 where buildings are located would return the closest flood conditions
as that of the case of including buildings (Beretta et al., 2018). In this study,
in the case of excluding buildings, we thereby forced the manning’s roughness
where buildings are located equal to 10.

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & HEC-RAS (Buildings Included) &
HEC-RAS (Building Excluded)
DEM &

Unified DEM based on:

1. CoNED Topo-bathymetric Model for New Jersey and Delaware, 1880 to
2014

2. Raritan River bathymetry datasets from Rutgers University

3. Raster dataset of the building footprint from Microsoft

&

Unified DEM based on:

1. CoNED Topo-bathymetric Model for New Jersey and Delaware, 1880 to
2014

2. Raritan River bathymetry datasets from Rutgers University

Manning’s Roughness &

1. Calibrated based on the land cover type

&

1. Forced to 10 at buildings’ location
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2. Same as the case of building included in the rest area.

Model Mesh Resolution &

1. 10 meters in the town area

2. 50 meters in the rest area of the domain

& Same as the case of building included

Table 1.HEC-RAS model setup of the case of building included and of building
excluded

2.2.3 Calibration

The constructed flood model is expected to apply to the study area for oper-
ational flash flooding forecasting in the future. Thus, in the HEC-HMS, we
require a better representation of sub-basin characteristics that suit different
events. Three parameters of loss models in HEC-HMS, including the initial ab-
straction (Ia), curve number (CN) and impervious (Imp) are calibrated based
on hurricane Irene in 2011 and hurricane Henri in 2021, two major flood events
in the study area. We carry out the calibration by both visual and statistical
comparisons with the observed runoff obtained from 5 stations of USGS around
the study area (Figure.1). The calibration is performed with a focus on the sub-
basins where the stations are located. Considering the influence on downstream
sub-basins from the upstream ones, the subsequence of calibrations depends on
sub-basins’ locations, from upstream to downstream. Calibration processes are
implemented using a series of automated scripts that create a set of parame-
ter combinations and execute the simulation. After the calibration process, a
database of the best-fitting parameter sets is created and applied to the sim-
ulation of flooding in the area during Hurricane Ida. The details about the
calibration are shown in Figure 3. To include all possible uncertainties caused
by the calibrated parameters, we calculated the minimum required number of
the parameters’ combination based on the number of parameters and the poly-
nomial degree of the loss model (Ghanem & Red-Horse, 2017; Nance, 2015) as
the following function (Equation 1).

𝑆 = (𝑛+𝑝)!
(𝑛!𝑝!) (1)

Where S is the minimum number of samples covering uncertainties, n is the
number of parameters and p is the degree of the polynomial. Given the dis-
tributions of three calibrated parameters, the Latin hypercube sampling (LHS)
method is employed to generate near-random samples. The distributions of all
three calibrated parameters are assumed to be uniform (Table 2), with lower
and upper bounds referring to the common range of these parameters of similar
land use cover in literature (Brunner, 2021; Krajewski et al., 2020; Zheng et al.,
2020). The actual correlation coefficient among three calibrated parameters in
the generated near-random samples is limited no more than 0.015. Normalized
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Nash–Sutcliffe model efficiency (NNSE) coefficient (Equation 2 - 3) is employed
during the automatic calibration process to identify the best fitting parameter
combination.

NSE = 1 − ∑𝑇
𝑡=1 (𝑂𝑡−𝑃𝑡)2

∑𝑇
𝑡=1 (𝑂𝑡−𝑂)2 (2)

NNSE = 1
2−𝑁𝑆𝐸 (3)

Parameter Distribution Unit
Initial Abstraction (Ia) U (0,30) -
Curve Number (CN) U (60,95) -
Impervious (Imp) U (0,50) %

Table 2. Distribution of the loss model parameters of HEC-HMS. U stands for
uniform distribution.

Figure 3. framework of HEC-HMS calibration and the creation of best fitting
parameter set database

The calibration in HEC-RAS focuses on manning’s roughness coefficient, which
is used to calculate the energy friction losses of overland flow and channel flow.
It is usually determined based on the land use covers. In this study, the land use
cover is obtained from the New Jersey Department of Environmental Protection
(NJDEP). It defines the land use type using the modified Anderson classifica-
tion system (MACS). Referring to the correspondence between Nation Land
Cover Data (NLCD) and MACS, the range of manning’s roughness of four land
type classes 1) water, 2) developed, 3) barren land, and 4) forest are defined
following the suggested values (U.S. Army Corps of Engineers, 2021), as shown
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in Table 3. During calibration, the 10 combinations of manning’s roughness of
four land use types are created using LHS method. All manning’s roughness of
four classifications is uniform and random distributed among the generated 10
combinations. This study calibrates the manning’s roughness by comparing the
output floodwater depth with measured high-water mark (HWM) obtained by
USGS. In the study area, there are a total of 27 HWM observations available
for Hurricane Ida. Due to the lack of measured HWM data during other events,
only Hurricane Ida was considered in the calibration and validation process.

MACS NLCD Range Range for Calibration
Water 11 Open Water 0.025 - 0.05 0.025 - 0.05

12 Perennial Ice/Snow -
Developed 21 Low Intensity Residential 0.03 - 0.05 0.03 - 0.16

22 High Intensity Residential 0.06 - 0.12
23 Commercial/Industrial/Transportation 0.08 - 0.16

Barren 31 Bare Rock/Sand/Clay 0.023 - 0.03 0.023 - 0.03
32 Quarries/Strip Mines/Gravel Pits -
33 Transitional -

Forested Upland 41 Deciduous Forest 0.1 - 0.2 0.08 - 0.2
42 Evergreen Forest 0.08 - 0.16
43 Mixed Forest 0.08 - 0.2

Table 3. The range of Manning’s roughness during HEC-RAS calibration

3. Results
3.1 HEC-HMS model calibration

After figuring out the best fitting parameter combination for each calibrated
sub-basin as a sequence from upstream to downstream, we find the best fitting
combinations for two calibration events are different. Since the three calibrated
parameters are sensitive to soil moisture, the parameter combination used for
the validation event or other major events will be selected based on the soil
moisture conditions. Here we constructed a selection function of the previous
hydro-conditions represented by runoff volume in 5 days prior to the beginning
of the simulation (RV−5) and the future hydro-conditions represented by total
precipitation volume in 3 days subsequent to the beginning of the simulation
(PV+3):

Index𝑖 = 𝑊1| RV−5,𝑣𝑒𝑟𝑖𝑓−RV−5,𝑐𝑎𝑙𝑖
RV−5,𝑣𝑒𝑟𝑖𝑓

| +𝑊2| PV+3,𝑣𝑒𝑟𝑖𝑓−PV+3,𝑐𝑎𝑙𝑖
PV+3,𝑣𝑒𝑟𝑖𝑓

| (4)

Where i represents the specific calibration event. RV−5,𝑣𝑒𝑟𝑖𝑓 and PV+3,𝑣𝑒𝑟𝑖𝑓 are
the runoff volume and the total precipitation volume over the sub-basin of the
verification event Hurricane Ida. RV−5,𝑐𝑎𝑙𝑖 and PV+3,𝑐𝑎𝑙𝑖 are the runoff volume
and total precipitation of each calibration event. 𝑊1 and 𝑊2 are the weight
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factors, indicating the weights of prior hydro-conditions and subsequence hydro-
conditions, respectively. The sum of the two weight factors is 1. The set of
parameter combination returning the smallest index value will be selected in the
simulation of the validation event. In the study area, Hurricane Ida has more
similar prior hydro-conditions with that of Hurricane Henri but more similar
subsequent hydro-conditions with that of Hurricane Irene. The values of two
weight factors indicate which prior or subsequent hydro-conditions contribute
more to the parameter selections. To identify the values of weight factors, we
tested with increasing the weight of prior hydro-conditions from 0 to 1 with
0.1 intervals. Results show that the best fitting weight factors would be 0.7
and 0.3 for the prior and subsequence hydro-condition, respectively, giving the
highest model efficiency coefficients in each sub-basin (Figure 4). The simulation
for Hurricane Ida illustrates that using a dynamic optimal set of parameters,
considering the prior and subsequent hydro-conditions, would return similar or
event better results than using a fixed optimal set of parameters (Figure 4).

Figure 4. The Calibration and Validation results at five check points. Gray
lines represent the simulated runoff considering all uncertainty from the SCS
curve number loss model. The black solid line is the observed discharge in
m3/s. The blue dash line is the simulation using the best fitting parameter
combinations for the current event. The red dot-dash line in the sub-figures for
the validation event, Ida, is the simulation using the fixed optimal parameter
combinations.
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3.2 Hurricane Ida

With the objective to simulate the flash flooding induced by Hurricane Ida in
Manville Township, we forced the HEC-RAS model with the simulated runoff
from the calibrated HEC-HMS model. The calibration and validation of HEC-
RAS were constructed based on two statistic indexes, R-square (RSQ) and Ab-
solute Mean Error (AME). Ten combinations of Manning’s roughness for four
classifications are created for calibration. Results show that the best fit of man-
ning’s roughness combinations in Manville Township is the one applied in test
10 with a relatively high RSQ of 0.858 and a relatively small AME of 0.12 meters
(Figure 5).

Figure 5. The results of calibration and validation of the model. The top plot
shows the R-square (blue solid line) and the Absolute Mean Error (red dash line)
for all tests. The following tables show the corresponding manning’s roughness
of four land classifications in each test and the exact values of R-square and
Absolute Mean Error for all tests.

Results illustrate that 43% (2.73 km2) of the area in Manville Township is
flooded, impacting 24% of the buildings and 44% of the streets in the township
(Figure 6. a). Among the inundated area, 10% of the area is located outside
of the flood zone of FEMA, representing an area of 0.28 km2 with a chance
lower than 1% of prone to flooding were impacted by the flooding induced by
hurricane Ida. Focusing on the flood conditions in the urban area, the maximum
floodwater reaches more than 1.18 m in 50% of flooded areas and higher than
3.83 m in 5% of the flooded areas. Results indicate that the flood velocity
remains relatively slow in the entire urban flooded area. The maximum flood
speed is slower than 0.46 m/s in 95% of flooded areas, indicating that the flood
water invaded the town slowly induced by the water level increase in the Raritan
River due to the continued rainfall. More than 50% of the flooded area remained
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as flooded for at least 18.83 hours.

Figure 6. An overview of the simulated flood conditions during hurricane Ida
in Manville Township includes a) maximum flood depth in meters, b) flood du-
ration in hours and c) maximum flood speed in meters per second. The location
of the measured HWMs, impacted buildings and roads are also illustrated in a).

3.2.1 The impacts of urban features

We calculated and compared the scatter density among the maximum flood wa-
ter depth, flood water velocity, and flood duration for both models including
and excluding the building features in the computational mesh. The compari-
son results illustrate the urban feature impacts on flood characteristics in urban
areas. To perform the comparison with a focus on urban areas, the perma-
nent flood area (river channel and regulatory floodway) was excluded from the
comparison. In general, the differences between the results of the two cases
are relatively small, with the mean bias of -0.01-meter and -0.004 m.s-1 for the
flood water depth and velocity, respectively. The results show that excluding
buildings from the computational mesh tends to predict more areas flooded by
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shallower and slower flood water. It is illustrated that 99.4% and 75.4% of the
urban flooded area show shallower maximum flood water depth and slower flood
water velocity respectively in the case of excluding building features (Figure 7.d).
In general, the underestimation of maximum water depth in the case of exclud-
ing building features is smaller than 5.2% in 90% of the urban flooded areas.
In some local areas (5% urban flooded area), the maximum flood water depth
and maximum flood water velocity are predicted at least 10.0% shallower and
55.1% slower in the case of excluding building features (Figure 7.d). In terms of
flood duration, 47.3% of the urban flooded area shows shorter flooded duration
when excluding building features. Similar to maximum flood water depth, the
underestimation of flood duration is smaller than 5.1% in 90% of urban flooded
areas (Figure 7.d). The heat difference maps shown in Figure 7, illustrate the
difference between the scattering density of the two cases, excluding buildings
and including buildings. A positive difference is represented in red color, indi-
cating the case excluding buildings in the computational mesh predicts more
area under specific flood conditions. The negative difference, represented in
blue color, indicates the opposite. Results show that, compared with including
buildings in the computational mesh, excluding buildings predicts at least 2 km2

(31.5% area of Manville township) more areas experienced flood depth smaller
than 1 meter and lasted for 5 to 15 hours (Figure 7.a). If we focus on the heat
difference map of maximum flood velocity and maximum flood depth (Figure
7. b), it is obvious that a model excluding buildings predicts more area with
maximum flood velocity slower than 0.2 m/s, where the maximum flood depth
is shallower than 2 meters. It is also illustrated that the most increment of
flood velocity heat maps occurs where flood duration varies from 5 to 20 hours
(Figure 7. c).
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Figure 7. The comparison between flood conditions in case of excluding and
including building features in computational mesh, including the Heat Differ-
ence map of a) Flood Duration vs. Maximum Flood Depth, b) Maximum Flood
Depth vs. Maximum Flood Velocity, and c) Flood Duration vs. Maximum
Flood Velocity and d) the cumulative frequency distribution for the difference
of maximum floodwater depth (blue solid line), velocity (orange dash line), and
flood duration (green dash-dotted line). The heat difference maps are calculated
by subtracting the scatter density of including buildings from those excluding
buildings. Red color represents that the case excluding buildings in compu-
tational mesh simulates more area with specific flood conditions while blue
represents the opposite.

4. Discussion
Prior studies have noted the superiority of using a hydrodynamic model com-
pared with using the traditional bath-tubbing approach to predict flood hazards
under the influence of building features in an urban area (Didier et al., 2019;
Jordi et al., 2019; Marsooli & Wang, 2020; Wang & Marsooli, 2021a). This
advantage is illustrated by considering the nonlinear interactions between flood-
water depth and velocity and the flood extension variation induced by floodwater
with different velocities in a built environment. Furthermore, a hydrodynamic
model is capable of providing rich information for subsequent flood vulnerabil-
ity assessments of buildings and individuals. As an integral part of flood risk
management, hydrodynamic models have been widely applied in early warning
systems at regional (Jordi et al., 2019; Ming et al., 2020), national (Werner
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et al., 2009), continental (Emerton et al., 2016; Pappenberger et al., 2011) and
global (Alfieri et al., 2013) scale. However, a building-scale hydrodynamic model
is rarely employed in the system due to the expensive computational cost and
the difficulties of conceptualizing the complicated urban environment. Under
climate change, especially in northern areas and mountainous regions in the
northeastern United States, more frequent and intensive precipitation will be
expected, increasing the probability of one local area being prone to riverine and
flash flooding. Compared to large-scale early warning systems, the residents and
local emergency response department will be able to get ready more actively and
effectively based on the flood forecasting at the meter-resolution. The frame-
work developed in this study is part of an effort to develop an operational flood
forecasting system, serving cities or townships under flood hazards.

Hydrodynamic models covering the built environments are usually constructed
based on a bare-earth DEM, excluding building features, to increase numerical
stability and save computational cost. This kind of simplification requires cer-
tain type of remedies, such as increasing the bottom friction where the buildings
are located, to de-bias the dynamic impacts of building features on the flood
depth. In this study, in case of excluding building features, the roughness coeffi-
cient was assumed as an extreme high value, simulating comparable floodwater
depth and flood duration, with differences smaller than 5% in 90% of urban
flooded area. After comparing the results of cases of excluding and including
building features in the computational mesh, we found that the model excluding
buildings predicts more area flooded by shallower and slower water. Since the
Manville Township is in a low-lying and flat area, the flood water velocity during
hurricane Ida is relatively slow, and the difference in the maximum flood water
velocities is small. However, there is indeed a significant difference in maximum
flood water velocity in cases of including and excluding building features in the
computational mesh, at a 99% confidence level in the two-sample T-test. This
finding illustrates that even though adjusting the manning roughness coefficient
would return comparable floodwater depth and duration, it will cause signifi-
cant bias in floodwater velocity and further impact the accuracy of advanced
flood risk assessments. A hydrologic model with constant or fixed optimal pa-
rameters will cause uncertainties, especially in an operational flood forecasting
system. The reason is that different events have different prior and subsequent
hydro-conditions leading to different soil moisture conditions. It will further
impact the tuning of the optimal parameters, such as curve numbers, initial ab-
stractions, and impervious, of the hydrologic model. For example, those events
that come with extremely heavy precipitation while the soil condition is initially
dry would have totally different optimal parameters than those events with gen-
eral precipitation while the soil condition is saturated. Also, in an operational
system, with its continuous running, the prior and subsequent hydro-conditions
keep changing with time, leading an issue that using a constant optimal pa-
rameter would not capture the time-varying nature of soil moisture condition.
In this study, we developed a parameter selection module based on a selection
function (Equation 4), to figure out the best fitting parameter set based on the
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corresponding prior and subsequent hydro-conditions. In other words, the selec-
tion module will help the hydrologic model figure out the best fitting parameters
case by case, to describe the correct soil moisture conditions. The weight factors
W1 and W2 in the selection function illustrate that the prior hydro-conditions
dominate the optimal parameter selection for a hydrologic model. The parame-
ter selection module would be helpful in an operational flood forecasting system
to decrease the uncertainty caused by using inappropriate parameters.

The relationship among prior and subsequent hydro-conditions and hydrologic
model parameter selection is worthy of further study, in particular consider-
ing not only extreme events but also normal events. Abundant event samples
would help an operational flooding forecasting system capture the time-varying
nature of the hydrologic model parameters for different kinds of events. To
apply this forecasting system operationally, forcing the model with ensembled
predicted precipitation datasets from such as the Global Ensemble Forecast
System (GEFS) and NOAA Quantitative Precipitation forecasts (QPF) should
also be considered, to account for the uncertainties from the meteorological forc-
ing datasets. These issues are critical to making the operational flood warning
systems more robust and better support emergency response planning.

5. Summary and Conclusion
This study constructed a building-scaled hydrodynamic model to investigate
the flood conditions during Hurricane Ida in Manville Township, New Jersey.
The constructed flood model couples a calibrated 2-D hydrodynamic model
(HEC-RAS) with a calibrated regional hydrologic modeling (HEC-HMS), and
simulates the flood hazards, including flood water depth, velocity and duration,
induced by Hurricane Ida.

The calibration of the regional hydrologic model (HEC-HMS) is implemented
based on two historical events, hurricane Irene and Hurricane Henri. These two
events have different prior and subsequent hydrologic conditions in the study
area. For example, Hurricane Irene came with a large amount of direct precipi-
tation while the soil was initial dry; Hurricane Henri came with a less amount
of the subsequent direct precipitation while the soil was saturated due to a pre-
vious rainfall event. We found the best fit hydrologic parameters for these two
extreme events are totally different, and it is hard to find a set of parameters
to satisfy all extreme events. The finding reported here sheds new light on the
hydrologic parameters’ setup in hydrologic modeling, that the hydrologic param-
eters should be hydro-condition based or event-based. This study proposed a
parameter selection module, to improve the hydrologic modeling by selecting the
best fit parameter sets based on the hydro-conditions. It will decrease the uncer-
tainty of a hydrologic model from using parameters inaccurate in representing
the true soil moisture conditions. Another interesting finding out of developing
the selection function is that the prior hydro-conditions usually dominate the
selection of the parameters by gaining a larger weight factor in the function.
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This study also shows that excluding building features from the computational
mesh of hydrodynamic models could make a significant difference in the extreme
flood water velocity. In the past studies, with an aim of saving computational
cost, the computational mesh was usually created based on bare-earth DEMs,
which exclude building features. The error caused by the simplification of to-
pography is usually acceptable in regional or larger-scale hydrodynamic models.
However, under climate change, with the increasing needs in high-resolution
models, the dynamic impacts of building features on fluid need to be considered.
One of the common methods used to de-bias the dynamic impacts of building
features is to increase the bottom friction locally, especially where the building
is located. This study compared two approaches to dealing with building fea-
tures in a building-scaled hydrodynamic model, including or excluding building
features (by increasing the bottom friction locally) in the computational mesh.
The result has shown that excluding buildings from the computational mesh can
simulate maximum floodwater depth and flood duration comparable to actual
observations, but it tends to predict more areas flooded by shallower and slower
peak floodwater. The result also pointed out that the decrease of the extreme
floodwater velocity when building features are excluded is significant at the 99%
confidence level when compared to simulations in which building features are in-
cluded. In summary, this study provides a foundation to build a building-scaled
operational flooding forecasting system, with an automatic hydraulics parame-
ters selection module. The selection module takes into account the impacts of
prior and subsequent hydro-conditions on runoff predictions. This decreases the
uncertainties in an operational hydrologic model. When coupled with urban
emergency responding systems or flood vulnerability models, the constructed
flood forecasting system will contribute to flood preparedness at the local scale.
The findings of this study also suggest that building-scaled flooding forecasting
models should consider including building features into the computational mesh
to take the dynamic impacts from buildings into account.
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	Under Climate change, especially Global Warming, the increased intensity and frequency of extreme precipitation events in more local areas have illustrated the importance of having a building-scaled flood forecasting system for urban risk management strategies. However, a building-scaled hydrodynamic model is rarely employed in operational forecasting, and the expositions of buildings’ contribution to the flood dynamics in the urban environment are unsatisfactory. The present study aims to propose a framework for an operational flood forecasting system for the urban environment. We construct a parameter selection module to capture the time-varying nature of parameters in an operational hydrologic model. This framework was further applied with a focus on riverain flooding induced by Hurricane Ida. We find that the model would return similar or even better results by considering the time-varying nature of parameters. Besides, the prior hydro-conditions dominate the optimal parameter selection for a hydrologic model. The simulation results illustrate that excluding buildings from the computational mesh predicts shallower and slower flooding. We also find that adjusting manning’s roughness would return comparable floodwater depth and duration but will cause significant bias in the simulated velocity and further impact the accuracy of advanced flood risk assessments.
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