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Abstract

Managing landscapes to increase agricultural productivity and environmental stewardship requires spatially distributed models

that can integrate data and operate at spatial and temporal scales that are intervention-relevant. This paper presents Cycles-

L, a landscape-scale, coupled agroecosystem hydrologic modeling system. Cycles-L couples a 3-D land surface hydrologic

model, Flux-PIHM, with a 1-D agroecosystem model, Cycles. Cycles-L takes the landscape and hydrology structure from

Flux-PIHM and most agroecosystem processes from Cycles. Consequently, Cycles-L can simulate landscape level processes

affected by topography, soil heterogeneity, and management practices, owing to its physically-based hydrologic component and

ability to simulate horizontal and vertical transport of mineral nitrogen (N) with water. The model was tested at a 730-ha

agricultural experimental watershed within the Mahantango Creek watershed in Pennsylvania. Cycles-L simulated well stream

water discharge and N exports (Nash-Sutcliffe coefficient 0.55 and 0.58, respectively), and grain crop yield (root mean square

error 1.01 Mg ha-1), despite some uncertainty in the accuracy of survey-based input data. Cycles-L outputs are as good if not

better than those obtained with the uncoupled Flux-PIHM (water discharge) and Cycles (crop yield) models. Model predicted

spatial patterns of N fluxes clearly show the combined control of crop management and topography. Cycles-L spatial and

temporal resolution fills a gap in the availability of analytical models at an operational scale relevant to evaluate costly strategic

and tactical interventions in silico, and can become a core component of tools for applications in precision agriculture, precision

conservation, and artificial intelligence-based decision support systems.
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Abstract12

Managing landscapes to increase agricultural productivity and environmental steward-13

ship requires spatially distributed models that can integrate data and operate at spa-14

tial and temporal scales that are intervention-relevant. This paper presents Cycles-L, a15

landscape-scale, coupled agroecosystem hydrologic modeling system. Cycles-L couples16

a 3-D land surface hydrologic model, Flux-PIHM, with a 1-D agroecosystem model, Cy-17

cles. Cycles-L takes the landscape and hydrology structure from Flux-PIHM and most18

agroecosystem processes from Cycles. Consequently, Cycles-L can simulate landscape19

level processes affected by topography, soil heterogeneity, and management practices, ow-20

ing to its physically-based hydrologic component and ability to simulate horizontal and21

vertical transport of mineral nitrogen (N) with water. The model was tested at a 730-ha22

agricultural experimental watershed within the Mahantango Creek watershed in Penn-23

sylvania. Cycles-L simulated well stream water discharge and N exports (Nash-Sutcliffe24

coefficient 0.55 and 0.58, respectively), and grain crop yield (root mean square error 1.01 Mg ha−1),25

despite some uncertainty in the accuracy of survey-based input data. Cycles-L outputs26

are as good if not better than those obtained with the uncoupled Flux-PIHM (water dis-27

charge) and Cycles (crop yield) models. Model predicted spatial patterns of N fluxes clearly28

show the combined control of crop management and topography. Cycles-L spatial and29

temporal resolution fills a gap in the availability of analytical models at an operational30

scale relevant to evaluate costly strategic and tactical interventions in silico, and can be-31

come a core component of tools for applications in precision agriculture, precision con-32

servation, and artificial intelligence-based decision support systems.33

1 Introduction34

Managing landscapes to increase agricultural productivity and environmental stew-35

ardship requires understanding and representing landscape attributes with ever increas-36

ing fidelity. The ability to represent in silico the spatial variability and temporal dynam-37

ics of water and nutrient flows in such landscapes through modeling tools can help sig-38

nificantly in the design of cost-effective interventions in the realms of precision agricul-39

ture, precision conservation, or watershed management (Beaujouan et al., 2001; Booker40

et al., 2014; Stöckle et al., 2014). These modeling tools are known as spatially distributed.41

Two features are critical for these models to be applicable. First, they must integrate42

the wealth of real-time data incoming from in situ sensors, proximal sensing from un-43

manned aerial vehicles (UAVs) and terrestrial vehicles (UTVs), remote sensing from satel-44

lites, and constantly refined terrain and surface data (e.g., the Soil Survey Geographic45

Database or SSURGO, and the National Land Cover Database or NLCD), and mete-46

orological data such as the Global Land Data Assimilation System (GLDAS; Rodell et47

al., 2004) and Europe’s World Climate Research Program Coordinated Regional Down-48

scaling Experiment (EURO-CORDEX; Jacob et al., 2014). Second, these models must49

operate at a scale of relevance to represent interventions and with minimal supervision,50

so that they do not become “mathematical marionettes” (Kirchner, 2006). There are to51

our knowledge only partial efforts at integrating models and data in this fashion. This52

paper presents the model Cycles-L, where L stands for landscape. Cycles-L integrates53

Flux-PIHM (Shi et al., 2013), a 3-D energy and hydrology model, and the Cycles agroe-54

cosystem model (Kemanian et al., 2022).55

One-dimensional cropping system models are established tools for planning and de-56

cision making in agriculture systems with low spatial variability and high quality input57

data (e.g., Boote et al., 2010; Stöckle & Kemanian, 2020; Zhai et al., 2020). Applications58

of these 1-D models in precision agriculture lag behind their promise (Stafford, 2000) be-59

cause, among other limitations (Zhai et al., 2020), the representation of both static and60

dynamic properties that vary spatially is limited. Although these models are often used61

in a gridded way in an attempt to represent spatial heterogeneity (e.g., Saarikko, 2000;62

Batchelor et al., 2002; Basso et al., 2007), their 1-D nature and lack of lateral water and63
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nutrient transport among grids significantly limits their ability to represent nonlinear-64

ities in water and nutrient availability caused by topography and soil heterogeneity. An65

additional impedance is that using these models in a way that enriches decision-making66

requires substantial competence (Confalonieri et al., 2016).67

There have been, however, efforts at developing models that represent spatial and68

temporal variability in a semi-distributed fashion in non-agricultural (Tague & Band,69

2004) and agricultural landscapes without resorting to costly numerical solutions of wa-70

ter flow in landscapes. For example, the Soil Water Assessment Tool (SWAT; Arnold et71

al., 1998) and the Agricultural Policy EXtender (APEX; Gassman et al., 2010) divide72

the model domain into subareas (e.g., Hydrological Response Units, or HRUs) by ter-73

rain or soil attributes. Within HRUs, processes are simulated using the core of the 1-D74

EPIC model (J. R. Williams, 1990). In the SWAT model, HRUs do not interact; an HRU’s75

water, nutrient, and sediment runoff contributions to the corresponding watershed out-76

let are represented through HRU-specific delivery ratios. However, sediment generation77

and delivery, for example, are not equally scaled to the HRU area, which causes output78

variations solely dependent on the HRU generation scheme (E. Chen & Mackay, 2004).79

In the APEX model, the HRUs (or subareas) are hydrologically connected, but the land-80

scape segmentation methodology is ad hoc (Kemanian et al., 2009), calibration require-81

ments are substantial (X. Wang et al., 2011), and the calibration parameters are not nec-82

essarily robust (Francesconi et al., 2014; Van Liew et al., 2017). These challenges are not83

unique to these modeling systems but are easily overlooked and difficult to grasp with-84

out substantial training, as alluded to in general by Confalonieri et al. (2016). Further-85

more, models that aggregate large spatial scales can represent some processes very well86

(Arnold et al., 1998; Koch et al., 2016), but cannot represent highly non-linear processes87

controlled by within-subarea heterogeneity in topography, soil, and landcover. Both Stöckle88

and Kemanian (2020) and Tenreiro et al. (2020) concluded that among the most promis-89

ing areas for improvement of current cropping system models is the representation of land-90

scape processes that affect surface inflow and subsurface lateral flows of water and other91

constituents. Although efforts in this direction have been underway for decades (e.g. Beau-92

jouan et al., 2001), the usage of spatially-distributed models remains limited. A robust,93

scale-independent formulation of routing is desirable to dispel uncertainty and to reduce94

dependence on local calibration.95

Advances in computational power and modeling techniques have paved the way to96

the development of coupled agroecosystem hydrologic models. The Precision Agricultural-97

Landscape Modeling System (PALMS; Molling et al., 2005) combines an enhanced 2-D98

diffusive wave runoff model with a 1-D biophysical model based on the Integrated BIo-99

sphere Simulator (IBIS; Foley et al., 1996; Kucharik et al., 2000). PALMS has been used100

to simulate crop and erosion processes (e.g., Molling et al., 2005; Bonilla et al., 2007, 2008),101

and connected to other crop models (Booker et al., 2014, 2015). Although the PALMS102

grids are hydrologically connected at the surface, horizontal distribution of subsurface103

water is empiric and subsurface lateral flow is not explicitly simulated. Ward et al. (2018)104

presented a spatially distributed and 3-D hydrologic cropping system model, CropSyst-Microbasin105

(CS-MB), which added the Soil Moisture Routing model-based subsurface lateral flow106

to CropSyst. The model was tested in a 10.9-ha watershed growing rainfed wheat in the107

Inland Pacific Northwest, USA, showing promising potential to simulate field-scale spa-108

tial variability of water distribution and grain yield. The kinematic assumption used by109

this model, i.e., the hydraulic gradient for subsurface water flow follows the land slope110

rather than the water table slope, limits its application on gentle slopes (Wigmosta &111

Lettenmaier, 1999).112

While crop production is a primary target in landscape management, more com-113

prehensive models are needed to track dynamic processes that reshape the landscape such114

as soil and sediments erosion and deposition (Pineux et al., 2017) and changes in soil or-115

ganic carbon stocks (Baker et al., 2007), as well as to represent the provision of ecosys-116
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tem services determined by landscape diversity (Frank et al., 2012). Processes need to117

be represented along the continuum of soil, groundwater, and streams. For example, ni-118

trogen (N) is both a critical plant macronutrient needed to reach high crop yield and a119

source of pollution (McLellan et al., 2018). Within the Chesapeake Bay Watershed (CBW),120

Ator and Garcia (2016) estimated that of the total N input to the CBW as fertilizer, bi-121

ological N fixation, and N deposition, up to 18% is delivered to tidal waters or stored122

in the stream, 19% is harvested, and 45% is lost as denitrification. Most N losses occur123

when there is a large mismatch between N extraction in harvest and N applied as fer-124

tilizer (Woodbury et al., 2018; McLellan et al., 2018). Furthermore, high N losses as den-125

itrification point to potentially high and unreported losses of N2O if denitrification is in-126

complete (Saha et al., 2021). Opportunities exist therefore to reduce N losses in a cost-127

effective and environmentally friendly fashion, and taking advantage of these opportu-128

nities can greatly benefit from robust modeling and diagnostic tools.129

The objectives of this paper are to present Cycles-L, a coupled agroecosystem hy-130

drologic modeling system, and to demonstrate its use through a case study. We tested131

Cycles-L at an agricultural experimental watershed, WE-38, that is nested in the larger132

watershed of the Mahantango Creek in Pennsylvania. The long-term records of discharge133

and water quality, together with the surveys of crop rotations, make WE-38 an ideal site134

for testing Cycles-L. We evaluate and discuss the simulated discharge, stream NO−
3 -N135

concentrations, and crop yield with observations and county-level surveys, to showcase136

the degree of fidelity and utility of Cycles-L for landscape level analysis.137

2 Cycles-L Components Description138

2.1 Flux-PIHM139

Flux-PIHM is a spatially distributed land surface hydrologic model that integrates140

the Penn State Integrated Hydrologic Model (PIHM; Qu & Duffy, 2007; Bhatt et al., 2014)141

and the Noah land surface model component (F. Chen & Dudhia, 2001; Ek et al., 2003).142

Flux-PIHM simulates 3-D soil, groundwater, and river hydrology, along with the surface143

energy balance with high spatial resolution, representing land surface and hydrological144

variability resulting from soil, landcover, and topographic heterogeneity (Shi et al., 2015).145

Flux-PIHM is the core of other terrestrial biogeochemistry (Shi et al., 2018; Zhi et al.,146

2022) and reactive transport models (Bao et al., 2017).147

In Flux-PIHM, the land surface is decomposed into unstructured triangular grids148

for optimal representation of local heterogeneities (topography, soil, and land cover), river149

channels, and watershed boundaries. River channels are represented by rectangular el-150

ements (Tarboton et al., 1991). Water transport between soil, ground, and river follows151

PIHM (Qu & Duffy, 2007). PIHM uses de Saint-Venant (1871) equations to compute152

channel (1-D) and surface (2-D) water flow. Infiltration at the air-soil interface is cal-153

culated using the properties of the top 10 cm of soil following Darcy’s law. In the sub-154

surface, the prismatic and triangular volume is divided into water saturated and unsat-155

urated zones. Unsaturated water transport only occurs vertically. In the saturated zone,156

groundwater flow is horizontal with dynamic coupling to the unsaturated zone across the157

water table, governed by Darcy’s law. The hydrologic equations at each model grid are158

discretized to ordinary differential equations (ODEs), which are assembled within the159

boundaries of the domain, and solved simultaneously using the CVODE ODE solver (Hindmarsh160

et al., 2005). The land surface component of Flux-PIHM is adapted from the Noah land161

surface model (F. Chen & Dudhia, 2001; Ek et al., 2003), and is coupled to PIHM by162

exchanging water table depth, infiltration rate, water table position, net precipitation163

rate, and evapotranspiration rate between the two components. The land surface com-164

ponent simulates surface energy balance, snow melt, interception, and drip. In the land165

surface component, the subsurface is divided into layers with fixed thickness. By default,166

the soil layer thickness increases from 0.11 m for the first layer to 0.38 m for the 10th167
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layer (Shi et al., 2015). The number of soil layers can be reduced, and the thickness of168

the deepest layer can be adjusted to match the depth to bedrock. If the bedrock is deeper169

than the total thickness of 10 soil layers, one additional layer is added as needed. While170

PIHM only simulates infiltration rate, lateral subsurface flow rate, and position of wa-171

ter table for all model grids, these variables are used as boundary conditions by the land172

surface model to calculate transport within the unsaturated zone using the Richards equa-173

tion. A recent development is adding a topographic solar radiation module to Flux-PIHM174

(Shi et al., 2018). Flux-PIHM is now the core landscape hydrology model for multiple175

modeling systems. Detailed descriptions of PIHM and Flux-PIHM are provided by Qu176

and Duffy (2007), and Shi et al. (2013, 2014, 2018).177

2.2 Cycles178

Cycles is a one-dimensional process-based multi-year and multi-species agroecosys-179

tem model (Kemanian et al., 2022). Cycles evolved from C-Farm (Kemanian & Stöckle,180

2010) and shares biophysical modules with CropSyst (Stöckle et al., 2014). Cycles sim-181

ulates the water and energy balance, the coupled cycling of carbon (C) and N, and plant182

growth at daily time steps. Evapotranspiration is calculated based on the Penman-Monteith183

equation. Transpiration is modulated by temperature, crop root distribution, soil wa-184

ter potential, and plant hydraulic properties (Campbell, 1985). Plant development is de-185

termined by thermal time, and plant growth is based on solar radiation interception (light186

limited) or the realized transpiration (water limited) based on stomatal optimization the-187

ory (Cowan, 1978, 1982; Katul et al., 2009). Soil organic C and N cycling are based on188

saturation theory (Kemanian & Stöckle, 2010; Pravia et al., 2019). The model can sim-189

ulate a wide range of perturbations of biogeochemical processes caused by management190

practices such as tillage, irrigation, organic and inorganic nutrient additions, annual and191

perennial crop selections, crop harvests as grain or forages, polycultures, relay cropping,192

and grazing. Cycles can simulate unlimited plant species as specified by the user.193

2.3 Cycles-L194

Cycles-L (Fig. 1) takes the landscape and hydrology structure from Flux-PIHM and195

most agroecosystem processes from Cycles. The surface energy balance and soil hydrol-196

ogy are simulated as in Flux-PIHM, except for plant water uptake, hydraulic lifting, and197

the water balance of surface plant residues, which use Cycles’ algorithms. Hydrologic pro-198

cesses are simulated with a sub-daily time step (usually ∼100 minute, dynamic). Fol-199

lowing Cycles, each soil layer has texture- and organic matter-dependent hydraulic prop-200

erties. However, when activating landscape hydrology, the properties of the soil profile201

are averaged preserving total soil mass and porosity to allow solving for vertical and lat-202

eral fluxes using Flux-PIHM. Biogeochemical processes are simulated with a daily time203

step independently for each soil layer. Tillage operations allow mixing all components204

of the soil layers affected by tillage. The one-dimensional Cycles model is integrated into205

every Flux-PIHM model grid, therefore each model grid can be assigned with a unique206

land cover or crop rotation.207

A solute transport module is used to simulate subsurface nutrient transport. This208

model is the same as the subsurface transport in Flux-PIHM-BGC (Shi et al., 2018), and209

is used to calculate total solute flowing in or out of a model grid:210

Vi
d

dt
(ΘiCi) =

∑
j

(−qijCij) + F , (1)211

where Vi is the subsurface prism volume of grid i (m3), Ci is the subsurface mineral N212

concentration (kg m−3), Θi is the volumetric soil water content (m3 m−3), qij is the lat-213

eral water flow at the subsurface between grid i and its neighbor at edge j (m3 s−1), and214

F is a source/sink term of the corresponding solute (kg s−1). In Cycles-L, the source/sink215
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Figure 1. Schematic illustration of land surface and hydrologic processes simulated by

Flux-PIHM; energy, water, carbon (C) and nitrogen (N) cycles simulated by Cycles with fluxes in

and out for each component; and the coupling between Flux-PIHM and Cycles. For Cycles, the

nodes at the arrows’ intersections represent interactions between cycles; St and Li are incoming

shortwave and longwave radiation, Sr and Lo are outgoing shortwave and longwave radiation, H,

λE, and G are sensible, latent, and ground heat fluxes, PP is precipitation, I is irrigation, Wt is

capillary rise, Q is runoff, Wo is soil percolation or lateral flow, Cr and Nr are C and N changes

caused by soil amendments, and Ch and Nh are harvested C and N. When coupled, the processes

represented by dashed arrows in Flux-PIHM are simulated by Cycles, and the fluxes with under-

lines in Cycles are calculated by Flux-PIHM.

terms for mineral N are:216

d

dt
NO−

3 -N = NO−
3 -Nf +NO−

3 -Nd +NO−
3 -Nnit +NO−

3 -Nimm

−NO−
3 -Ndnit −NO−

3 -Npup −NO−
3 -Nl −NO−

3 -Nr

(2a)217

218

and219

d

dt
NH+

4 -N = NH+
4 -Nf +NH+

4 -Nd +NH+
4 -Nmin

−NH+
4 -Nnit −NH+

4 -Nimm −NH+
4 -Npup −NH3-Nvol −NH+

4 -Nl −NH+
4 -Nr

(2b)

220

221

where subscript f is for fertilizer, d for deposition, nit for nitrification, imm for micro-222

bial immobilization or microbial uptake, pup for plant uptake, dnit for denitrification,223

l for leaching or percolation, r for runoff, min for mineralization of organic compounds224

with N (many), and vol for volatilization as NH3-N. Note that NO−
3 -Nnit and NH+

4 -Nnit225

are the same, and NH+
4 and NO−

3 are just N species identifiers. If the net water flow from226

a grid is outward (net efflux from grid i to grid j) then the mineral N concentration (Cij)227

of the water flow (qij) is that of grid i: Cij = Ci; otherwise, Cij = Cj . In Flux-PIHM,228

horizontal water flow is restricted to the saturated zone. But this horizontal flow is cal-229

ibrated to include the representation of lateral perched flow above unsaturated layers and230

that flow can drag mineral N (M. R. Williams et al., 2015) or other solutes. This is dif-231

ficult to predict because it depends on the mixing between water flowing through macro-232

pores and water in the non-macropore soil matrix and the distribution of mineral N. To233

account empirically for that transport, we tentatively assigned a weight function that234

allows for mineral N transport from unsaturated layers. The weighting function is Kr

D−dz
,235

where Kr is the relative hydraulic conductivity (hydraulic conductivity divided by sat-236

urated hydraulic conductivity), D is the total soil depth, and dz is the depth of the cor-237

responding soil layer. This function is applied to all soil layers when calculating the av-238

erage concentration of soil mineral N, to emulate the horizontal transport of mineral N239
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in the shallower depths with higher hydraulic conductivities. Due to the very low hy-240

draulic conductivity of dry layers, they contribute little to mineral N transport.241

At the beginning of each simulation day, land surface processes are calculated first242

using the Noah land surface model. Note that in Cycles-L, Noah LSM evapotranspira-243

tion functions are replaced by the corresponding Cycles functions. Cycles then applies244

management operations and simulates vegetation, residue, and soil C and N processes,245

using as input the daily meteorological conditions, soil temperature, soil moisture, and246

snow cover informed by Flux-PIHM. Cycles passes evapotranspiration rate and N fluxes247

as source/sink terms in water and N transport. Then, Flux-PIHM calculates the trans-248

port of water and N for the entire domain using sub-daily time steps.249

3 Site and data250

3.1 Description of the WE-38 watershed251

The WE-38 watershed is a 7.3 km2 first-order watershed within the Mahantango252

Creek Watershed in Pennsylvania’s Northumberland county (Fig. 2a). Elevation ranges253

from 503 m at the northernmost ridge to about 214 m near the southern outlet. The land254

cover comprises cultivated land (55%), followed by forests (40%), pasture (3%), and de-255

veloped area (2%). The watershed contains more than 300 farm fields. Surveys and in-256

terviews were used to obtain field-specific operations (Veith et al., 2015) that documented257

crop species, planting and harvesting dates, tillage tools and operation dates, and syn-258

thetic fertilizer and animal manure application rates and dates. The watershed has been259

the focus of rigorous research on agricultural management and monitoring of water qual-260

ity (Pionke et al., 2000; Bryant et al., 2011; Buda et al., 2011; Church et al., 2011; Lu261

et al., 2015; Veith et al., 2015), and long-term discharge and water quality measurements,262

including NO−
3 -N and NH+

4 -N, are publicly available.263
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Figure 2. (a) WE-38 model domain projected onto an aerial photograph of the watershed.

The red triangles represent the model grids and the blue lines represent river segments. (b) Sur-

face elevation map of the WE-38 model domain. (c) Land use and crop rotations in the WE-38

model grids. (d) SSURGO soil map projected onto WE-38 model grids, with each color repre-

senting one unique soil type. The soil series are Albrights silt loam (Ab), Alvira silt loam (Ar),

Bedington silt loam (Be), Berks channery silt loam (Bk), Buchanan channery loam (Bu), Calvin-

Klinesville shaly silt loams (Ca), Dekalb very channery sandy loam (De), Hartleton channery

silt loam (Ht), Hazleton and Clymer extremely stony sandy loams (Hu), Laidig and Meckesville

extremely stony soils (Ld), Leck kill shaly silt loam (Ln), Meckesville silt loam (Mk), Shelmadine

silt loam (Sh), Watson silt loam (Wb), and Weikert and Klinesville shaly silt loams (Wk).
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3.2 Domain and model setup264

The Cycles-L WE-38 model physical domain consists of 114 segments represent-265

ing the stream network (average 98-m long) and 883 triangular grids (average 0.83 ha),266

of which 522 triangular grids are cropland (Fig. 2). The watershed drainage network was267

mapped using the Terrain Analysis Using Digital Elevation Models tool (TauDEM; Tar-268

boton et al., 2009; Tarboton, 2015) on a digital elevation model (DEM) obtained from269

light detection and ranging (lidar) data and color orthophotography at horizontal and270

vertical resolutions of 0.5 and 0.15 m, respectively (Bryant et al., 2011). Afterwards, the271

drainage network was updated by overlapping the TauDEM analysis results with a geo-272

referenced orthomosaic of the watershed obtained from the Pennsylvania Spatial Data273

Access (PASDA, 2022).274

To represent field operations, we converted the database used for WE-38 in Hirt275

et al. (2020) to Cycles-L inputs. This database aggregates field operations history by crop276

in the rotation. These rotations and associated field operations were projected on the277

Cycles-L WE-38 model domain (Fig. 2c). Model grids were assigned to one of six land278

uses: deciduous forest, a corn (2 years)-soybean-corn-hay (4 years) rotation, a corn (4 years)-279

hay (4 years) rotation, a soybean-corn rotation, a hay rotation, and a corn-soybean-corn-280

soybean-oat hay-hay (3 years) rotation. Hay was simulated as a mixture of 1/3 alfalfa281

and 2/3 orchardgrass. Deciduous forest is the most common land use type, while the corn282

(2 years)-soybean-corn-hay (4 years) rotation is the most common crop rotation. The283

operations for each crop are listed in Table 1.284

To prevent an unrealistic rotation synchrony in grids with the same rotation, we285

randomly assigned a different starting point in the rotation to each grid within the as-286

signed rotation. For example, for the model grids with the soybean-corn rotation, we ran-287

domly assigned half of those grids to start with soybean, and the other half to start with288

corn.289

The soil properties texture, organic matter, and bulk density (by layer) were ex-290

tracted from the SSURGO database projected to the model domain (Fig. 2d); 15 unique291

soil series were identified for the watershed. The meteorological forcing (precipitation,292

air temperature, humidity, wind speed, downward solar radiation, downward longwave293

radiation, and air pressure) were obtained from the North American Land Data Assim-294

ilation System Phase 2 (NLDAS-2; Xia et al., 2012) forcing data, which provides data295

at hourly time-step and is suitable for hydrologic simulations.296

For model testing, annual crop yields were downloaded from the The United States297

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) at298

county level (Northumberland county) and compared with both Cycles 1-D and Cycles-L299

for the entire watershed.300

The simulation period was 16 years from 0000 UTC 1 January 2000 to 0000 UTC301

1 January 2016. Setting up the model requires spin-up to stabilize hydrological and bio-302

geochemical soil properties. The spin-up process was divided into two, one for hydrol-303

ogy and one for soil variables. Because running Cycles-L is more computationally ex-304

pensive than Flux-PIHM, we first ran Flux-PIHM for land surface hydrological param-305

eter calibration and hydrological state spin-up. When running Flux-PIHM, the forest306

was simulated as the deciduous forest NLCD land cover type, the hay rotation was sim-307

ulated as the pasture/hay land cover type, and all other crop rotations were simulated308

as the cultivated crop land cover type. The leaf area index (LAI) forcing was prescribed309

monthly climatological LAI that depends on land cover types. Flux-PIHM hydrologic310

and land surface parameters were manually calibrated using the observed discharge data311

from 2000 to 2011. Model parameters that affect horizontal flow and key parameters iden-312

tified from Flux-PIHM sensitivity analyses (Shi et al., 2014; Xiao et al., 2019) were ad-313

justed, including vertical and horizontal saturated hydraulic conductivities, vertical and314
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Table 1. Field operations for crops in the rotation. The N-P-K refers to the proportion of N,

P, and K in the dry mass. For manure, 25% of N is added as NH+
4 and 75% as organic N with

C:N ratio of 14. For hay, fertilization follows after a clipping and haying event.

Opearation Day of year Fertilizer mass (kg ha−1) Fertilizer N-P-K

Corn
Manure fertilizer 100 3500 03-01-00
Tillage moldboard 101
Tillage disking 102
Planting 121
Fertilization 121 100 10-20-20
Fertilization 152 100 33-00-00
Harvest and kill crop

Soybean
Manure fertilizer 100 1875 03-01-00
Tillage disking 102
Planting 121
Harvest and kill

Oat for hay
Tillage chisel + cultivator 92
Planting 97
Fertilization 97 300 03-15-48
Fertilization 166 100 33-00-00
Harvest and kill 219

Hay (alfalfa + orchardgrass for hay)
Tillage (year 1) 101
Planting (year 1) 105
Fertilization manure (year 1) 100 3500 03-01-00
Fertilization (year 1) 259 100 02-11-45
Clipping and haying (4 times) Various
Fertilization all years (4 times) Various 100 02-11-45
Kill (year 4) 303

–9–



manuscript submitted to Water Resources Research

horizontal saturated macropore hydraulic conductivities, macropore depth, soil poros-315

ity, van Genuchten parameters, and canopy stomatal conductance. After calibration, land316

surface and hydrological states were spun up by recycling the meteorological forcing. Hy-317

drological states are considered steady when the change of watershed average ground-318

water storage is lower than 1 cm between the beginning and end of a simulation cycle.319

Steady state condition was reached in 32 years, which required recycling the meteoro-320

logical forcing twice.321

The land surface hydrological state variables after the spin-up were used to initial-322

ize the Cycles-L spin-up process. The Cycles-L model was run repeatedly by recycling323

the 16-year meteorological forcing and prescribed farm operations until the change of soil324

profile organic carbon was lower than 0.01 Mg ha−1. Cycles-L reached steady state con-325

ditions after 11 simulation cycles, i.e., 167 simulation years.326

We calibrated the crop model using the USDA-NASS survey corn yield by adjust-327

ing crop ecophysiological parameters that are site-dependent (rooting depth) and two328

related parameters that regulate growth potential, the radiation use efficiency (g of biomass329

accrued per MJ of radiation intercepted) and transpiration use efficiency (g of biomass330

accrued per kg of water transpired). The last two parameters were reduced to 2/3 of their331

default values, to represent in a simplified way limitations to growth not accounted for332

in the input data (shallower soils or compacted layers) or in the model (deficient root333

exploration due to rocks); the watershed soils can have locally high rock content (Saha334

et al., 2017). Overestimating yields can severely alter outputs mostly by increasing nu-335

trient extraction in harvested grain or forage.336

Uncoupled Cycles simulations were performed to compare with Cycles-L outputs.337

The Cycles 1-D simulations used the most dominant soil type Calvin-Klinesville shaly338

silt loams (Ca), and the most prevailing crop rotation [corn (2 years)-soybean-corn-hay339

(4 years)]. As in Cycles-L, we ran four Cycles simulations, starting with different crops340

in the rotation, i.e., a corn (2 years)-soybean-corn-hay (4 years) simulation, a soybean-341

corn-hay (4 years)-corn (2 years) simulation, a hay (4 years)-corn (2 years)-soybean-corn342

simulation, and a hay (2 years)-corn (2 years)-soybean-corn-hay (2 years) simulation. Re-343

sults from the four simulations were averaged to be compared with Cycles-L.344

4 Results345

4.1 Simulation of stream discharge346

Model simulation results from 2000 to 2015 after spin-up are presented below, and347

evaluated using field measurements or surveys.348

Cycles-L captured the interannual variability of discharge, and accurately predicted349

the timing of most discharge events. The base flow rate predicted by Cycles-L compared350

well with observations. The Nash-Sutcliffe coefficient (NSE) of daily discharge for the351

entire simulation period was 0.55. The NSE, however, varied from year to year, and was352

as high as 0.85 in 2005. Discharge from multiple years was also averaged to each day of353

year to glean within-year patterns of measured and modeled discharge (Fig. 3b). The354

model captured the seasonal wet-dry cycles, and the predicted magnitude of discharge355

generally agreed well with observation. Cycles-L slightly overestimated discharge, ex-356

cept for late winter and spring. The NSE for the predicted multi-year average discharge357

was 0.68.358

Flux-PIHM prediction was similar to Cycles-L (Fig. 3a) because both of them share359

the same hydrologic component but canopy cover is endogenous in Cycles-L and a forc-360

ing in Flux-PIHM. The NSE for Flux-PIHM daily discharge prediction was 0.60, which361

was slightly higher than Cycles-L (0.55). It should be noted that the land surface and362

hydrologic parameters in Cycles-L were calibrated by running Flux-PIHM, which may363
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Figure 3. (a) Comparison of daily discharge between observations and outputs from Cycles-L

and Flux-PIHM, from 1 Jan 2000 to 31 Dec 2015. (b) Comparison of daily discharge when aver-

aged to each day of year.

cause Flux-PIHM to yield slightly better performance than Cycles-L. When averaged to364

each day of year, Flux-PIHM also tended to overestimate discharge. Compared to Cy-365

cles-L, Flux-PIHM produced higher predictions of discharge in spring, and lower predic-366

tions in other seasons.367

4.2 Simulation of grain yield368
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Figure 4. (a) Temporal variation of USDA-NASS survey corn yield and both Cycles-L and

Cycles 1-D predicted annual average corn yield from 2000 to 2015. The USDA-NASS survey is

for Northumberland County, PA. The shaded area represents the standard deviations of corn

yield in space. (b) Cycles-L and Cycles 1-D predicted annual average corn yield versus USDA-

NASS survey annual corn yield. (c) First difference of Cycles-L and Cycles 1-D predicted annual

average corn yield versus first difference of USDA-NASS survey annual corn yield.

On average, both Cycles-L and Cycles captured the corn yield variation well (Fig. 4),369

with R2 of 0.66 for Cycles-L and 0.65 for Cycles, and root mean square error (RMSE)370

of 1.01 and 0.90 Mg ha−1 for Cycles-L and Cycles, respectively. When comparing the371
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first differences of corn yield, which detrend yield increases with time due to technology,372

the R2 for Cycles-L decreased to 0.58 and that for Cycles increased to 0.72. Cycles-L373

tended to underestimate the interannual variability compared to Cycles (Fig. 4c). The374

shaded area in Fig. 4(a) illustrates the spatial variation of corn grain yield predicted by375

Cycles-L. The spatial variation of corn yield was larger when yield was higher, and smaller376

when yield was lower. The standard deviations of corn yield in space varied between 2.2377

and 3.5 Mg ha−1. The USDA-NASS survey reported yields were always within the pre-378

dicted one-standard-deviation (Fig. 4a).379

4.3 Simulation of mineral nitrogen discharge380
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Figure 5. (a) Comparison of daily nitrate-N discharge between the observations and two Cy-

cles-L simulations (1x N and 1.5x N), from 1 Jan 2000 to 31 Dec 2015. (b) Comparison of daily

nitrate-N discharge when averaged to each day of year. When averaged to each day of year, a

3-day moving average was applied to both observations and predictions to better reveal the tem-

poral patterns.

We focused on the N exported at the watershed outlet, where comparisons with381

measurements allow a reality-bounded assessment of the impact of changing N fertiliza-382

tion rates. The temporal patterns of water discharge (Fig. 3) and N discharge (Fig. 5)383

are similar, because N discharge is controlled by water discharge. Accordingly, the N dis-384

charge pattern was correctly simulated by Cycles-L with an NSE of 0.58, but the N mass385

discharged through the stream was consistently underestimated compared with measure-386

ments (Fig. 5). The observed and predicted average NO−
3 -N discharge were 63.8 and 46.1 kg day−1.387

4.4 Simulation of mineral nitrogen concentration in the stream388

Because the stream discharge was slightly overestimated and NO−
3 -N underestimated,389

the concentration of NO−
3 -N was also underestimated, as was the seasonal variation in390

NO−
3 -N concentration (Fig. 6). The average observed NO−

3 -N concentration in the stream391

was 5.4 mg L−1, with a pronounced W-shaped seasonal pattern with highs in early sum-392

mer and in winter, and lows in spring and autumn (Fig. 6b). Interannual variability was393

also noticeable. The simulations consistently underestimated the concentration of NO−
3 -N,394
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Figure 6. (a) Comparison of daily stream nitrate-N concentrations between observations and

two Cycles-L simulations (1x N and 1.5x N), from 1 Jan 2000 to 31 Dec 2015. (b) Comparison of

daily nitrate-N concentrations when averaged to each day of year.

on average by about 30%, and significantly underestimated the magnitude of seasonal395

variations.396

4.5 Spatial pattern of simulated nitrogen fluxes397

Table 2. Simulated and observed nitrogen fluxes. All fluxes are watershed annual average.

N flux Cycles-L Cycles-L 1.25xN Cycles-L 1.5xN Observed
(kg ha−1 yr−1)

Fixation and deposition 45.0 41.9 38.7 N/A
Fertilization (manure) 54.8 68.4 82.2 N/A
Fertilization (synthetic) 30.2 37.8 45.3 N/A
Volatilization 9.4 10.6 11.8 N/A
Denitrification 8.4 10.7 13.3 N/A
N2O emission from nitrification 0.5 0.6 0.7 N/A
N in Harvest 77.3 83.7 89.1 N/A
N in discharge 22.7 29.9 38.8 31.4

Since the model has been run to steady state, the change of N storage in the sys-398

tem was low. On average, most N removals other than discharge occurred through N har-399

vest, NH3-N volatilization, and NO−
3 -N denitrification (Table 2).400

Due to the distribution of the cropland and forestland, N inputs had a marked spa-401

tial distribution (Fig. 7). Yet, the spatial patterns of N losses were also shaped by to-402

pography and soils that alter hydrology. The spatial pattern of N input was clearly con-403

trolled by crop management. Forests and the areas with the hay rotation have low N in-404
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Figure 7. Spatial patterns of nitrogen fluxes (nitrogen input, nitrogen volatilization, denitrifi-

cation, N2O emission, and nitrogen in harvest) as predicted by Cycles-L. For each model grid, the

fluxes were averaged over the whole simulation period. The dotted areas represent the forests and

areas with the hay rotation. The blue lines represent river segments.

put because there was no fertilization but only deposition and biological fixation. The405

spatial pattern of NH3-N volatilization was highly correlated with the pattern of fertil-406

ization. The spatial patterns of denitrification and N2O emission demonstrate the com-407

plex interactions between crop management and topography. The forests had a lower den-408

itrification rate (and N2O emission) compared to areas with crop rotations. For the ar-409

eas with crop rotations, denitrification rates (and N2O emission) were higher in head-410

waters and some regions of convergent flow or flat terrain near the stream (but not all),411

where soil water content was higher. Nitrogen harvest was largest in areas with a high412

frequency of corn and soybean.413

5 Discussion414

5.1 Simulating hydrology415

Cycles-L captured the interannual variability of discharge, and accurately predicted416

the timing of peak discharge events and base flow rates with minimum manual calibra-417

tion. This is in line with the high fidelity of the PIHM family models demonstrated for418

multiple watersheds (Shi et al., 2013, 2015; Jepsen et al., 2016; Crow et al., 2018; Zhang419

et al., 2018; Xiao et al., 2019; Zheng et al., 2021). Among the desirable future improve-420

ments are to represent explicitly perched water movement on top of Bt horizons, which421

would allow lateral water transport overlaying unsaturated soil layers. Currently, this422

process is lumped in the lateral flow calibration parameters. While modeling it explic-423

itly may not improve the overall accuracy of discharge predictions, it may affect min-424

eral N (and other constituents) transport. Similar considerations apply to modeling wa-425

ter flux through tile drains, with the practical caveat that the location of tile drains is426

often unknown. When the tile drain network is well mapped it can be explicitly simu-427

lated although at the cost of a very dense grid (De Schepper et al., 2015). Nonetheless,428

while the model performs well in its current formulation, future developments should in-429

clude an explicit representation of tile drains as submerged channels that interact with430

groundwater.431

Compared with other spatially distributed agroecosystem hydrological systems, which432

usually have rigid rectangular model grids, the unstructured triangular grids of Cycles-L433

provides both computational efficiency and optimal representations of local heterogene-434

ity. Unstructured triangular grids capture with ease watershed boundaries, stream net-435

works, and soil and vegetation units (Qu & Duffy, 2007; Kumar et al., 2010; De Schep-436

per et al., 2015). Because grid sizes can differ in Cycles-L, coarser grids can be used in437
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locations with simple topography and low land surface heterogeneity to improve model438

efficiency, while finer grids can be used to capture complex topography and spatial het-439

erogeneity in soil and vegetation, an approach that is already suggested by the unstruc-440

tured mesh used to represent tile drains by De Schepper et al. (2015). These features441

enable applications for precision agriculture in a cohesive framework. Cycles-L’s unique442

capability to simulate the two-way interaction between stream and riparian zones makes443

it extremely useful to evaluate interventions in agricultural areas along floodplains where444

flooding damage risk is high (Collins et al., 2022).445

5.2 Simulating nitrogen discharge and concentration446

When using the fertilization rate as prescribed by the survey data (Hirt et al., 2020),447

the model prediction of water discharge and corn yield agreed well with the observations448

and survey (Figures 3 and 4), but underestimated the stream NO−
3 -N concentration and449

NO−
3 -N discharge (Figures 5 and 6). The discharge underestimation amounted to 9.7 kg ha−1 y−1

450

of N (Table 2). Among the possible reasons are that the model is overestimating other451

N losses or that N inputs are underreported. Therefore, we ran exploratory Cycles-L sim-452

ulations with arbitrary N input increases of 25% (not shown in the figures) and 50% over453

the survey data (hereafter, Cycles-L 1.25x N and Cycles-L 1.5x N simulations).454

The NO−
3 -N in discharge predicted by the Cycles-L 1.5x N simulation was higher455

than the observed discharge (+7.4 over the observed 31.4 kg NO−
3 -N ha−1 y−1) but closer456

to that in the default simulation; the NO−
3 -N in discharge predicted with Cycles-L 1.25x N457

almost matched the observed discharge (Table 2). Although the 1.5x N simulation over-458

estimated stream NO−
3 -N concentration in winter and spring, deviations in multi-year459

average N discharge for this time period were small, because the model’s underestima-460

tion of water discharge for the same time period (Fig. 3b) compensated for deviations461

in NO−
3 -N concentration. The 1.5x N simulation substantially overestimated NO−

3 -N con-462

centration in 2000 and 2001 and underestimated it in 2003 and 2004 (Fig. 6). For other463

years, the predicted NO−
3 -N concentration agreed well with observations, especially for464

the second half of the simulation (from 2008 to 2016), despite missing some peaks. When465

averaged to each day of year, the model captured the seasonal variation of NO−
3 -N con-466

centration change, but overestimated the concentration in late winter and early spring467

(Fig. 6b).468

The Cycles-L 1x N, 1.25x N, and 1.5x N simulations produced almost identical corn469

yield and water discharge. It suggests that crop growth was not N limited in WE-38 even470

when using the 1x fertilization rate. Because crop growth was similar between the two471

simulations, evapotranspiration simulations were close as well, hydrology was not affected,472

and the three simulations produced similar stream discharge. Adding more N fertilizer,473

however, increased stream N concentration. It should be noted that adding 50% more474

N fertilizer did not increase N inputs to the watershed proportionally because of a par-475

allel reduction in N biological fixation of 6.3 kg ha−1 y−1 of N (Table 2). If we were to476

assume that indeed, inputs of N were underestimated, and that they would scale linearly477

between our 1x and 1.5x simulations, we estimate that N inputs obtained through sur-478

veys were underestimated by 25 to 30%.479

As in Ator and Garcia (2016), denitrification was a significant loss pathway. When480

spatially averaged over the whole simulation period (from 2000 to 2015), denitrification481

rates generally increased as N input increased within each crop rotation type (Fig. 8),482

but strong variation existed depending on the rotation and field location. There seems483

to be a correlation between well drained locations and the location of corn and soybean484

in the field (Fig. 2), likely reflecting producers’ choices that facilitate field operations in485

cash crops, which may result in lesser than expected N denitrification losses in those fields486

(Fig. 8). However, NO−
3 -N is transported mostly through groundwater, and grids that487

gain NO−
3 -N through leaching from other grids may have higher denitrification rates than488
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Figure 8. Average denitrification rate vs average nitrogen input as predicted by Cycles-L.

Each circle represents one model grid, averaged over the whole simulation period. The sizes

of the circles represent the degrees of soil saturation. Different colors represent different land

uses/crop rotations.

those expected based only on surface N input. While forests and hay fields have lower489

N input than the other crop rotations, most cropping model grids have average N input490

between 175 and 225 kg ha−1 y−1, but their simulated denitrification rates varied sig-491

nificantly, from around 5 to 40 kg NO−
3 -N ha−1 y−1, in large part due to hydrological492

control of leaching and denitrification. The movement of water alters both NO−
3 -N and493

oxygen availability in space, which leads to significantly different spatial denitrification494

rates (Groffman et al., 2009). Within each crop rotation type, denitrification rates tend495

to increase when soil wetness increases (represented by the circles’ size in Fig. 8), which496

reflects the dominant control of oxygen on denitrification rates in the model (i.e., air filled497

pore space decreases and so does oxygen replenishment). The importance of represent-498

ing these spatial interactions to model hot spots and hot moments of denitrification has499

been highlighted earlier by Groffman et al. (2009) and measured in the field by Saha et500

al. (2017). Our modeling framework advances in that direction. Improvements are needed501

to represent denitrification in stream sediments and to include physical features such as502

the specific location of buried carbon sources (Hill et al., 2014), to further refine our un-503

derstanding and modeling of denitrification spatial distribution (Wallace et al., 2020).504

5.3 Strength of Cycles-L and opportunities for improvement505

Because of its spatially distributed nature, Cycles-L represents a step forward to506

simulate landscape level processes such as groundwater and stream water transport of507

reactive N and other compounds as affected by crop rotation, soil type, and weather vari-508

ations within the watershed domain. It can also represent the heterogeneity of agroe-509

cosystem processes caused by topography, soil heterogeneity, and management practices,510

owing to its physically-based hydrologic component and ability to simulate horizontal511

and vertical transport of mineral N with water. By extension, other nutrients like sol-512

uble phosphorus (McConnell et al., 2020), dissolved organic C (Pabich et al., 2001), and513

agrochemicals (Hladik & Kolpin, 2015) can be integrated in the same framework.514
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Cycles-L can be an important tool to evaluate costly interventions in silico before515

deployment in the field, as complex interactions among subsurface, land surface, and crops516

can be explored before committing resources on the ground, as exemplified by a com-517

parable model using a square grid domain (Beaujouan et al., 2001). Similarly, Cycles-L518

can become a powerful tool for precision agriculture and precision conservation, becom-519

ing a core component of artificial intelligence applications (Gil et al., 2021). The spa-520

tial and temporal richness of the model outputs coupled with immersive visuals open new521

opportunities to represent the dynamics of agroecosystems to develop research, educa-522

tional, and public engagement tools (C. Wang et al., 2019).523

Comparing Cycles 1-D average corn yield with county-level yield averages, a coarse524

comparison due to the amalgamation of disparate scales, indicates that overall Cycles525

correctly captures the effect of interannual variations in weather on crop yield. So do other526

1-D cropping system models applied in the region (Castaño-Sánchez et al., 2020). Cy-527

cles-L did not improve upon these results, although the comparison scope is limited to528

this small watershed. The simulations with Cycles-L increased the minimum yield most529

likely due to redistribution of subsurface water in drier years. It remains to be tested if530

an even finer resolution (smaller triangles) would render a better representation of hy-531

drology and crop growth and yield. Such finer resolution would also require using dense,532

grid-specific soil input information. While such soil information might not be available,533

yield maps that would allow such testing are already regularly available, and assessing534

the effect of a finer resolution in representing certain processes is needed to advance ap-535

plications in precision agriculture.536

Macropore flow in Flux-PIHM lumps vertical bypass flow, but also fast lateral flow537

of perched water that reaches the stream with lesser mixing with water in the non-saturated538

soil matrix. In this watershed, measurements have revealed that water can reach streams539

through ephemeral springs that exfiltrate after lateral transport (Redder et al., 2021),540

and that water can have high concentration of NO−
3 -N that reflects limited mixing with541

groundwater (M. R. Williams et al., 2015). When measuring in-stream NO−
3 -N concen-542

tration, this spring contribution of water and NO−
3 -N can cause spikier readings in stream543

NO−
3 -N concentration than when water reaching the stream is mixed with groundwa-544

ter, and is the case for Flux-PIHM (except for direct runoff). This is clearly difficult to545

represent with lumped parameters, which can help explain the subdued variation in the546

modeled versus measured NO−
3 -N concentration in the stream (Fig. 6).547

The quality of Cycles-L predictions depends on both model structure and input data548

quality. To represent, for example, large N discharge events, accurate input of the amount,549

timing, and composition of the N amendments is critical. However, the composition of550

animal manure is highly variable (Griffin et al., 2005), so that there is an inherent vari-551

ance in the addition of N and other nutrients to fields or watersheds via manure. In this552

study, manure N input represented 42% of the N input in the 1x N scenario (Table 2),553

and was on average twice as large as the NO−
3 -N watershed discharge. In addition, for554

the simulations presented here, the prescribed management practices have the same plant-555

ing dates, tillage dates and practices, and fertilization dates and rates every year, which556

are approximately correct on average but likely incorrect in any given year of the 16-year557

simulation period. Therefore using the surveyed management data introduces uncertainty558

that would reflect in deviations of stream flow and especially NO−
3 -N concentration (Fig. 6)559

independently of the model algorithms. The underestimation of NO−
3 -N discharge when560

using survey data to represent fertilizer inputs (1x) and the improvement through the561

modeled 1.25x and 1.5x scenarios suggest that N inputs through fertilizer could have been562

underestimated on average by 30%. Indeed, a mismatch between field survey data on563

N (and phosphorus) input and that needed to match crop yield and other variables has564

been reported before (USDA-NRCS, 2012, page 30).565

Cycles-L couples a hydrologic model (PIHM), land surface model (Noah LSM), and566

agroecosystem model (Cycles) together. The interactions among these components are567
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complex and the number of parameters involved is large even when using a conservative568

approach for model development. Parameter sensitivity in Flux-PIHM has been exam-569

ined in previous studies (Shi et al., 2014; Xiao et al., 2019), which revealed complex in-570

teractions among model parameters and between land surface-subsurface processes that571

are inherited in Cycles-L. Sensitivity analysis of Cycles-L can help identify critical model572

parameterization and reveal any potential dependence of model results on grid resolu-573

tion.574

Operationally, it is simple to set up and run 1-D models like a stand alone Cycles575

1-D with standardized inputs. Once the soil profile and weather forcing are formatted576

to conform to requirements, there is no impediment to run the model. Setting up and577

running 3-D models is less straightforward. While the generation of input files, grid and578

stream network has been automated in the past for CONUS to provide users a starting579

point at the HUC12 level (Leonard & Duffy, 2014), automation does not warrant that580

the setup provides a stable frame to represent hydrology. Often, the grid and stream net-581

work setup needs to be streamlined to secure convergence of fluxes and state variables582

or to avoid resorting to small time steps that slow down execution. However, once a set583

up is ready, it can be stored, shared, and re-used efficiently, and support running new584

scenarios or applications that need to combine measurements and modeling (e.g., Drake585

et al., 2018) with agility.586

6 Conclusions587

Cycles-L is among the first next generation physically-based spatially-distributed588

agroecosystem models that can represent landscape processes. The coupling of biogeo-589

chemical and hydrologic processes at the catchment scale places this model between 1-D590

models that simplify terrain and other attributes, and global models that connect at-591

mospheric volumes in 3-D but are underlined by simplified land models. Cycles-L oc-592

cupies therefore a unique operational space relevant to simulate interventions in the land-593

scape.594

In the test case presented here for Central Pennsylvania, Cycles-L simulated well595

hydrology, grain crops yield, and N exports in the stream, despite some uncertainty in596

the quality of the input data. Cycles-L retains, therefore, the strengths of Flux-PIHM597

(Shi et al., 2013) and the 1-D Cycles model (Kemanian et al., 2022). Compared to the598

uncoupled Flux-PIHM (water discharge) and Cycles (crop yield) models, the predictions599

of Cycles-L are as good if not improved. The model skill at predicting the impact of to-600

pography, soil heterogeneity, and crop management on N fluxes temporally and spatially601

can expand the domain of in silico agroecosystem analysis to landscape levels.602

Further progress will depend on continuously balancing the complexity of the model603

algorithms with concomitant improvements in input quality, to take advantage of increas-604

ing computing capacity and to represent landscapes with increasing fidelity. We envi-605

sion that tools like Cycles-L will become a critical component of the analytical toolkit606

of both academic and non-academic communities.607
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