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Abstract

A variety of watershed responses to climate change are expected due to non-linear interactions between various hydrologic

processes acting at different timescales that are modulated by watershed properties. Changes in statistical structure (spectral

properties) of streamflow in the USA due to climate change were studied for water years 1980-2013. The Fractionally differenced

Autoregressive Integrated Moving Average (FARIMA) model was fit to the deseasonalized streamflow time-series to model its

statistical structure. FARIMA allows the separation of streamflow into low frequency (slowly varying) and high frequency

(fast varying) components. Results show that in snow dominated watersheds, the contribution of low frequency components

to total streamflow variance has decreased over the study period, and the contribution of high frequency components has

increased. The change in snow dominated watersheds was primarily driven by changes in rainfall statistics and changes in

snow water equivalent but also by changes in seasonal temperature statistics. Among rain-driven watersheds, the contribution

of high frequency components generally increased in arid regions but decreased in humid regions. In both humid and arid

rain-driven watersheds, increasing winter temperature was responsible for the change in streamflow regimes. These results have

consequences for predictability of streamflow in the presence of climate change. We expect that changes in the high frequency

component will result in poorer predictability of streamflow.
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Highlights 17 

(1) Change in climatic statistics has resulted in a change in streamflow statistical structure 18 
(2) Landscape characteristics play an important but secondary role in changing streamflow 19 

statistical structure 20 
(3) Increase in winter temperature increases (decreases) the high frequency component of 21 

streamflow in arid (humid) regions 22 
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Abstract: 24 

A variety of watershed responses to climate change are expected due to non-linear interactions 25 

between various hydrologic processes acting at different timescales that are modulated by 26 

watershed properties. Changes in statistical structure (spectral properties) of streamflow in the 27 

USA due to climate change were studied for water years 1980-2013. The Fractionally differenced 28 

Autoregressive Integrated Moving Average (FARIMA) model was fit to the deseasonalized 29 

streamflow time-series to model its statistical structure. FARIMA allows the separation of 30 

streamflow into low frequency (slowly varying) and high frequency (fast varying) components. 31 

Results show that in snow dominated watersheds, the contribution of low frequency components 32 

to total streamflow variance has decreased over the study period, and the contribution of high 33 

frequency components has increased. The change in snow dominated watersheds was primarily 34 

driven by changes in rainfall statistics and changes in snow water equivalent but also by changes 35 

in seasonal temperature statistics. Among rain-driven watersheds, the contribution of high 36 

frequency components generally increased in arid regions but decreased in humid regions. In both 37 

humid and arid rain-driven watersheds, increasing winter temperature was responsible for the 38 

change in streamflow regimes. These results have consequences for predictability of streamflow 39 

in the presence of climate change. We expect that changes in the high frequency component will 40 

result in poorer predictability of streamflow. 41 

Keywords: Streamflow, Climate change, FARIMA, Spectral analysis, snow-dominated 42 

watersheds, Rain-driven watersheds 43 

1. Introduction 44 

The global hydrologic water balance will be impacted directly by climate change (Milly et al., 45 

2005; Milly & Dunne, 2016; Mote et al., 2018; Manabe & Broccoli, 2020) which will alter 46 

streamflows. The extent and nature of hydrologic change depends upon several factors including 47 

watershed geomorphological characteristics (Lee & Delluer, 1972; Rodriguez-Iturbe & Rinaldo, 48 

1997, Chap. 7), vegetation characteristics and soil properties (Eagleson, 1978), the dominant mode 49 

of streamflow production (snowmelt or rain, quick flow, baseflow etc.), changes in vegetation 50 

characteristics (e.g., Milly, 1997), and the pre-existing climate against which changes occur. Thus, 51 

a rich variety of watershed responses can be expected due to the change in climate as summarized 52 
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through climate statistics (Gordon et al., 2022). The hydrologic responses of watersheds to climate 53 

change need to be understood to devise an effective adaption strategy. 54 

Because of strong feedbacks between various components of a hydrologic systems, climate change 55 

can potentially lead to profound changes in watershed hydrologic regime. Hydrologic regime here 56 

refers to the interaction between different components of hydrologic process which produce 57 

hydrologic fluxes such as streamflow and evapotranspiration (ET). An example is the feedback 58 

between climate, soil, and vegetation properties (Rodriguez-Iturbe et al., 1999, 2001). Soil stores 59 

some of the precipitation as soil moisture which is taken up by the vegetation (Porporato et al., 60 

2001). Climate has a strong control over soil moisture dynamics via precipitation frequency and 61 

depth (Laio et al., 2001). Also, the intensity of the climatic control on soil moisture dynamics is 62 

directly affected by soil properties such as soil texture, soil depth, and water holding capacity. 63 

Vegetation provides feedback to the atmospheric properties via transpiration and, at long 64 

timescales, soil properties via plant residue decomposition in soils (Eagleson, 1982). Thus, 65 

vegetation properties influence climate through the soil zone. These feedbacks operate at different 66 

timescales. The feedback between climate and soil moisture dynamics is fastest, followed by the 67 

feedback between climate and vegetation (via soil moisture dynamics). The feedback between 68 

vegetation and soil properties is slowest. Therefore, effects of climate change are expected to be 69 

observable at different timescales.  70 

Streamflow is the integrated response of a watershed’s hydrology, which is affected by inherent 71 

properties such as soil depth and texture, bedrock permeability, and topography that influence 72 

hydrology. Thus, studying changes in streamflow characteristics provides the clues to 73 

understanding the changes in watershed hydrologic regime. Hydrologists have employed various 74 

mathematical models (simulation approaches) to understand the streamflow response of a 75 

watershed at different timescales. These models can be broadly classified as deterministic models 76 

(Beven, 2011), stochastic models (Klemes, 1978), and statistical models (Montanari et al., 1997). 77 

The model that is used depends upon the spatial scale (watershed scale, regional scale, global scale, 78 

etc.) and timescale (daily, monthly, yearly, etc.) at which simulations/predictions are required 79 

along with the purpose of simulations/predictions (policy making, scientific hypothesis testing). 80 

For most of the models used, some parameters of the model need to be calibrated against 81 

observations. The values that these parameters take depends upon climate statistics (mean annual 82 
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precipitation depth, precipitation frequency, seasonal mean temperatures etc.) and watershed 83 

properties. Temporal non-stationarity introduced by climate change (Milly et al., 2008) makes the 84 

calibrated parameters dependent upon observation time-period. In fact, climate change may 85 

directly affect the physical characteristics of a watershed via change in vegetation characteristics 86 

(Milly, 1997). This introduces additional uncertainty in model projections/predictions in the 87 

presence of climate change. For example, Stephens et al. (2020) showed that changes in rainfall 88 

statistics along with changes in atmospheric CO2 can change the soil moisture statistics. It may 89 

take a few years for a calibrated hydrologic model to adjust to the new equilibrium conditions. 90 

Other examples of climate change impacting watershed hydrologic characteristics include changes 91 

in snowpack in the western USA (e.g., Belmecheri et al., 2016), and change in baseflow and 92 

stormflow (e.g., Ficklin et al., 2016). In summary, the problem is that climate non-stationarities 93 

may make a hydrologic model calibrated and validated against historical observations unreliable 94 

for prediction/simulation in changed conditions. 95 

Some strategies have been proposed to address this problem. Klemes (1986) proposed differential 96 

split-sample testing to test the robustness of a model under change, but such strategies may not be 97 

useful in case of large changes, especially if the change in a watershed is toward a drier hydrologic 98 

regime (Stephens et al., 2020). Singh et al., (2011) proposed a space-time symmetry approach 99 

under an uncertainty framework to estimate streamflows in a watershed in the presence of regime 100 

change. The idea behind space-time symmetry is to use available hydrologic information across 101 

different watersheds to predict future streamflow in another watershed. The assumption is that the 102 

spatial variability in hydro-climatological characteristics across watersheds is a good 103 

representation of the temporal variability that can be expected due to climate change. The idea of 104 

space-time symmetry has been demonstrated to be useful at yearly timescale using the Budyko 105 

framework (e.g., Sivapalan et al., 2011). Success of machine learning (ML) methods in estimating 106 

streamflows at gauged and ungauged locations at a daily timescale (Kratzert et al., 2018) suggests 107 

that there is a considerable amount of hydrologic information shared between different watersheds. 108 

However, there is limited evidence of successful application of space-time symmetry at a daily 109 

timescale (see, Singh et al., 2011), especially under a changing climate. Therefore, there is a need 110 

to further test this idea at daily timescale. Such a testing procedure would require identifying 111 

watersheds that have undergone hydrologic regime change. This is the main motivation for this 112 

work. 113 
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In this study, change in the statistical structure of streamflow time-series was studied. We assume 114 

that a significant change in a watershed’s hydrologic regime will result in a significant change in 115 

the statistical structure of streamflow. Recently, it has been shown that streamflow statistical 116 

structure is also indicative of streamflow dynamics to some extent (Betterle, et al., 2019) which 117 

further justifies studying the changes in streamflow statistical structure to understand the effect of 118 

climate change on hydrologic regime. 119 

The statistical structure of streamflow time-series exhibits long-term persistence (Hurst, 1951) 120 

meaning that autocorrelations in streamflow decrease very slowly with time-lag. Studying the 121 

statistical structure of a stationary time-series is equivalent to studying its spectral properties. 122 

Previous work has shown that the power spectral density (PSD) of streamflow scales linearly on 123 

log-log graph (Tessier et al., 1996), that is, ℎ(𝜔𝜔) ∝ 𝜔𝜔−𝛼𝛼h , where ℎ(𝜔𝜔) denotes PSD at angular 124 

frequency 𝜔𝜔[𝑇𝑇−1] and 𝛼𝛼h denotes the slope of the scaling relationship. Also, a typical streamflow 125 

time-series exhibits two scaling regimes (two different values of 𝛼𝛼h) with scale break occurring 126 

between 1-20 days (Hirpa et al., 2010). Kim et al., (2016) analyzed the changes in streamflow PSD 127 

to study the effects of urbanization on hydrologic regime in South Korean watersheds. Specifically, 128 

they studied the changes in the slopes of two scaling regimes and the change in scale break point. 129 

Bras & Rodriguez-Iturbe (1993) and Chow et al. (1978) also illustrated the usefulness of spectral 130 

analysis in streamflow time-series analysis. Gudmundsson et al. (2011) studied the contribution of 131 

low frequency component (greater than 1-year timescale) to total streamflow variance in several 132 

European watersheds, but did not examine the change in the low frequency component over time. 133 

A systematic analysis of hydrologic regime change over time driven by climate change has not 134 

been reported  to the best of authors’ knowledge.  135 

The objectives of this study are as follows: 136 

(1) To conduct a spectral analysis of streamflow time-series in watersheds across USA, 137 

(2) To identify temporal changes in those spectral signatures 138 

(3) To identify the spatial patterns of changes in streamflow regimes, and 139 

(4) To investigate the cause of streamflow regime change. 140 

Other researchers have studied the changes in hydrologic regime due to climate change, but their 141 

focus has been toward a few of the hydrologic processes or fluxes such as baseflow, soil moisture, 142 
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annual streamflow etc. Studying the change in spectral properties of streamflow time-series across 143 

a large number of watersheds can provide more holistic insight into changes in hydrologic regime. 144 

2. Modeling Description 145 

2.1 FARIMA model 146 

The Fractionally differenced Auto-Regressive Integrated Moving Average (FARIMA; Montanari 147 

et al., 1997) model was used to capture the statistical properties of streamflow time-series.  148 

FARIMA is a statistical time-series model which is known to capture streamflow structure very 149 

well (Montanari et al., 1997 and 2000). The general form of the FARIMA model is 150 

𝛷𝛷𝑝𝑝(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 = 𝛹𝛹𝑞𝑞(𝐵𝐵)𝜖𝜖𝑡𝑡, (1) 151 

where 𝑋𝑋𝑡𝑡 denotes streamflow at time-step 𝑡𝑡, 𝐵𝐵 denotes the backward shift operator such that 𝐵𝐵𝑋𝑋𝑡𝑡 =152 

𝑋𝑋𝑡𝑡−1, 𝑑𝑑 denotes a parameter of the model that takes a value between 0 and 0.5 for streamflow 153 

time-series, and 𝜖𝜖𝑡𝑡 denotes uncorrelated white-noise. 𝛷𝛷𝑝𝑝(𝐵𝐵) and 𝛹𝛹𝑞𝑞(B) denote 𝑝𝑝th order 154 

autoregressive and 𝑞𝑞th order moving average polynomials, respectively, 155 

𝛷𝛷𝑝𝑝(𝐵𝐵) = ∑ 𝜙𝜙𝑖𝑖𝐵𝐵𝑖𝑖
𝑝𝑝
𝑖𝑖=0 ,  𝜙𝜙0 = 1,  (2) 156 

𝛹𝛹𝑞𝑞(𝐵𝐵) = ∑ 𝜓𝜓𝑖𝑖𝐵𝐵𝑖𝑖
𝑞𝑞
𝑖𝑖=0 ,  𝜓𝜓0 = 1,  (3) 157 

where 𝜙𝜙𝑖𝑖 and 𝜓𝜓𝑖𝑖 are AR and MA parameters. Specifically, the terms AR1, AR2, … are reserved 158 

to refer to parameters 𝜙𝜙1, 𝜙𝜙2,…, respectively. Similarly, the terms MA1, MA2, … are reserved to 159 

refer to parameters 𝜓𝜓1, 𝜓𝜓2  ,…, respectively. When 𝑑𝑑 = 0, the FARIMA model degenerates to an 160 

ARMA model.  When 𝑑𝑑 takes a positive integer value, it becomes classic ARIMA model promoted 161 

by Box and Jenkins (1970). 162 

In the case of positive integer 𝑑𝑑 values, the operator (1 − 𝐵𝐵)𝑑𝑑 is the differencing operator as can 163 

be seen by setting 𝑑𝑑 = 1: (1 − 𝐵𝐵)𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1. Also, in this case, the process 𝑋𝑋𝑡𝑡 is non-164 

stationary. The interpretation of the model for the fractional 𝑑𝑑 value is not intuitive. But its effect 165 

can be understood via the PSD of the process 𝑋𝑋𝑡𝑡. The PSD of the FARIMA model has the analytical 166 

form (Granger and Joyeux, 1980): 167 

ℎ(𝜔𝜔) = |1 − 𝑧𝑧|−2𝑑𝑑 |𝛹𝛹𝑞𝑞(𝑧𝑧)�
2

�𝛷𝛷𝑝𝑝(𝑧𝑧)�2
𝜎𝜎𝜖𝜖2

2π
, 𝑧𝑧 = e−ιω,  (4) 168 
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where |·| denotes absolute value and 𝜄𝜄 = √−1. For very small values of 𝜔𝜔, 169 

ℎ(𝜔𝜔) ∝ 𝜔𝜔−2𝑑𝑑.   (5) 170 

The PSD approaches ∞ as 𝜔𝜔 approaches 0. Also, Eq. (5) tells us that as 𝑑𝑑 increases, ℎ(𝜔𝜔) 171 

increases(Granger and Joyeux, 1980) . In the time-series domain, it means that an increase in the 172 

parameter 𝑑𝑑 results in an increase in the amplitude of low-frequency (long timescales) fluctuations.  173 

The effect of different parameters of the FARIMA model on time-series characteristics has been 174 

illustrated in Figure 1 with some synthetic time series. In this illustration, the number of AR (𝑝𝑝) 175 

and the number of MA parameters (𝑞𝑞) were fixed to 1. The value of the MA parameter was fixed 176 

at 0.5; the values of AR parameter and 𝑑𝑑 were varied. Figure1a shows the time-series generated 177 

by setting FARIMA parameters to different values at a daily timescale. Figure 1b and 1c show the 178 

moving average of time-series shown in Figure 1a with moving window lengths of 1 month and 1 179 

year, respectively. When the value of 𝑑𝑑 is increased from 0 to 0.25 keeping the AR1 parameter 180 

fixed, the two time-series show similar qualitative behavior at daily timescale (Figure 1a). But at 181 

the monthly and yearly timescales, the amplitudes of fluctuations are larger when 𝑑𝑑 = 0.25. It 182 

shows that the parameter 𝑑𝑑 affects the long timescale (low frequency) behavior of the time-series. 183 

The short timescale (high frequency) behavior is unaffected by the parameter 𝑑𝑑. When the AR1 184 

parameter is increased from 0.25 to 0.75 keeping the parameter 𝑑𝑑 fixed, the amplitude of 185 

fluctuations becomes larger at all the timescales. Change in AR1 parameter has more profound 186 

impact on the daily timescale fluctuations than the change in parameter 𝑑𝑑. At long timescales, the 187 

change in parameter 𝑑𝑑 has more profound impact on time-series fluctuations than the change in 188 

AR1 parameter has. 189 

Area under the PSD of a stationary process is equal to the variance of the process (Priestley, 1982). 190 

PSD divided by the variance is referred to as normalized power spectral density (NPSD). Also, the 191 

NPSD of a stationary process and its autocorrelation function form a Fourier transform pair 192 

(Priestley, 1982). Therefore, analyzing the NPSD of a stationary process is equivalent to analyzing 193 

its correlation structure. Also, NPSD provides a clean way of separating the contribution of 194 

different frequency components to the correlation structure. Therefore, in this study, the NPSD of 195 

the fitted FARIMA models was analyzed to detect streamflow regime changes.  196 
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Figure 2 shows the NPSD for different values of FARIMA parameters on a log-log graph. In all 197 

three cases, increasing the parameter value increases the NPSD values at smaller frequencies, and 198 

decreases the NPSD values at higher frequencies. However, the differences are more profound 199 

when the value of 𝑑𝑑 is changed. Also, NPSD of only the extremely high frequency components 200 

(>0.3 cycles per day) decreases by increasing the MA1 parameter value. 201 

 202 
Figure 1. (a) Time-series generated by FARIMA model for different value of AR1 parameter and 𝑑𝑑 parameter at 203 

daily timescale; (b) 1-month and (c) 1-year moving average time-series of time-series shown in (a). Time-series was 204 
generated for 10000 different timesteps. In subplots (a) and (b), first 200 and 1000 timesteps are shown, 205 

respectively, for the sake of clarity. 206 

2.2 Parameter estimation of FARIMA models 207 

Parameters of the FARIMA models were estimated using the same method as that of Monatanari 208 

et al. (1997). Details of the parameter estimation method have been provided in Supporting 209 

Information (SI). Briefly, a two-step procedure was used to the estimate the parameters. In the first 210 

step, a preliminary estimate of the parameter 𝑑𝑑 was obtained using two heuristic methods. The 211 

average of the two values obtained using these methods was considered as a preliminary estimate 212 

of 𝑑𝑑. Then the AR and MA model orders 𝑝𝑝opt and 𝑞𝑞opt were determined. In the second step, a 213 

statistical procedure (see SI) was followed to estimate the parameter 𝑑𝑑, AR parameters, and MA 214 

parameters. In this step, number of AR parameters were fixed to 𝑝𝑝opt and 𝑞𝑞opt as obtained in the 215 

previous step. 216 
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 217 
Figure 2. Normalized power spectral density of FARIMA processes for different value of the parameters. The base 218 

model has the parameter values 𝑑𝑑 = 0.1, 𝜙𝜙1 = 0.1,  𝜓𝜓1 = 0.1. In the subplot (a), (b), and (c), the values of 219 
parameter 𝑑𝑑,𝜙𝜙1 and 𝜓𝜓1 are changed from their base values, respectively. 220 

 221 

To validate the FARIMA models, the autocorrelations of the obtained residual time-series were 222 

analyzed. The results are shown in SI. For most of the models, the autocorrelations at any lag were 223 

statistically indistinguishable from zero. For a few models, however, the autocorrelation was 224 

greater than 0.15 at a few time-steps. These models and corresponding watersheds were removed 225 

from the subsequent analysis. The conditions imposed in this study is typically appropriate for 226 

model validation (see Montanari et al., 1997). The residuals, however, did not follow the Gaussian 227 

distribution for most of the models. But, as pointed out by Montanari et al. (1997) (and the 228 

references therein), deviation from Normality does not affect the parameter estimation of FARIMA 229 

models.  230 

2.3 Measurement of change in power spectral density 231 

To analyze the changes in hydrologic regime, a moving window approach was taken with the 232 

window length of 10 years and with moving step of 3 years (Table. 1). Thus, the study period 233 

(1980-2013 water years) was broken up into 9 overlapping windows of 10 years each. The 234 

FARIMA model was fit to deseasonalized time-series for different moving average windows as 235 

illustrated in Table 1. Thus, as many sets of FARIMA parameters were obtained as the number of 236 

moving windows. Each set of parameters results in an NPSD (𝑓𝑓(𝜔𝜔) vs. 𝜔𝜔) computed by Equation 237 

(4). To detect the changes in streamflow regime, the trend in area under 𝑓𝑓(𝜔𝜔) for different ranges 238 

of 𝜔𝜔 was computed (Figure 3). The frequency range was split into five different regions (units in 239 

cycles per day – c.p.d.): (1) less than 1/365 c.p.d. (greater than 1-year timescales), (2) 1/365 to 240 

1/120 c.p.d. (4-months to 1-year timescales), (3) 1/120 to 1/30 c.p.d. (1-month to 4-months 241 
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timescales), (4) 1/30 to 1/15 c.p.d. (2-weeks to 1-month timescales), and (5) greater than 1/15 242 

c.p.d (less than 2-weeks timescale). For the ease of discussion, two more frequency regions were 243 

used: 1/365 to 1/30 c.p.d. (1-month to 1-year timescales) and greater than 1/30 c.p.d. (less than 1-244 

month timescales). The area under NPSD in a given frequency region (𝜔𝜔1,𝜔𝜔2) is 245 

𝐹𝐹(𝜔𝜔1,𝜔𝜔2) = ∫ 𝑓𝑓(𝜔𝜔)𝜔𝜔2
𝜔𝜔1

d𝜔𝜔,   (6) 246 

which is equal to the contribution of the components with frequency between 𝜔𝜔1 and 𝜔𝜔2 to the 247 

total variance. Since the area under NPSD is equal to 1, an increase in the contribution of high 248 

frequency contribution implies a decrease in low frequency components as is also illustrated in 249 

Figure 3. 250 

Let 𝐹𝐹𝑖𝑖
𝑗𝑗(𝜔𝜔𝑖𝑖,𝜔𝜔𝑖𝑖+1) be the area under 𝑓𝑓(𝜔𝜔) for 𝑖𝑖th frequency region and 𝑗𝑗th time-window. The trend 251 

in 𝐹𝐹𝑖𝑖
𝑗𝑗(𝜔𝜔𝑖𝑖,𝜔𝜔𝑖𝑖+1) across time periods can be estimated with a linear fit: 𝐹𝐹𝑖𝑖

𝑗𝑗(𝜔𝜔𝑖𝑖,𝜔𝜔𝑖𝑖+1) = 𝛾𝛾𝑗𝑗 + 𝑐𝑐, 252 

where 𝛾𝛾 is the trend, and 𝑐𝑐 is the intercept. The sign of 𝛾𝛾 indicates whether the contribution of a 253 

frequency region to total streamflow variance is increasing (positive 𝛾𝛾) or decreasing (negative 𝛾𝛾) 254 

over time. The magnitude of 𝛾𝛾 indicates the extent of change: larger (smaller) magnitude of 𝛾𝛾 255 

implies larger (smaller) change. A trend was considered statistically significant if the 𝑝𝑝 value of 256 

the slope 𝛾𝛾 was less than or equal to 0.05. We refer to this test as first significance test. 257 

Table 1. An example of moving windows used for analysis. 258 
Window 
Number 

Time-period 
(years) 

1 1980-1989 
2 1983-1992 
3 1986-1995 
4 1989-1998 
5 1992-2001 
6 1995-2004 
7 1998-2007 
8 2001-2010 
9 2004-2013 
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 259 
Figure 3. Normalized power spectral density over 9 different time-windows (see Table 1). The frequency range is 260 

divided into 5 different regions as labels at the top of the plot. 261 

 262 

In addition, statistical significance of each trend was computed by another method. Using the 263 

posterior probability distribution of the FARIMA parameters, the posterior probability distribution 264 

of NPSD was obtained. This, in turn, was used to compute probability distribution over area under 265 

NPSD in each frequency region across the time periods. Thus, for each frequency region, we had 266 

probability distribution of 𝐹𝐹𝑖𝑖
𝑗𝑗(𝜔𝜔𝑖𝑖,𝜔𝜔𝑖𝑖+1) for the first and last time-windows. Let these probability 267 

distributions be denoted by 𝑃𝑃1(𝐹𝐹) and 𝑃𝑃2(𝐹𝐹) with respective mean values 𝑚𝑚1 and 𝑚𝑚2. For the 268 

trend to be significant, we imposed the condition that 𝑚𝑚1 and 𝑚𝑚2 should belong to different 269 

statistical populations. Toward this end, a probability 𝑝𝑝s was computed: 270 

𝑝𝑝s = �
𝑃𝑃1(𝐹𝐹≥𝑚𝑚2)+𝑃𝑃2(𝐹𝐹≤𝑚𝑚1)

2
, 𝑚𝑚1 < 𝑚𝑚2;

𝑃𝑃1(𝐹𝐹≤𝑚𝑚2)+𝑃𝑃2(𝐹𝐹≥𝑚𝑚1)
2

, 𝑚𝑚1 ≥ 𝑚𝑚2.
  (7) 271 

For the trend to be significant, 𝑝𝑝𝑠𝑠 should be less than 0.05. We refer to this test as the second 272 

significance test. In summary, a trend was deemed statistically significant only if it came out to be 273 

significant using both first and second statistical significance tests. This means that the change in 274 

streamflow regime should be consistent in time and the streamflow regime in the first and last 275 

time-windows should be significantly different.  276 
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We note that Gudmundsson et al. (2011) studied contribution of low frequency components 277 

(greater than 1-year timescale) to total streamflow variance in several European watersheds. They 278 

estimated this quantity by using the LOWESS method directly instead of using spectral 279 

decomposition as discussed above. They did compare their results with those obtained by using 280 

the spectral method and concluded that both the methods yield similar estimates. But they only 281 

studied the spatial variation of this quantity, not the change in time. 282 

In what follows, area under NPSD in the frequency region greater than 1-year timescale will be 283 

denoted by 𝐹𝐹0. Similarly, area under NPSD in the frequency region 4-months to 1-year timescales, 284 

1-month to 4-months timescales, 2-weeks to 1-month timescales, less than 2-weeks timescales, 1-285 

month to 1-year timescales, and less than 1-month timescales will be denoted by 𝐹𝐹1,𝐹𝐹2,𝐹𝐹3,𝐹𝐹4,𝐹𝐹5, 286 

and 𝐹𝐹6, respectively. 287 

2.4 Methodology for finding causes of changes in statistical structure of streamflows 288 

To understand the changes in statistical structure of streamflows, statistical methods were used. 289 

First, the variables related to the change in 𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 0,1, … 6 were identified. Second, possible 290 

mechanisms via which each variable might have affected the 𝐹𝐹𝑖𝑖 values were hypothesized. To 291 

carry out this analysis watersheds were divided into two groups: snow-dominated and rain-292 

dominated watersheds. The analysis was carried out separately for these two groups. 293 

The variables explored include static catchment attributes including soil properties, geological 294 

properties, topography, and climate. Change in climatic statistics were also explored as possible 295 

causes of change in 𝐹𝐹𝑖𝑖s. These include change in precipitation related variables and change in 296 

temperature related variables. For example, change in total annual precipitation depth, change in 297 

OND (Oct-Nov-Dec) total precipitation depth, and change in mean annual temperature. Change in 298 

climatic variables was computed using the same moving windows as for the case of change in 299 

streamflow statistical structure (Table 1). Additionally, variables capturing snowmelt dynamics in 300 

snow-dominated watersheds and rainfall-runoff dynamics in rain-dominated watersheds were also 301 

used. The details of these variables are given in section 6 and 7 and in SI. A list of all the variables 302 

used in this study is included in Table A1. 303 

Among all the variables, important variables explaining the change in 𝐹𝐹𝑖𝑖 were identified using the 304 

random forest algorithm (Brieman, 2002) and simple linear regression. A variable was considered 305 
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important using simple linear regression if the regression coefficient was statistically significantly 306 

different from 0 at 5% significance level. Two linear fits were made for each combination of Δ𝐹𝐹𝑖𝑖 307 

and predictor variable: (1) using all the watersheds, and (2) using only the watershed for which 308 

Δ𝐹𝐹𝑖𝑖 was significant according to both first and second significance test.  All the variables for which 309 

the slope of either of the two linear fits was significant at the 5% significance level were considered 310 

important. Random forest has the advantage that it can identify non-linear correlations between 311 

two variables. However, we found that both the random forest and linear regression yielded the 312 

same variables as important. 313 

Though linear regression yields the important predictor variables it can be misleading because of 314 

large scatter in the relationship between Δ𝐹𝐹𝑖𝑖 and other variables. Essentially, the linear fit may 315 

have a statistically significant slope, but it is possible that not all the watersheds satisfy the 316 

relationship suggested by the line.  Therefore, probability densities of important variables 317 

conditioned upon the event that Δ𝐹𝐹𝑖𝑖 was positive or negative were plotted to understand the effect 318 

of a variable on Δ𝐹𝐹𝑖𝑖. This procedure is similar to computing mutual information between Δ𝐹𝐹𝑖𝑖 and 319 

a variable, but more transparent as shown in section 7. 320 

3. Study area and data 321 

To achieve the objectives of this study, Catchments Attributes and Meteorology for Large Sample 322 

studies (CAMELS) dataset (Addor et al., 2017a and 2017b) was used. The CAMELS dataset was 323 

chosen because it contains hydro-meteorological dataset for a large number of watersheds (671) 324 

across the contiguous USA. Also, the CAMELS watersheds are unregulated and free of 325 

anthropogenic land-use changes. The time-period of the data is water years 1980-2013. In this 326 

study, we included watersheds that had at least 30 years of complete data; there were a total of 614 327 

such watersheds.  328 

Exploratory analysis shows that significant warming has occurred in CAMELS watersheds across 329 

USA. Figure 4 shows the trends in several climatic variables over the study period. These trends 330 

were computed as slope of the linear fit on the plot of climatic variable vs. year. A trend was 331 

considered statistically significant if the 𝑝𝑝 value of the slope was less than 0.05. Mean minimum 332 

daily temperature has increased (positive trend) for most of the watersheds with largest increases 333 

across the western US. There exist a few watersheds where the mean minimum daily temperature 334 
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has decreased (though the trend is statistically insignificant in most of these watersheds). The 335 

majority of these cooling watersheds lie in the Great Plains region and Florida (a reference to 336 

different hydro-climatological regions is given in Appendix). There exists considerable variation 337 

in the trend of mean maximum daily temperatures. Snow-dominated watersheds located in the 338 

Rocky Mountains and High Plains have experienced a large increase in mean maximum daily 339 

temperatures. Several rain-dominated watersheds located in the Pacific Northwest and Pacific 340 

Coast have experienced a decreasing trend in mean maximum daily temperatures. Many of the 341 

watersheds located in the eastern USA experienced a negative trend in mean maximum daily 342 

temperatures (though statistically insignificant), especially those in the Great Plains. Further, 343 

Figures 4c and 4d show trend in OND (Oct-Nov-Dec) and AMJ (April-May-Jun) maximum daily 344 

temperature. Maximum daily temperatures in OND months increased across USA with large 345 

increases in the arid Great Plains, High Plains,  Mississippi Valley, humid Atlantic Coast, and 346 

Great Lakes region. The OND maximum daily temperature trends are moderate in the Gulf and 347 

Pacific Coast, and the Pacific Northwestern watersheds. Maximum daily temperature in AMJ 348 

months has decreased across USA except in western Gulf Coast. Most significant decreases were 349 

noted in the Pacific Northwest, Pacific Coast, and Atlantic Coast. As will be discussed below, 350 

changes in OND and AMJ maximum temperatures have significant control over changes in 351 

streamflow regime. 352 

Figures 4e-4h shows changes in rainfall statistics. There is a strong north-south gradient in the 353 

trend in number of rain days: In northern (southern) watersheds, number of rain days have 354 

increased (decreased). The trend in number of storms has a weak north-south gradient. In many 355 

regions, the number of rainstorms has decreased but number of rain days have increased. This 356 

implies that more rain is falling in fewer storms of longer duration in these regions. These regions 357 

include the Pacific Northwest and north-eastern part of Atlantic Coast. In the north-eastern part of 358 

Atlantic coast, total rainfall depth and mean storm depth has increased. The trend in total rainfall 359 

depth has a strong north-south gradient, especially in eastern USA: total rainfall increased in 360 

northern watersheds and decreased in southern watersheds. Mean storm depth - the average rainfall 361 

depth on rainy days - has more spatial variability compared to the other three rainfall statistics. 362 

The only clear patterns are that mean storm depth has increased in the Atlantic Coast region and 363 

decreased in the High Plains region. 364 
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In summary, Figure 4 convincingly shows that both temperature and rainfall statistics have 365 

changed across the USA. Since temperature and precipitation have strong control over hydrologic 366 

regime, at least some of the CAMELS watersheds are likely to have undergone a hydrologic regime 367 

change. Increase in atmospheric CO2 can also result in changes in vegetation characteristics such 368 

as water use efficiency (Donohue et al., 2013) which, in turn, may affect the hydrologic regime. 369 

Significant increases in temperatures along with the fact that global average CO2 has increased 370 

over the period 1980 to 2014 (from 338.91 ppm in 1980 to 397.34 ppm in 2014; Dlugokencky and 371 

Tans, gml.noaa.gov/ccgg/trends/, accessed on 17 Mar 2022) indicates significant change in climate 372 

has occurred between this period beyond the natural climate variability.  373 

 374 
Figure 4. Trends in climatic variables (a) daily minimum temperature, (b) daily maximum temperature, (c) and (d) 375 

OND and AMJ daily maximum temperatures, respectively, (e) number of rain days (in days decade-1), (f) number of 376 
storms (in decade -1), (g) total rainfall depth (in mm decade -1), and (h) mean storm depth (in mm day-1 decade-1). The 377 

units of all the temperature statistics are °C  decade -1. The red colored symbols indicate positive trend and blue 378 
colored symbols indicate negative trend. The ‘+’ sign indicates that trend is statistically significant at 5% level. One 379 

time-window refers to 10 years period as indicated in Table 1. 380 

 381 

4. Spatial distribution of streamflow regime in USA as measured by NPSD 382 

Figure 5 (a, b, c, d) shows the contribution of different frequency regions to streamflow variance 383 

in CAMELS watersheds during the first time-window (1980-1989 water years). Contribution of 384 

greater than 1-year timescales components to total streamflow (𝐹𝐹0) was less than 10% in most of 385 

the rain dominated watersheds of eastern USA and Pacific Northwest (Figure 5c). Conversely, 386 

large contributions from this frequency region were found in snow dominated watersheds in the 387 

Rocky Mountains region, the High Plains, the Sierra Mountains in California, and the Pacific 388 

Coast. 389 

http://gml.noaa.gov/ccgg/trends/
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The contribution of 1-month to 1-year timescale component (𝐹𝐹5; Figure 5b) is very small in the 390 

Great Plains and the Mississippi Valley compared to that in other regions. The highest value of F5 391 

(>50%) was found in snow dominated watersheds of the Rocky Mountains and High Plains. In the 392 

Pacific Northwest and the Atlantic Coastal region, 𝐹𝐹5 values range from 25 to 50%. The values of 393 

𝐹𝐹5 follow the broadscale pattern of baseflow index (𝐵𝐵𝐹𝐹𝐵𝐵; see Figure 4 in Addor et al., 2017). The 394 

𝐵𝐵𝐹𝐹𝐵𝐵 values are below 0.5 in Great Plains and Mississippi Valley, greater than 0.6 in Rocky 395 

Mountains and High Plains, and between 0.40 and 0.60 in Pacific Northwest and Atlantic Coastal 396 

region. Moreover, the scatter plot (not shown) of the 𝐵𝐵𝐹𝐹𝐵𝐵 and 𝐹𝐹5 shows that as the 𝐵𝐵𝐹𝐹𝐵𝐵 increases 397 

from 0 to 0.4, the contribution of this frequency region also increases. Beyond, a 𝐵𝐵𝐹𝐹𝐵𝐵 value of 0.4, 398 

however, there exist a few watersheds where 𝐹𝐹5 values are low. Overall, the contribution of 399 

baseflow to total streamflow appears to be an important factor determining the values of 𝐹𝐹5. 400 

Interflow might also be responsible for the contribution of 1-month to 1-year frequency region. 401 

The contribution of less than 1-month timescales component, 𝐹𝐹6, Figure (5a) to total streamflow 402 

variance is small (<25%) in cold snow dominated watersheds of the western USA. In the Pacific 403 

Northwest and Pacific Coast, 𝐹𝐹6 values are between 25% and 75%, but mostly greater than 50%.  404 

In most of the eastern USA watersheds, the contribution of this frequency component is greater 405 

than 50%. In the Great Plains and the Mississippi valley, the contribution of this component is 406 

greater than 75% in many watersheds. These are dry watersheds where most of the rainwater 407 

evaporates back to the atmosphere, and only the intense storms reach the river network. Therefore, 408 

the contribution of low (high) frequency components is very low (high) in these watersheds. Since 409 

the contributions of low and high frequency components are one-to-one related (an increase in one 410 

implies a decrease in other), 𝐵𝐵𝐹𝐹𝐵𝐵 explains some of the spatial variation in 𝐹𝐹6: lower 𝐵𝐵𝐹𝐹𝐵𝐵 means 411 

higher 𝐹𝐹6. It is noteworthy that in snow dominated watersheds with the fraction of snow > 0.40 412 

(fraction of precipitation falling as snow), the value of 𝐹𝐹6 increases with an increase in mean 413 

rainfall. 414 

In rain driven watersheds, a linear relationship (slope = −0.054, p-value = 0.0045,𝑅𝑅2 = 0.033) 415 

between the slope of the flow duration curve (FDC; Addor et al., 2017) and 𝐹𝐹6 was found. Smaller 416 

slopes of FDC imply smaller variability in streamflow. Thus, the negative correlation between 417 

FDC slope and contribution of high frequency region indicates that watersheds with less variability 418 

in streamflow values exhibit more contributions from high frequency components. For example, 419 
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in ephemeral streams, streamflow variability is low as it stays dry during most of the water year; 420 

therefore, the low (high) frequency component is very small (large). 421 

The contribution of 2-weeks to 1-month timescale component to total streamflow variance (𝐹𝐹3) is 422 

very small for most of the watersheds. But there exist a cluster of watersheds in the Pacific 423 

Northwest where 𝐹𝐹3 values are greater than 20%. In fact, in most of the Pacific Northwestern 424 

watersheds, 𝐹𝐹3 values are greater than 15%. The 𝐹𝐹3 values are also greater than 15% in several 425 

eastern snow dominated watersheds.  426 

It was observed that 𝐹𝐹3 was positively correlated with mean precipitation (𝑅𝑅2 = 0.206, p-value  427 

= 1.70 × 10−28), negatively correlated with potential evapotranspiration (PET; 𝑅𝑅2 = 0.115, p-428 

value = 1.62 × 10−15). This indicates that 𝐹𝐹3 values are high in watersheds with high total 429 

precipitation and low ET, i.e., 𝐹𝐹3 values are high in humid watersheds.  Further, 𝐹𝐹3 was negatively 430 

correlated with low rainfall frequency (𝑅𝑅2 = 0.157, p-value = 6.15 × 10−21) and negatively 431 

correlated with high rainfall frequency (𝑅𝑅2 = 0.093, p-value = 1.25 × 10−12). It indicates that 432 

watersheds where rainfall event characteristics are such that it allows the water to stay in the soils 433 

for a long time compared to the timescale of quick flow and percolation, the 𝐹𝐹3 values are high. 434 

These results indicate that interflow may be responsible for creating 2-weeks to 1-month 435 

timescales component. Wu et al., (2021) showed that lateral preferential flows are important 436 

streamflow generation mechanism in Pacific Northwestern watersheds. 437 

Figure 5e shows the spatial variation of the parameter 𝑑𝑑 in CAMELS watersheds. There is a large 438 

spatial variation in the values of 𝑑𝑑, but some general patterns can be observed. Very high value of 439 

𝑑𝑑 (>0.30) are typically observed in western snow-dominated watersheds where contribution of low 440 

frequency components was significant. In most of the eastern rain-driven watersheds, the 𝑑𝑑 values 441 

were less than 0.30. There was strong linear relationship between 𝐵𝐵𝐹𝐹𝐵𝐵 and 𝑑𝑑 value (slope = 0.22, 442 

𝑝𝑝 ≈ 10−31, 𝑅𝑅2 = 0.23). Also, the linear relationship was stronger when 𝐵𝐵𝐹𝐹𝐵𝐵 increased from 0 to 443 

0.25 - at very low value of 𝐵𝐵𝐹𝐹𝐵𝐵 the 𝑑𝑑 value was close to 0. This indicates that the baseflow is the 444 

essential factor for the existence of long-persistence in streamflow time-series. Many of the 445 

watersheds in the Pacific Northwest, Great Plains, Great Lakes and Atlantic Coast region had 𝑑𝑑 446 

values less than 0.10, despite having moderately high values of 𝐵𝐵𝐹𝐹𝐵𝐵 (>0.40) except in the Great 447 

Plains. The reason for such small value of 𝑑𝑑 is not clear and further exploration is out of the scope 448 

of this paper. 449 
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The long-term persistence (high 𝑑𝑑 value) in a time-series may result from aggregation of short-450 

memory processes (Granger, 1980). Muldesee (2007) argued that long-term persistence in 451 

streamflow time-series may also be a result of aggregation of several short-memory processes in 452 

a watershed. They showed that the value of 𝑑𝑑 increases with increasing drainage area as one moves 453 

downstream in a river network. Therefore, it is reasonable to expect that watersheds with large 454 

drainage areas may show higher 𝑑𝑑 value in their corresponding streamflow time-series. Such a 455 

relation between drainage area and 𝑑𝑑, however, was not observed in this study. 456 

It can be concluded that long-time scale fluctuations and long-term persistence even in a 457 

deseasonalized streamflow time-series are determined by low frequency processes such 458 

contribution of baseflow, fraction of snow, and possibly interflow. High frequency components 459 

are determined by quick flow, interflow, and ET. Also note that other researchers have reported 460 

higher contribution of low frequency component to streamflow (e.g., Gudmundsson et al., 2011) 461 

compared to those reported in this study. This is due to the seasonal component of the hydrologic 462 

cycle. In this study, the seasonal component had been removed from the streamflow time-series; 463 

therefore, 𝐹𝐹0 values came out to be smaller. 464 
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 465 
Figure 5. (a), (b), (c) Area under NPSD in different frequency regions, and (d) value of the parameters 𝑑𝑑 across 466 

USA. These results correspond to first 10-year moving window. 467 

 468 

5. Change in streamflow regime as measured by change in NPSD 469 

Figure 6 shows the spatial distribution of trends in 𝐹𝐹(𝜔𝜔𝑖𝑖,𝜔𝜔𝑖𝑖+1) for short timescales: Less than 1-470 

month (𝐹𝐹6), 2-weeks to 1-month timescales (𝐹𝐹3), and less than 2-weeks (𝐹𝐹4). Overall, the spatial 471 

distribution of trends is patchy. But a spatial structure, albeit weak, is still visible such that 472 

watersheds with positive (negative) changes tend to be clustered together in small groups. This is 473 

especially true for the watersheds located in the Pacific Northwest, Gulf coast, Atlantic coast, and 474 

Great Lakes Region.  It indicates that the process that has caused these changes is spatially 475 

correlated: change in climate seems to be one of the causes. But climate change alone cannot 476 

explain these changes since the correlation length of these trends is significantly smaller than the 477 

correlation length of trends in climatic variables such as temperature and rainfall (Figure 4). 478 
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Further, it implies that the effect of climate change on streamflow regime is strongly modulated 479 

by watershed characteristics such as soil properties, and geomorphological characteristics. This 480 

will be explored in subsequent sections. 481 

 482 
Figure 6. Trend in area under NPSD for high frequency regions (a) less than 1-month timescale, (b) less than 2-483 

weaks timescale, and (c) 2-weeks to 1-month timescale. The watersheds with transparent symbols indicate that the 484 
trend is statistically insignificant according to the first significance test. Larger (smaller) sized circles represent 485 

larger (smaller) magnitude of change. 486 

 487 

Most of the snow dominated watersheds in eastern USA (located in the northern Atlantic Coastal 488 

region and Michigan) exhibited positive trends in 𝐹𝐹6 and 𝐹𝐹4. In western snow dominated 489 

watersheds, both negative and positive trends in 𝐹𝐹6 and 𝐹𝐹4 were observed but most of the 490 

statistically significant trends were positive.  Watersheds with negative trends were mostly in the 491 

eastern Rocky Mountains. The trends in 𝐹𝐹3 were positive in most of the Rocky Mountain 492 

watersheds and negative in the eastern snow dominated watersheds, but the magnitude of trend 493 

was very small compared to that in 𝐹𝐹4. Overall, it can be concluded that in majority of the snow-494 

dominated watersheds the contribution of high frequency components to total variance has 495 

increased over the study period, with the exception of eastern Rocky Mountains. Several different 496 

mechanisms are plausible that could affect this change: (1) Increase in runoff-producing rainfall 497 



21 
 

events, (2) change in temperature snow relationship (Horner et al., 2020), (3) change in snow 498 

storage (including spatial distribution), and (4) change in temperature regime. It is likely that the 499 

combination of these mechanisms rather than one individual mechanism is responsible for the 500 

changes.   501 

In rain driven watersheds, other than spatial clustering of positive trends with positive trends and 502 

that of negative trends with negative trends, a few other patterns are visible. Most of the humid 503 

watersheds located in the Pacific Northwest region the Gulf Coast region showed a negative trend 504 

in 𝐹𝐹6. But the trend in 𝐹𝐹4 was positive in many of the watersheds in the Pacific Northwest, while 505 

in the Gulf Coast the trend in 𝐹𝐹4 was also negative. Overall, it appears that humid watersheds are 506 

becoming drier which is possible due to change in rainfall statistics in these watersheds. Another 507 

possibility is that change in evapotranspiration statistics in these watersheds is caused by change 508 

in temperature which, in turn, will change the soil moisture dynamics. A decrease in mean soil 509 

moisture in humid watersheds will result in a decrease in the contribution of high frequency 510 

components to streamflow. This will be discussed in subsequent sections. In the Great Plains, both 511 

increasing and decreasing trends in 𝐹𝐹4 and 𝐹𝐹6 were observed. 512 

The trend in 𝐹𝐹3 showed two clear patterns: (1) Most of the statistically significant trends were 513 

negative in the watersheds in the Pacific and Atlantic coastal regions, and (2) Most of the 514 

statistically significant trends in the Rocky Mountains, Great Plains, Mississippi Valley, and Gulf 515 

Coast were positive. The trends in 𝐹𝐹3 were of small magnitude compared to those in 𝐹𝐹4 and 𝐹𝐹5. 516 

This is because the contribution of 𝐹𝐹3 (one month to one-year time scales) is very small in most of 517 

the watersheds to begin with. A remarkable result is that the 𝐹𝐹3 values have decreased in almost 518 

all the Pacific region watersheds. 519 

Figure 7 shows the spatial distribution of trends in long timescales fluctuations: Greater than 1-520 

year (𝐹𝐹0), 4-months to 1-year (𝐹𝐹1), and 1-month to 4-months (𝐹𝐹2) timescales. Similar to short-521 

timescale trends, a weak spatial clustering of positive trends with positive trends and negative 522 

trends with negative trends is observed for long timescale trends. The magnitude of trends in 𝐹𝐹0 is 523 

larger in the watersheds located in Western USA. In most of the western snow-dominated 524 

watersheds, the value of 𝐹𝐹0 decreased, and the magnitude of decrease is relatively large. But the 525 

trend was statistically significant only in three watersheds, which might be due to the small 526 

magnitude of 𝐹𝐹0 value. There is some spatial variability in the 𝐹𝐹0 in eastern USA snow-dominated 527 
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watersheds. This is explained by the fact that in eastern snow dominated watersheds, the 528 

contribution of components at greater than 1-year timescales is smaller. 529 

 530 
Figure 7. Trend in area under NPSD for low frequency regions (a) greater than 1-year timescale, (b) 4-months to 1-531 

year timescale, and (c) less than 4-months timescale. The watersheds with transparent symbols indicate that the 532 
trend is statistically insignificant according to the first significance test. Larger (smaller) sized circles represent 533 

larger (smaller) magnitude of change. 534 

 535 

The values of 𝐹𝐹1 and 𝐹𝐹2 decreased in most of the eastern snow-dominated watersheds. The value 536 

of 𝐹𝐹1 increased in all the snow dominated watersheds in the eastern Rocky Mountains while it 537 

decreased in many of the western Rocky Mountains. The reason for difference in trends of eastern 538 

and western snow dominated watersheds is discussed below. 539 

Most of the rain-dominated watersheds in the Pacific Northwest exhibited positive trends in 𝐹𝐹0 540 

and 𝐹𝐹1, and negative trends in 𝐹𝐹2. Similarly, most of the watersheds in the Pacific Coast exhibited 541 

negative trends in 𝐹𝐹0 though trend was statistically significant only for one watershed. The trends 542 

in 𝐹𝐹0, 𝐹𝐹1, and 𝐹𝐹2 were positive in most of the Gulf Coast watersheds. Most of rain dominated 543 

watersheds in the Great Plains exhibited a decrease in 𝐹𝐹0, 𝐹𝐹1, and 𝐹𝐹2. But there were several 544 

watersheds in this region where 𝐹𝐹0, 𝐹𝐹1, and 𝐹𝐹2 increased. 545 
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In summary, streamflow statistical structure has changed in many of the watersheds across USA. 546 

There is some spatial structure in the regime change: watersheds close to each other show similar 547 

types of changes. The spatial structure of change in snow dominated watersheds is stronger than 548 

in rain-dominated watersheds. Also, the western and eastern snow dominated watersheds showed 549 

some difference in trends in long timescale components. In the western watersheds, the negative 550 

trends were observed in 𝐹𝐹0 values. In the eastern watersheds, the negative trends were observed in 551 

𝐹𝐹1 and 𝐹𝐹2. Also, positive trends in 𝐹𝐹1 were observed in western snow dominated watersheds. In 552 

the humid watersheds of the Pacific Northwest and Gulf Coast, contribution of high frequency 553 

components decreased. The next two sections focus on the causes of regime change in snow and 554 

rain-dominated watersheds, respectively. The discussion of causes of change in high frequency 555 

and low frequency effects is generally limited to the F6 and F5, respectively. 556 

6. Causes of streamflow regime change in snow-dominated watersheds 557 

In this section, we explore the causes of streamflow regime changes in snow-dominated 558 

watersheds. Most of these watersheds are in the Rocky Mountains, High Plains, and the Atlantic 559 

region. There are other watersheds where snowmelt contributes to streamflow, but rainfall is the 560 

primary driver in those watersheds. In snow-dominated watersheds, snowmelt is the primary driver 561 

of streamflow. Snow accumulates during the winter season during low temperatures and melts 562 

during spring and early summer due to rising temperatures. The process of snowmelt is largely 563 

controlled by the amount and spatial distribution of snowpack, measured as snow water equivalent 564 

(SWE), and dynamics of temperature. The changes in streamflow regime in snow-dominated 565 

watersheds may occur due to change in the SWE and/or temperature dynamics. Change in either 566 

of the two will result in the change in temperature-snowmelt relationship. Note that precipitation 567 

falls as liquid also in these watersheds but that is the secondary determinant of streamflow regime. 568 

In this study, snow signatures proposed by Horner et al., (2020) were used to identify the changes 569 

in temperature snow relationship. They defined streamflow, temperature, and SWE regimes as a 570 

30-day moving average of seasonal component. Let us denote streamflow, temperature, and SWE 571 

regimes by 𝑄𝑄reg, 𝑇𝑇reg, and 𝑆𝑆𝑆𝑆𝐸𝐸reg, respectively.  Figure 8 shows the relationship between 572 

temperature and streamflow regimes for a hypothetical snow dominated watershed. The segment 573 

AB is the snowmelt period where both streamflow and temperature rises. Streamflow reaches its 574 

peak at point B. After point B, temperature continues to rise but streamflow decreases because of 575 
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the lack of snow availability. During segment CD, temperature decreases without significant 576 

change in streamflow. During the segment DA, snow accumulates. The segments AB and CD 577 

capture the snowmelt dynamics. Horner et al. (2020) fitted linear relationships between 578 

temperature and streamflow regimes to model segments AB and CD and defined the slopes of 579 

these segments as snow signatures. In the study, we found that the linear relation was a good model 580 

for the segment AB but not for the segment BC. Therefore, we focused only on segment AB which 581 

we refer to as the rising limb of temperature-streamflow relationship. Let this relationship be 582 

modeled as 583 

 𝑄𝑄�reg,𝑖𝑖 = 𝛿𝛿snow𝑇𝑇reg,𝑖𝑖 + 𝛽𝛽snow, (8) 

where 𝑇𝑇reg,𝑖𝑖 and 𝑄𝑄�reg,𝑖𝑖 denote the temperature and estimated streamflow regime value on 𝑖𝑖th day 584 

of the water year during the first phase of snowmelt (limb AB), 𝛿𝛿snow and 𝛽𝛽snow denote the slope 585 

and intercept of the relationship. We used both 𝛿𝛿snow and 𝛽𝛽snow as the snow signatures. 586 

 587 
Figure 8. Relation between the temperature and streamflow regimes. 𝑇𝑇reg is the temperature regime of the mean 588 

watershed temperature. 𝑇𝑇s denotes the threshold mean watershed temperature at which snowmelt starts. The 589 
locations of the points A, B, C, and D is approximate. 590 

The slope, 𝛿𝛿snow, is a measure of rate of increase of snowmelt per unit increase in temperature. 591 

The intercept 𝛽𝛽snow is the streamflow when the mean temperature is zero and snowmelt has not 592 

started. An intuitive way of thinking about 𝛽𝛽snow is as follows.  For a given value of 𝛿𝛿snow, the 593 
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value of 𝛽𝛽snow determines the point where line AB intersects with the x-axis (𝑄𝑄reg = 0).  By 594 

making 𝑄𝑄reg equal to 0 in Eq. (8), one gets 𝑇𝑇reg = 𝛽𝛽snow/𝛿𝛿snow. Thus, given 𝛿𝛿snow, the intercept 595 

𝛽𝛽snow is the measure of threshold mean watershed temperature required to start the snowmelt. 596 

Keeping the 𝛿𝛿snow fixed, higher 𝛽𝛽snow implies smaller values of threshold temperature and smaller 597 

values of 𝛽𝛽snow implies larger values of threshold temperature. But note that 𝛽𝛽snow is not equal to 598 

the threshold temperature required to start the snowmelt. Along with 𝛿𝛿snow and 𝛽𝛽snow, time to 599 

peak – number of days since the start of the water year after which streamflow regime peaks – was 600 

also computed as a snow signature. We computed the snow signatures for the moving time 601 

windows of 10 years each as illustrated in Table 1. Subsequently, trends in these signatures were 602 

computed over the time-windows. The trend values provide an estimate of change in snow 603 

signatures. The trends in these snow signatures are discussed in SI. In the context of this paper, 604 

trends in snow signature are related to the change in snowmelt dynamics. 605 

Next, we look at how the change in snowmelt dynamics along with other watershed properties 606 

have affected the streamflow regime as obtained by the FARIMA model. Figure 9 shows the 607 

important predictor variables that determine the change in 𝐹𝐹6, the high frequency (<608 

1 month) components. Blue and orange solid are the probability densities of variables 609 

conditioned upon the positive and negative trends for all the watersheds, respectively. Green and 610 

red dash curves are the probability densities of variables conditioned upon the positive and 611 

negative trend for all the watersheds where trend was statistically significant. Several important 612 

variables were related to the change in rainfall statistics: trend in mean storm depth, trend in JAS 613 

(July-August-September) average rainfall depth, trend in average high rainfall duration and depth, 614 

and trend in total storm depth. Increase in all these statistics is associated with an increase in 𝐹𝐹6. 615 

For example, watersheds where mean storm depth increased, positive change in 𝐹𝐹6 was more 616 

likely. This is expected because an increase in high rainfall duration, and depth would result in an 617 

increase in high frequency fluctuations. The same argument applies for increase in mean and total 618 

storm depth. The mean storm depth increased in most of the eastern snow dominated watersheds 619 

(Figure 4). It tells us that increase in 𝐹𝐹6 in eastern snow dominated watersheds is related to increase 620 

in the precipitation. 621 

Mean watershed temperature is another important variable. Watersheds with warmer temperatures 622 

were more likely to result in an increase in 𝐹𝐹6 than those with colder temperatures. It might be 623 
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related to the fact that, in western USA, SWE is decreasing at a higher rate in warmer watersheds 624 

than that in colder watersheds (Mote, 2006). Disappearance of snow would reduce the contribution 625 

of low frequency component of streamflow and, by implication increase the contribution of high 626 

frequency component. 627 

Another temperature related important variable is the trend in AMJ (Apr-May-Jun) maximum 628 

daily temperature. This quantity has decreased in most of the watersheds. In the watersheds with 629 

moderate (large) decrease, the 𝐹𝐹6 was likely to increase (decrease). To investigate the effect of 630 

changes in AMJ maximum daily temperature on the change in 𝐹𝐹6, the probability density plots of 631 

all the predictor variables were plotted conditioned upon AMJ maximum daily temperature being 632 

less and greater than −0.20. It was observed that the significant decrease in AMJ maximum daily 633 

temperature occurred in humid watersheds and in watersheds with aridity index less than 1.5. 634 

About 65% of the watershed with the moderate decrease in this quantity were arid. The snow 635 

dominated arid watersheds are primarily located in western USA. The snow dominated humid 636 

watersheds are primarily located in eastern USA, Pacific northwest, and Northern Rocky 637 

Mountains. Thus, change in AMJ maximum daily temperature has different effects in 638 

wet/moderate-dry and dry watersheds. The mechanism behind the effect of AMJ temperature was 639 

unclear. 640 

Soil properties that were important in determining the trends in 𝐹𝐹6 were sand fraction, silt fraction, 641 

soil conductivity, soil depth, and depth to bedrock. Watersheds with sandy and high conductivity 642 

soils were more likely to exhibit a decrease in 𝐹𝐹6. Watersheds with clayey and low conductivity 643 

soils were more likely to exhibit an increase in 𝐹𝐹6. One of the differences between the watershed 644 

with clayey and sandy soils was that in the former the average high rainfall depth increased more 645 

significantly. In ≈ 20% of the watersheds with sandy soils, average high rainfall depth decreased. 646 

In the watersheds with clayey soils, the OND (Oct-Nov-Dec) temperatures increased moderately, 647 

whereas in the watersheds with sandy soils, the OND temperatures increased significantly. Also 648 

note that in most snow dominated watersheds, the high rainfall occurs mainly in winter season. 649 

These observations lead to the following hypothesis. In the watersheds with clayey soils, increase 650 

in high rainfall depth together with only moderate increase in winter maximum daily temperature 651 

is responsible for the increase in 𝐹𝐹6: moderate increase in winter maximum daily temperature 652 

ensures that soil moisture does not decrease significantly. In the watershed with sandy soils, 653 
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decrease or only a moderate increase in high rainfall depth with large increase in winter maximum 654 

daily temperature is responsible for significant decrease in soil moistures. This decrease in soil 655 

moisture is responsible for decrease in 𝐹𝐹6.  656 

Finally, trend in 𝛿𝛿snow and trend in time-to-peak are important variables for determining the 657 

change in 𝐹𝐹6. Higher the increase in 𝛿𝛿snow, higher the increase in 𝐹𝐹6; higher the decrease in time-658 

to-peak, higher the increase in 𝐹𝐹6. Both, the increase in 𝛿𝛿snow and the decrease in time-to-peak 659 

suggests an increase in snowmelt rate. This, in turn, implies that water is reaching the river network 660 

faster which decreases the contribution of low frequency component and increases 𝐹𝐹6 values. In 661 

summary, in snow-dominated watersheds change in rainfall depth and duration, increase in winter 662 

(OND) and decrease in spring (AMJ) temperatures, and change in streamflow-temperature 663 

relationship is responsible for change in 𝐹𝐹6. 664 

 665 
Figure 9. Snow-dominated watersheds. Probability distribution of important predictor variables at less than 1-666 

month timescale 667 

 668 

Figure 10 shows the probability distribution of important variables that determine the change in 669 

the contribution of 1-month to 1-year timescale components (𝐹𝐹5) – only the 24 most important 670 

variables are shown in the figure. Rainfall related important variables were the trend in high rainfall 671 

duration, trend in mean and median storm depth, and trend in total storm depth. Increase in mean, 672 
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median, and total storm depth was associated with a decrease in 𝐹𝐹5. High rainfall duration 673 

decreased in most of the watersheds. If the decrease in average rainfall duration was large, then 674 

the watershed was more likely to exhibit an increase in 𝐹𝐹5; if the moderate decrease or increase in 675 

average rainfall duration was observed, watershed was likely to exhibit a decrease in 𝐹𝐹5. As 676 

discussed above, changes in rainfall statistics also explained changes in 𝐹𝐹6. Basically, increase in 677 

storm depth and increase in high rainfall duration are related to increase in high frequency 678 

components and decrease in low frequency components. 679 

Mean elevation, mean temperature, and fraction of snow were also important variables. 680 

Watersheds with lower (higher) mean elevation, higher (lower) mean temperature, and smaller 681 

(higher) value of fraction of snow were more likely to exhibit a decrease (increase) in 𝐹𝐹5. The 682 

threshold value of fraction of snow at which the sign of change in 𝐹𝐹5 transitions from negative to 683 

positive is 0.4. The fraction of snow is less than 0.4 in eastern US snow dominated watersheds and 684 

greater than 0.4 for most of the western snow dominated watersheds (Figure 3 in Addor et al., 685 

2017). This indicates that the change in 𝐹𝐹5 is different in eastern and western US watersheds which 686 

was also observed in Figure 7. Moreover, Figure 7 clearly shows that 𝐹𝐹5 (= 𝐹𝐹1 + 𝐹𝐹2) decreased in 687 

most of the eastern snow dominated watersheds while it increased in western snow dominated 688 

watersheds.  689 

Further investigation revealed that in the majority of the eastern snow dominated watersheds the 690 

following quantities have increased: number of rain days, total storm depth, and mean storm depth 691 

(Figure 4). As discussed above, increase in these quantities is related to increase in 𝐹𝐹6, thus, almost 692 

by implication decrease in 𝐹𝐹5. Figure S10 shows that in eastern snow-dominated watersheds SWE 693 

increased over the study period. In general, increase in SWE is expected to result in increase in 𝐹𝐹5. 694 

Therefore, it may be concluded that in eastern snow-dominated watersheds change in rainfall 695 

statistics is the dominant control over change in streamflow regime. We caution here that this 696 

statement is applicable to deseasonalized streamflow time-series only. The seasonal component of 697 

streamflow may have been profoundly impacted by the change in SWE. 698 

In western US snow dominated watersheds, the change in 𝐹𝐹5 had large spatial variability. The 699 

SWE decreased in most of these watersheds (Figure S10). Change in rainfall statistics has some 700 

spatial variability but the following general observations can be made: (1) total storm depth has 701 

decreased or has only slightly increased, (2) mean storm depth has decreased in most watersheds 702 
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but there exist some watersheds in the Southwest region with significant increase, and (3) number 703 

of storms and number of rain days have increased (decreased) in most of the northern (southern) 704 

watersheds. Therefore, it can be concluded that change in rainfall statistics have at least some 705 

control over change in streamflow regime in western snow dominated watersheds also. In 706 

summary, the differences in change in rainfall statistics explain the differences in changes in 𝐹𝐹5 in 707 

eastern and western snow-dominated watersheds. 708 

Another observation was that several temperature related variables were important for determining 709 

the change in 𝐹𝐹5. Some of these variables include trend in AMJ minimum and maximum daily 710 

temperatures, trend in mean daily minimum and maximum temperatures, trend in mean JFM 711 

minimum daily temperature, and trend in mean OND maximum daily temperature. Both mean 712 

minimum and maximum daily temperatures increased in most of the snow dominated watersheds. 713 

A moderate increase was associated with a decrease in 𝐹𝐹5 and a significant increase was associated 714 

with an increase in 𝐹𝐹5. As discussed above, increase in temperature affects soil moisture regime 715 

which, in turn, affects the streamflow regime. However, change in temperature can also directly 716 

affect the low frequency components of streamflow, for example, via change in baseflow 717 

characteristics, and change in snowpack storage. These mechanisms have been discussed above. 718 

 719 
Figure 10. Snow-dominated watersheds. Probability distribution of important predictor variables at 1-month to 720 

1-year timescales 721 

 722 
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7. Causes of streamflow regime changes in rain dominated watersheds 723 

In rain dominated watersheds rainfall is the primary driver of streamflow. Some of the rainwater 724 

is intercepted by the plant canopy and other structures, some of the rainwater infiltrates into the 725 

soil, and the rest of the rainwater runs off and eventually reaches the rivers.  Most of the intercepted 726 

rainwater evaporates back to the atmosphere. Some of the infiltrated water goes to groundwater 727 

through percolation, some of the infiltrated water goes back to atmosphere in the form of soil 728 

evaporation and plant transpiration, and rest of the infiltrated soil water flows below the earth 729 

surface to nearby streams which is referred to as interflow. Groundwater also flows to the river, 730 

which is referred to baseflow. These processes occur at vastly different timescales and are affected 731 

strongly by several watershed properties including their spatial distribution. It is possible that 732 

change in the rainfall-runoff response of a watershed is responsible for change in streamflow 733 

regime in rain-driven watersheds. In this study, we used a conceptual event-based model to 734 

simulate rainfall-runoff response of rain-driven CAMELS watersheds. 735 

The details of the modeling are discussed in SI. In summary, hydrograph separation was carried 736 

out using streamflow and rainfall data in each of the watersheds (Lamb and Beven, 1997; see 737 

Collischonn and Fan et al., 2013 for hydrograph separation). Each rainfall-runoff event was 738 

modeled using the SCS-CN method (Ponce and Hawkins, 1996; Mishra and Singh, 1999; Geetha 739 

et al., 2007; Soulis and Valiantzas, 2012; Soulis and Valiantzas, 2013) and 2-parameter gamma 740 

distribution as unit hydrograph (Botter et al., 2013). There were a total of four model parameters 741 

𝜆𝜆,𝐶𝐶𝐶𝐶,𝛼𝛼, and 𝛽𝛽. The first two parameters belong to the SCS-CN model and the last two parameters 742 

belong to unit hydrograph. The mean and variance of the unit hydrograph is 𝛼𝛼/𝛽𝛽 and 𝛼𝛼/𝛽𝛽2, 743 

respectively. These parameters were estimated for each of the rainfall-runoff event using the 744 

Dynamic Dimension Search (DDS) algorithm (Tolson and Shoemaker, 2007) with the objective 745 

of minimizing mean-square-error between observed and simulated direct runoff. Once these 746 

parameters are obtained for each of the rainfall-runoff events, then the change in these parameters 747 

over time can be used as a measure of the change in the rainfall-runoff response of a watershed. 748 

One difficulty is that these parameters have high variability from event to event. Therefore, the 749 

change in probability distributions of these parameters had to be measured. This was achieved 750 

using the moving windows as illustrated in Table 1. All the events contained in a moving window 751 

were used to create a probability distribution of the four parameters. The change in probability 752 

distribution was measured by estimating the trend in several statistics of the probability 753 
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distributions which includes mean, mean of 0-10 percentiles, mean of 10-30 percentiles, mean of 754 

30-60 percentiles, mean of 60-90 percentiles, and mean of 90-100 percentiles. The important 755 

variables were recognized using the same method as in snow dominated watersheds. 756 

Figure 11 shows the conditional probability density of important variables for the classification of 757 

positive and negative trends at less than 1-month timescale (𝐹𝐹6) in rain dominated watersheds. 758 

Some of the important variables are OND mean maximum daily temperature, trend in median 759 

minimum daily temperature, and aridity. The value of 𝐹𝐹6 increased in many of the arid watersheds 760 

while it decreased in most of the humid watersheds. Further, 𝐹𝐹6 increased in the watersheds in 761 

which OND maximum daily temperature increased significantly. It was observed that arid rain-762 

driven watersheds had higher increase in OND maximum daily temperature (Figure 4), higher 763 

increase in number of dry days, higher increase in JAS maximum and minimum daily temperature, 764 

and decrease in monthly rainfall variation. Also, changes in average rainfall depth in arid 765 

watersheds during OND and JAS months were small (not shown). All these factors indicate that 766 

the increase in evaporation is more than the increase in rainfall in the arid watersheds which has 767 

resulted in the decrease of low frequency components of streamflow in these watersheds. And the 768 

decrease in low frequency components is responsible for increase in high frequency components. 769 

Figure 11 also shows that increase median minimum daily temperature is associated with increase 770 

in 𝐹𝐹6. This further supports the hypothesis that decrease in contribution of low frequency 771 

components in arid watersheds is due to increase in evaporation, and subsequent decrease in low 772 

frequency component. 773 

Many of the humid watersheds where 𝐹𝐹6 decreased are located in the Pacific Northwest and the 774 

Gulf Coast region where rainfall is more frequent in winter months. It was observed that OND 775 

rainfall depth decreased in most of the humid watersheds and OND temperature increased 776 

moderately in these watersheds. These two factors can explain the decrease in 𝐹𝐹6 in these 777 

watersheds. Increase in temperature implies higher potential evaporation and higher actual 778 

evaporation (because humid watersheds are energy limited), and lesser soil moisture. Thus, more 779 

rainwater is absorbed by the soils and lesser rainwater reaches the river network in the form of 780 

direct runoff. Decrease in rainfall further amplifies this process. Other observations that support 781 

this hypothesis are decrease in median storm depth and decrease in high rainfall duration in most 782 
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of the watersheds. Ficklin et al. (2016) also reported decrease in quick runoff in several watersheds 783 

located in the Pacific Northwest and the Gulf Coast which supports this hypothesis. 784 

The values of 𝐹𝐹3 have decreased in almost all the Pacific Northwest watersheds. As discussed 785 

above, the value of 𝐹𝐹3 is partially determined by ET: increase in ET results in decrease in 𝐹𝐹3. 786 

Therefore, the decrease in 𝐹𝐹3 and 𝐹𝐹6 in these watersheds suggest the role of temperature in 787 

changing the streamflow regime. The value of 𝐹𝐹4 increased in some of the watersheds in Pacific 788 

Northwest (Figure 6). The reason for this is unclear. 789 

Some of the rainfall related variables such as trend in low rainfall frequency, trend in low rainfall 790 

duration and frequency, trend in number of rain days, low rainfall frequency and mean rainfall 791 

were also important. These variables are also related to aridity and humidity of the watersheds. 792 

Watersheds with low mean rainfall and larger number of dry days are typically arid. Most of the 793 

watersheds where number of rain days decreased, number of dry days increased, and low rainfall 794 

duration increased, 𝐹𝐹6 also increased. This is expected because these trends indicate an increase in 795 

aridity of the watershed and arid watershed are known to exhibit high values of 𝐹𝐹6. Figure 11 also 796 

shows that in most of the watersheds where 𝐹𝐹6 has increased, number of rain days have decreased. 797 

Some of the soil properties such as sand fraction and porosity including fraction of forests are also 798 

important variables. Most of the watersheds with sandy, smaller porosity soils and large fraction 799 

of forest cover exhibited a decrease in 𝐹𝐹6. These three variables are correlated since sandy soils 800 

are known to be porous and ideal to support forests given the water availability (Eagleson, 1982). 801 

It was observed that most of the CAMELS watersheds with sandy soils are located in humid 802 

regions with high mean annual rainfall. Thus, the decrease in 𝐹𝐹6 in watersheds with sandy soils 803 

can be explained as in humid watersheds as discussed above. Another difference between 804 

watersheds with sandy and fine soils was that in the former the phase difference between monthly 805 

rainfall and evaporation decreased which might have resulted in more rainwater evaporating back 806 

to atmosphere, drying of soils, and muted response of watershed to rainstorms. Many of the 807 

watersheds in the Pacific Northwest have sandy soil. 808 

One notable point in above discussion is that OND maximum temperature has increased in most 809 

of the watersheds, located in both humid and arid climates. In humid watersheds increase is 810 

moderate and in arid watersheds increase is large. But this increase has opposite effect on 811 
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streamflow regimes in humid and arid watersheds. In humid watersheds, increase in OND 812 

temperature resulted in an increase in ET, decrease in soil moisture, and a muted response of the 813 

watershed to rainfall which resulted in a decrease in high frequency component. In arid watersheds, 814 

increase in OND temperature resulted in an increase in ET and a decrease in low frequency 815 

component which, in turn, resulted in an increase in high frequency component. Thus, change in 816 

OND temperature directly affects the high frequency component in humid watersheds and only 817 

indirectly affects it in arid watersheds. 818 

One question remains here: Why the high frequency component is not directly affected by change 819 

in OND temperature in arid watersheds? The reason is that in majority of rain driven arid 820 

watersheds in USA, rainfall pre-dominantly occurs in spring-summer months (except in California 821 

where rain occurs in winter months) (Addor et al., 2017, Fig 3). Thus, an increase in ET in winter 822 

months directly affects only the low frequency component, not the high frequency component. 823 

High frequency component is formed by the summer rainfall which appears to be unchanged 824 

during the study period. This conclusion is further supported by the fact that AMJ (Apr-May-Jun) 825 

and JAS (Jul-Aug-Sep) maximum daily temperatures have not increased significantly in these 826 

watersheds. AMJ minimum daily temperature also did not increase in most of the watersheds. JAS 827 

minimum daily temperature increased significantly only in a few of the arid watersheds (<40%). 828 

In contrast to arid watersheds, rainfall occurs in winter months in many of the humid watersheds, 829 

especially the ones located in Pacific Northwest. Therefore, change in temperature directly affects 830 

the high frequency component in humid watersheds. 831 

Finally, two of the parameters of the rainfall-runoff model came out to be important for 832 

determining the streamflow regime change: 𝐶𝐶𝐶𝐶 and 𝜆𝜆. Decrease in 𝐶𝐶𝐶𝐶 and increase in 𝜆𝜆 seems to 833 

be associated with an increase in 𝐹𝐹6. This association, however, is weak because several of the 834 

watersheds where 𝐶𝐶𝐶𝐶 decreased also reported a decrease in 𝐹𝐹6. Also, the change in 𝐶𝐶𝐶𝐶 and 𝜆𝜆 is 835 

relatively small is most of the watersheds. Therefore, we conclude that change in streamflow 836 

regime in rain driven watershed is a direct result of change in climate statistics rather the change 837 

in rainfall-runoff response of the watershed. 838 
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 839 
Figure 11. Rain dominated watersheds. Probability distribution of important predictor variables for 840 

classification of positive and negative trends at less than 1-month timescales 841 

 842 

The causes for change in low frequency components is not discussed because fluctuation at greater 843 

than 1-year timescales had very small contribution to total streamflow variance in rain dominated 844 

watersheds. And, therefore, the contribution of 1-month to 1-year timescale components is almost 845 

one-to-one related to less than 1-month timescale contribution. 846 

8. Summary and Conclusions 847 

The main conclusions of this study are summarized in Table 2. It was found that the effect of 848 

climate change on streamflow regime change was strongly modulated by watershed static 849 

attributes. The contribution of greater than 1-year timescales fluctuations to total streamflow 850 

variance is typically very small in rain-driven watersheds, but it is substantial in western snow 851 

dominated watersheds where the fraction of snow is greater than 0.4. The contribution of 1-month 852 

to 1-year timescale fluctuations strongly depends upon the contribution of baseflow to total 853 

streamflow. Also, long-term persistence (value of 𝑑𝑑) in deseasonalized streamflow time-series 854 

depends upon the contribution of baseflow: low values of 𝐵𝐵𝐹𝐹𝐵𝐵 are associated with weaker long-855 

term persistence. The contribution of 2-weeks to 1-month timescale fluctuations to total 856 

streamflow variance appears to be determined by interflow and rainfall. Contribution of high 857 

frequency components are mainly determined by quick flow. Thus, spectral analysis of 858 
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deseasonalized streamflow time-series can be very useful in detecting hydrologic regime changes 859 

in a watershed through analysis of streamflow time-series. 860 

In snow-dominated watersheds across the USA, a clear east-west divide was found in terms of 861 

change in streamflow regime. 𝐹𝐹1 and 𝐹𝐹2 decreased (increased) in most of the eastern (western) 862 

watersheds. 𝐹𝐹0 decreased in most of the western watersheds. The high frequency components 863 

increased in most of the snow dominated watersheds. Increases of high frequency components and 864 

decreases in low frequency components in snow dominated watersheds were related to increases 865 

in rainfall in these watersheds but also to increase in OND temperatures. It could be concluded 866 

that trends in rainfall have significant control over streamflow regime change in snow dominated 867 

watersheds. Changes in snowmelt-temperature relationships also played a role in changing the 868 

streamflow regime in snow-dominated watersheds. 869 

In most rain-driven watersheds and in eastern snow dominated watersheds, the contribution of high 870 

frequency (less than one-month) components was greater than 50%. This was particularly the case 871 

in the watersheds in the Great Plains and the Mississippi Valley where the contribution of low 872 

frequency component is very small due to high ET. In most of the arid watersheds, the values of 873 

𝐹𝐹4 and 𝐹𝐹6 increased. These increases are related to increases in ET in these watersheds in winter 874 

months which decreased contributions from low frequency components and, in turn, increased the 875 

contribution of the high frequency components. 876 

The high frequency fluctuations, 𝐹𝐹6, decreased in the Gulf Coast watersheds and the Pacific 877 

Northwestern watersheds. The reason for this was also the increase in winter ET and decrease in 878 

winter rainfall depth in these watersheds. In these watersheds, the dominant rainfall season is 879 

winter; therefore, an increase in ET possibly resulted in decrease in antecedent soil moisture and, 880 

overall, muted response of rainfall to streamflow. There was a difference in the Pacific Northwest 881 

and Gulf Coast watersheds: the values of 𝐹𝐹4 increased in majority of the Pacific Northwest region 882 

while it decreased in the latter. 883 

The trends in the contribution of fluctuations at different timescales were also related to soil 884 

properties such as soil texture, porosity, and fraction of forest. Further analyses revealed that soil 885 

properties were an indicator of change in climatic statistics. In snow dominated watersheds with 886 

fine soils, high rainfall depth increased, and winter maximum daily temperature increased only 887 
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moderately. This is hypothesized to have resulted in an increase in 𝐹𝐹6 in these watersheds. In the 888 

snow dominated watershed with sandy soils, decrease or only a moderate increase in high rainfall 889 

depth with large increase in winter maximum daily temperature is hypothesized to result in 890 

significant decrease in soil moistures and decrease in 𝐹𝐹6. 891 

In the rain dominated watersheds with sandy soil 𝐹𝐹6 decreased. Most of the watersheds with sandy 892 

soils are in humid region with high mean annual rainfall. Another difference between watersheds 893 

with sandy and fine soils was that in the former the phase difference between monthly rainfall and 894 

evaporation decreased which might have resulted in more rainwater evaporating back to 895 

atmosphere, drying of soils, and muted response of watersheds to rainstorms. 896 

In snow dominated watersheds change in temperature-snowmelt relationship is responsible at least 897 

to some extent for streamflow regime change. The change in temperature-snowmelt relationship 898 

is likely due to change in spatiotemporal snow statistics and temperature statistics rather than any 899 

physical changes in the watersheds. Although, change in vegetation density might also be 900 

responsible for the changes. In rain dominated watersheds, the change in rainfall-runoff 901 

relationship appears to be negligible. 902 

We note that conclusions reported in this study apply only to deseasonalized streamflow time-903 

series. Changes in seasonal components are not studied in this paper. Nevertheless, the results 904 

presented in this study convincingly show that changes in streamflow regime have occurred across 905 

USA. Although the pattern of changes is patchy, there is substantial spatial structure. These 906 

changes have consequences for accurate simulation of streamflow time-series in the presence of 907 

climate change. Decreasing influence of low frequency components can result in decrease in 908 

accuracy of simulations. This is evident in arid watersheds of the Great Plains where the 909 

contribution of low frequency components has always been small, and all the models (conceptual, 910 

process-based, and ML models) of streamflow have been reported to perform poorly in these 911 

watersheds (e.g., Konapala et al., 2020). 912 

In this study, only the effect of climatic statistics change on streamflow regime change has been 913 

explored. But streamflow regime can also change due to change in natural changes in land-use 914 

such as due to forest disturbance (e.g., Goeking & Tarboton, 2022). The effects of such changes 915 

on streamflow statistical structure should be the topic of future study. Moreover, we believe that 916 

it would be worthwhile to simulate the hydrologic response of CAMELS watersheds using a 917 
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detailed process-based model to understand the changes in various hydrologic quantities in these 918 

watersheds. 919 

Finally, the analysis carried out in this study identifies only the variables that play a role in 920 

determining the changes in streamflow regime. The specific mechanisms creating the changes 921 

could not be identified using this analysis. Nevertheless, a few hypotheses regarding changes in 922 

the hydrologic mechanisms that might have led to streamflow regime change have been proposed. 923 

Data between water years 1980-2013 was used to achieve the objectives. Though 30-35 years of 924 

data are not enough to identify all the changes in streamflow regime due to climate change because 925 

natural climate oscillation occurs at 30-year timescale, such data can still reveal useful pattern of 926 

hydrologic change (e.g., Ficklin et al., 2016). Besides, it is well known that systematic changes in 927 

global temperatures and rainfall patterns have occurred over the study period (Manabe & Broccoli, 928 

2020). Therefore, we believe that it is prudent to look for streamflow regime changes across the 929 

USA due to climate change over the period used in this study. 930 

Table 2.  A summary of streamflow statistical structure and change in streamflow statistical structure in different 931 
regions of USA 932 

Geographic 
region 

Climate Streamflow 
statistical 
structure 

Change in 
streamflow 
statistical 
structure 

Cause of change 

Pacific 
Northwest 

Humid High values 
of 𝐹𝐹3,𝐹𝐹5, 
𝐹𝐹6, low 
values of 𝐹𝐹0  

Decrease in 𝐹𝐹3 
and 𝐹𝐹6, increase 
in 𝐹𝐹4 in some of 
the watersheds 

Increase in winter temperature and 
decrease in winter rainfall depth, 
resulting in decrease in the strength 
of 
interflow seems to be the main 
cause. 
Winter is the high rainfall season in 
these watersheds. 

Gulf Coast Humid High values 
of 𝐹𝐹6, 
moderate to 
high value 
of 𝐹𝐹3 and 𝐹𝐹5 

Decrease in 𝐹𝐹6, 
𝐹𝐹4, mixed 
response of 
change in 𝐹𝐹3; 
Increase in low 
frequency 
components 𝐹𝐹0, 
𝐹𝐹1, and 𝐹𝐹2 
 

Decrease in winter temperature and 
decrease in winter rainfall depth, 
resulting in muted response of these 
watersheds to rainfall seems to be 
the 
main cause. Winter is the high 
rainfall 
season in these watersheds. 

Great Plains Arid Very high 
values of 
𝐹𝐹6. Low to 

Mixed trends, 
but majority of 
the watersheds 

Increase in OND temperatures, 
resulting in increase in ET and 
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moderate 
values of 
𝐹𝐹0, 𝐹𝐹3, and 
𝐹𝐹5 

had increase in 
high frequency 
components 
and decrease in 
low frequency 
components 
 

decrease in low frequency 
components. 
Spring-summer is the main rainfall 
season in these watersheds. 

Atlantic 
Coast and 
eastern 
most Great 
Lakes 
region 

Humid Low value 
of 𝐹𝐹0, high 
values of 𝐹𝐹5 
and 𝐹𝐹6, low 
to high 
values of 
𝐹𝐹3. 
 

Increase in 𝐹𝐹4 
and 𝐹𝐹6, 
decrease in 𝐹𝐹3 
and 𝐹𝐹5 

Increase in precipitation 

Western 
Rocky 
Mountains  

Arid Moderate to 
high values 
of 𝐹𝐹0, high 
values of 
𝐹𝐹5, low 
values of 
other 
components 
 

Decrease in 𝐹𝐹0, 
increase in 𝐹𝐹4 
and 𝐹𝐹6; 𝐹𝐹1 and 
𝐹𝐹2 had both 
positive and 
negative trends 

Increase in temperature, change in 
rainfall patterns, and decrease in 
SWE.  

Eastern 
Rocky 
Mountains 

Arid Moderate to 
high values 
of 𝐹𝐹0, high 
values of 
𝐹𝐹5, low 
values of 
other 
components 

Mixed trends, 
𝐹𝐹1 increased in 
most of the 
watersheds; 𝐹𝐹0 
decreased in 
some and 
increased in 
other 
watersheds 

Increase in temperature, change in 
rainfall patterns, and decrease in 
SWE. 
The cause of differences between 
eastern and western Rocky 
Mountains 
is unclear. 

𝐹𝐹0 = Fraction of variance contributed by greater 1-year timescale components; 𝐹𝐹1 = Fraction of variance contributed 933 
by 4-months to 1-year timescale components; 𝐹𝐹2 = Fraction of variance contributed by 1-month to 4-months timescale 934 
components; 𝐹𝐹3 = Fraction of variance contributed by 2-weeks to 1-month timescale components; 𝐹𝐹4 = Fraction of 935 
variance contributed by less than 2-weeks timescale components; 936 
𝐹𝐹5 = 𝐹𝐹1 + 𝐹𝐹2; 𝐹𝐹6 = 𝐹𝐹3 + 𝐹𝐹4 937 

  938 
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Appendix: 939 

Table A1. Variables used in the study to interpret the streamflow regime changes 940 
Property Variables Remarks 
Rainfall Mean rainfall, rainfall seasonality (see Addor et al., 2017), 

high rainfall frequency, high rainfall duration, low rainfall 
duration, trend in mean rainfall depth, trend in total 
rainfall depth, trend in number of rainstorms, trend in 
number of rain days, trend in high rainfall frequency, 
trend in high rainfall duration, trend in high rainfall depth, 
trend in low rainfall frequency, trend in low rainfall 
duration, trend in low rainfall depth, trend in OND (Oct 
Nov-Dec) rainfall depth, trend in JFM (Jan-Feb-Mar) 
rainfall depth, trend in AMJ (Apr-May-Jun) rainfall depth, 
trend in JAS (Jul-Aug-Sep) rainfall depth  

 

Temperature Mean temperature, trend in mean minimum daily 
temperature, trend in mean maximum daily temperature, 
trend in median minimum daily temperature, trend in 
median minimum daily temperature, trend in median 
maximum daily temperature, trend in SD (standard 
deviation) maximum daily temperature, trend in SD 
minimum daily temperature, trend in OND minimum 
(maximum) daily temperature, trend in JFM minimum 
(maximum) daily temperature, trend in AMJ minimum 
(maximum) daily temperature, trend in JAS minimum 
(maximum) daily temperature, trend in mean minimum 
(maximum) daily temperature 0-10 percentiles, trend in 
mean minimum (maximum) daily temperature 10-30 
percentiles, trend in mean minimum (maximum) daily 
temperature 30-60 percentiles, trend in mean minimum 
(maximum) daily temperature 60-90 percentiles, trend in 
mean minimum (maximum) daily temperature 90-100 
percentiles, 

 

Snow statistics Fraction of snow, 
trend in snow water equivalent (SWE) 

For snow 
dominated 
watersheds 

Geomorphological 
characteristics 

Mean elevation, mean slope, 
drainage area 

 

Climate indices 
except precipitation 

Potential evapotranspiration (PET),  
aridity, runoff 

 

Monthly climate 
statistics 

Temperature amplitude (Δ𝑇𝑇), mean normalized rainfall 
amplitude (𝛿𝛿P), temperature phase (𝑠𝑠T), rainfall phase 
(𝑠𝑠P), phase difference between rainfall and temperature 
(𝑠𝑠d) 

Berghuijs 
and 
Woods, 
(2016) 

Soil properties Soil depth, depth to bedrock, soil conductivity, fraction of 
sand content, fraction of clay content, fraction of silt 

Addor et 
al., (2017) 
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content, fraction of organic content, water holding 
capacity, other fractions 

Land use Fraction of forest  
Location Latitude, Longitude  
Rainfall-runoff 
response 

Trend in 𝜆𝜆, 𝐶𝐶𝐶𝐶, 𝛼𝛼/𝛽𝛽, 𝛼𝛼/𝛽𝛽2 and mean of different 
percentiles on these quantities 

Only for 
rain-driven 
watersheds 
(see SI) 

Temperature 
streamflow 
relationship 

Trend in rising limb slope, trend in rising limb intercept, 
trend in streamflow regime time-to-peak 

Only for 
snow-
dominated 
watersheds 
(see SI) 

 941 

Figure A1. Map of the geographical regions referred to in this study 942 
(https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/geography) 943 
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