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Abstract

MADS domain transcription factors play roles throughout the whole lifecycle of plants from seeding to flowering and fruit-

bearing. However, systematic research into MADS-box genes of the economically important vegetable crop pepper (Capsicum

spp.) is still lacking. We identified 174, 207, and 72 MADS-box genes from the genomes of C. annuum, C. baccatum and

C. chinense, respectively. These 453 MADS-box genes were divided into type I (Mα, Mβ, Mγ) and type II (MIKC* and

MIKCC) based on their phylogenetic relationships. Collinearity analysis identified 144 paralogous genes and 195 orthologous

genes in the three pepper species, and 70, 114, and 10 MADS-box genes specific to C. annuum, C. baccatum and C. chinense,

respectively. Comparative genomic analysis highlighted functional differentiation among homologous MADS-box genes dur-

ing pepper evolution. Tissue expression analysis revealed three main expression patterns: highly expressed in roots, stems,

leaves and flowers (CaMADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically expressed in flowers (Ca-

MADS26/CbMADS31/CcMADS11). This study provides the basis for an in-depth study of the evolutionary features and

biological functions of pepper MADS-box genes.
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Core Ideas:

• Genome-wide identification identified 454 MADS-box genes from Capsicum
spp. Genomes.

• Genome-wide identification revealed the evolutionary relationship of MADS-
box gene family in Capsicum spp.

• Most of the Capsicum MADS-box genes have been amplified on a large scale.

• Most of the Capsicum MADS-box genes have undergone purification selection
during evolution.

• Tissue specific expression patterns of most MADS-box genes indicated their
functional diversity.
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ABSTRACT

MADS domain transcription factors play roles throughout the whole lifecycle
of plants from seeding to flowering and fruit-bearing. However, systematic re-
search into MADS-box genes of the economically important vegetable crop pep-
per (Capsicum spp.) is still lacking. We identified 174, 207, and 72 MADS-
box genes from the genomes of C. annuum, C. baccatum and C. chinense, re-
spectively. These 453 MADS-box genes were divided into type I (M�, M�, M�)
and type II (MIKC* and MIKCC) based on their phylogenetic relationships.
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Collinearity analysis identified 144 paralogous genes and 195 orthologous genes
in the three pepper species, and 70, 114, and 10 MADS-box genes specific to
C. annuum, C. baccatum and C. chinense, respectively. Comparative genomic
analysis highlighted functional differentiation among homologous MADS-box
genes during pepper evolution. Tissue expression analysis revealed three main
expression patterns: highly expressed in roots, stems, leaves and flowers (Ca-
MADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically
expressed in flowers (CaMADS26/CbMADS31/CcMADS11). This study pro-
vides the basis for an in-depth study of the evolutionary features and biological
functions of pepper MADS-box genes.

Keywords: Capsicum annuum; Capsicum baccatum; Capsicum chinense;
MADS-box family; Comparative evolution; Purifying selection

1. INTRODUCTION

MADS-box genes comprise a large family of genes distributed throughout the
plant kingdom and therefore occupy an important position in plant growth and
development. The MADS acronym is composed of the initials of four proteins: a
yeast transcription factor (MCM1), the Arabidopsis thaliana floral homozygote
AGAMOUS (AG), an Antirrhinum majus floral homozygote (DEFICIENS), and
human serum response factor (SRF) (Lawton-Rauh et al., 2000; Shore et al.,
1995). All four proteins have a highly conserved region consisting of 56–58 amino
acids called the MADS domain.(Becker & Theissen, 2003; Schwarz-Sommer et
al., 1990) Approximately one billion years ago, a duplication event occurred in
the common ancestor of MADS-box genes, resulting in two distinct branches,
type I and type II (Alvarez-Buylla et al., 2000), Type I proteins contain mainly
SRF structural domains, and type I MADS-box genes can be further divided into
M�, M�, and M�; only a few types I genes have a biological function (Smaczniak
et al., 2012). Type II genes are divided into MIKCC and MIKC* subtypes based
on their structural features (Parenicová et al., 2003).

Replication and evolution of the type I MADS-box genes appear to be faster
than those of type II genes, but these observations are based on few stud-
ies, mainly on the function of type II MADS-box gene in flower development
(Grimplet et al., 2016). According to the classical model of flower development
”ABCDE”: class A genes regulate the formation of sepals; class A and B genes
together regulate petals; class B and C genes control the differentiation of sta-
mens; class C and D genes are mainly involved in the formation of ovules; class
E genes are involved in the regulation of flower organs during the formation
process (Ferrario et al., 2004; Theissen et al., 1996; Weigel & Meyerowitz, 1994).
In A. thaliana, APETALA1 (AP1) represents a class A gene (Irish & Sussex,
1990); APTALA3 (AP3) and PISTILATA (PI) genes belong to class B (jack
et al., 1992); AGAMOUS (AG) is a representative gene with class C function
(Mizukami & Ma, 1992); SEPALLATA (SEP) genes belong to class E (Pelaz et
al., 2000), including SEP1, SEP2, SEP3 and SEP4; and class D genes SEED-
STICK (STK) and SHATTERPROOF1 (SHP1) (Favaro et al., 2003). In addi-
tion, the functions of some genes regulating flowering time, such as FLOWING

2



LOCUS C (FLC), SHORT VEGETATIVE PHASE (SVP), and SUPPRESSOR
Of OVEREXPRESSION Of COSTANS 1 (SOC1), have been confirmed in A.
thaliana, rice (Oryza sativa), and wheat (Triticum aestivum) (Lee et al., 2008;
Shimada et al., 2009; Swiezewski et al., 2009).

MADS-box genes are involved in many plant growth and development processes.
MADS-box genes play important regulatory roles in fruit growth and devel-
opment, such as the FOREVER YOUNG FLOWER (FYF) gene, the SEP-
type CMB1 gene, and auxin-related SlIAA9 in tomato (Solanum lycopersicon)
(Molesini et al., 2020; Xie et al., 2014; Zhang et al., 2018); PaMADS7 of cherry
(Cerasus pseudocerasus) (Qi et al., 2020); MA-MADS5 of banana (Musa nana)
(Roy et al., 2012); and VEGETATIVE TO PRODUCTIVE TRANSITION 2
in wheat (Triticum aestivum) (Adamski et al., 2021). MADS-box genes are
also involved in the plant stress response, such as Zymoseptoria tritici ZtRlm1;
AtAGL16; and SiMADS51 in Setaria italica (Mohammadi et al., 2020; Zhao
et al., 2020). Therefore, the MADS-box family is one of the driving factors of
plant diversity and plays an important role in growth and development (Lai et
al., 2022; Theissen & Saedler, 2001; Yamaguchi & Hirano, 2006)

Pepper (Capsicum spp.) originated in Central America and the Andes moun-
tains, growing in tropical and temperate environments (Aguilar-Meléndez et al.,
2009). At present, 27 species of Capsicum have been identified (Albrecht et
al., 2012), with five species cultivated long-term: Capsicum annuum, C. bacca-
tum, C. chinese, C. frutescens and C. pubescens (Troconis-Torres et al., 2012).
Evolutionary analysis shows that C. annuum differentiated from C. chinense
around 1.14 million years ago, and C. baccatum differentiated from C. annuum
and C. chinense 1.7 million years ago (Kim et al., 2017). At present, there is
little research on the MADS-box gene family in pepper. A CaMADS-box gene
is positively involved positively in low-temperature, salt, and osmotic stress s
signaling pathways (Chen et al., 2019). CanMADS1 and CanMADS6 genes are
expressed in flower buds and fruits and are highly expressed at 2 days after flow-
ering, suggesting involvement in regulating pepper fruit development (Sung et
al., 2001). However, the members of the MADS-box gene family in pepper have
not been systematically identified or analyzed. In this study, we carried out
genome-wide identification of the MADS-box gene family from C. annuum, C.
baccatum, and C. chinense genome data (Liao et al., 2022; Kim et al., 2017; Qin
et al., 2014). Motif distribution, gene structure, chromosomal localization, com-
parative evolution, and expression analysis of different tissues were performed.
Colinearity analysis revealed the presence of specific MADS-box genes in all
three Capsicum species, and genomic duplication events in the MADS-box tran-
scription factor family in C. annuum and C. baccatum. The results of this study
provide comprehensive insight into the characterization of MADS-box genes and
lay the theoretical and fundamental groundwork for revealing the functions of
MADS-box genes in peppers and for the molecular breeding of peppers.

2. MATERIAL AND METHODS

2.1 Plant materials
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The seeds of C. annuum were planted in pots containing soil: vermiculite: perlite
(2:1:1) and placed in a growth chamber under long-day conditions (16 h-1 light/8
h-1 dark, 23/20 °C day/light, 150 µmol m–2 s–1). For tissue expression analysis,
roots, stems, leaves were collected at the third true-leaf expanding stage, flower,
sepal, petals, stamens and pistils were harvested at flowering stage. Pepper
fruits that grew to 3 cm long were sampled. All samples were immediately snap-
frozen with liquid nitrogen and then stored in a -80°C refrigerator until RNA
extraction.

2.2 Identification and naming of MADS-box family genes in three
peppers

MADS-box protein sequences of A. thaliana were downloaded from the TAIR
database (http://www.arabidopsis.org), and genomic data of C. annuum, C.
baccatum and C. chinense were downloaded from the Pepper Genome Plat-
form (http://peppergenome.snu.ac.kr/) (Kim et al., 2017). Algorithm-based
BLASTP was performed using the MADS-box protein sequence of A. thaliana as
the query in the protein databases of C. annuum, C. baccatum and C. chinense,
with an E-value < 1e-5 and other parameters as default values. The obtained
candidate protein sequences were compared with Pfam (http://pfam.xfam.org/)
database using HMMER (http://www.hmmer.org/). The MADS-box domain
based on SRF domain (PF01486) and K domain (PF00319) was used for fur-
ther comparison and screening, and the parameters were the default values.
Thus, the MADS-box gene family members of three species were identified
and named according to the order of their position on the chromosome. In
order to view the distribution of MADS-box on the chromosomes of three pep-
per more directly, the online website MG2C (http://mg2c.iask.iN/mg2c_v2.0/)
was used to draw the chromosome location map. The theoretical molecular
weights and isoelectric points of MADS-box proteins were computed by the
ExPASy (https://web.expasy.org/protparam/) proteomics server. The subcel-
lular localization of CaMADS-box, CbMADS-box and CcMADS-box proteins
were predicted by the ProtComp 9.0 (http://liNux1.softberry.com/berry.phtml)
server.

2.3 Phylogenetic tree construction, gene structure and protein motif
analysis

The ClustalW program was used to perform multiple sequence alignments
between the MADS-box gene family protein sequences of C. annuum, C.
baccatum, C. chinense and A. thaliana, with the default parameters ( et al.,
2002). MEGA6.0 was used to construct Neighbor-Joining phylogenetic trees
and analyze the evolutionary relationship of MADS-box gene families among
different species (Tamura et al., 2013). The phylogenetic trees were visualized
using the EvolView server (https://evolgenius.info/evolview-v2/#login) (Zhang
et al., 2012). Analysis of MADS-box gene exon-intron distribution based on
C. annuum, C. baccatum and C. chinense genome gff3 files using GSDS
(http://gsds.cbi.pku.edu.cn/) visualization server. The conserved motifs of the
CaMADS-box, CbMADS-box and CcMADS-box family were identified using
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the MEME website (http://meme-suite.org/tools/meme). The motif length
range was set to 10–60 amino acid residues, the maximum number of motif
discoveries was set to 10 and other parameters were set to default values.

2.4 Selective pressure analysis

Paralogous and orthologous of MADS-box genes in C. annuum, C. bacca-
tum, and C. chinense were identified using the Ortho Venn2 online website
(https://orthovenn2.bioinfotoolkits.net/home) (Xu et al., 2019). DNaSP 6.0
software was used to calculate the non-synonymous substitution rate (Ka) and
the synonymous substitution rate (Ks) (Rozas et al., 2017), and the selection
pressure of replicated gene pairs during evolution was evaluated by calculating
the ratio Ka/Ks. Ka/Ks > 1, < 1 or = 1 represent positive, negative or neutral
evolution, respectively (Yadav et al., 2015)

2.5 Pepper MADS-box gene expression analysis and qPCR validation

RNA-seq data of C. annuum, C. baccatum, and C. chinense transcriptomic were
obtained from the BioProject database (https://www.ncbi.nlm.nih.gov/bioproject),
and the transcriptome accession number of the three Capsicum species was
PRJNA223222, PRJNA308879 and PRJNA331024, respectively (Kim et al.,
2017). The fastp (Chen et al., 2018) and RSEM tools (Li & Dewey, 2011)
were used to filter and compare sequencing data, and the comparison was
achieved using the Bowtie2 tool (Langmead & Salzberg, 2012). Parameters are
set to default values. The results were standardized using the fragments per
kilobase of transcript per million mapped reads (FPKM) of a gene. After the
FPKM value was converted by log2(FPKM+1), a heat map was created using
the TBtools software (Chen et al., 2020), and the expression of CaMADS-box,
CbMADS-box and CcMADS-box genes in different tissue was analyzed.

RNA from each tissue was extracted using TRIzol kit (Life Technologies, USA);
reverse transcription was performed using HiScript III RT SuperMix for qPCR
(Vazyme, Nanjing) kit; qRT-PCR analysis was performed using ChamQ Uni-
versal SYBR qPCR (Vazyme, Nanjing) reagent. The PCR instrument was an
ABI ViiA7 real-time fluorescence quantitative PCR machine (Life Technologies,
USA). The Primer 3.0 tools (https://bioinfo.ut.ee/primer3-0.4.0/) were used
to design CaMADS-box gene-specific amplification primers, using CaUBI3 as
the reference gene (Wan et al., 2011) (Supplemental Table S8). The qRT-PCR
primers are listed in Table S8. All qRT-PCR assays were performed using three
independent biological replicates, each with three technical replicates. The PCR
conditions and the calculation method of relative gene expression were the same
as before (Jin et al., 2019).

4.6 Protein interaction network prediction

The type II MADS-box genes between C. annuum and A. thaliana, using the
AraNetV2 (http://www.inetbio.org/aranet/) and the STRING (http://string-
db.org/cgi) databases and the predicted protein-protein interaction network was
displayed using Cytoscape software (Su et al., 2014).
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3. RESULTS

3.1 Genome-wide identification and characterization of the MADS-
box gene family from Capsicum spp.

We identified 174, 207, and 72 MADS-box gene family members from three
Capsicum species: C. annuum, C. baccatum, and C. chinense, respectively (Sup-
plemental Tables S1), by referring to the amino acid sequences of A. thaliana
MADS-box proteins, local BLAST comparison, and screening using the Pfam
(http://pfam.xfam.org/) website. The number of genes in C. annuum and
C. baccatum was more than that in C. chinense. All 453 MADS-box proteins
possessed conserved SRF and K domains; the genes encoding these proteins
were named CaMADS1-CaMADS174, CbMADS1-CbMADS207, and CcMADS1-
CcMADS72, respectively. Analysis of physicochemical properties of MADS-box
proteins in the three pepper types found that the amino acid (aa) lengths of
CaMADS-box, CbMADS-box, and CcMADS-box proteins were 59-661, 49-660,
and 78-1100 aa, respectively (Supplemental Tables S1). Their molecular weights
were 6813-74021.51, 5691.74-74516.8 and 9052.62-125758.3 KDa, respectively.
Isoelectric points ranged from 4.51-10.94, 4.89-10.23 and 4.46-10, respectively
(Supplemental Tables S1). Prediction of subcellular localization showed that
most MADS-box proteins were located in the nucleus, with a few located out-
side the cellular (Supplemental Tables S1).

3.2 Categorization, structural classification, and structure of MADS-
box genes in pepper

A phylogenetic tree was reconstructed using 105 AtMADS-box and 453 pepper
MADS-box genes to further study the phylogenetic relationships of MADS-box
genes. Following the classification and structure of the A. thaliana MADS-box
family, we reconstructed two separate phylogenetic trees of type I (Supplemental
Figure S1) and type II (Figure 1) genes, respectively. The results showed that
type I MADS-box genes were divided into three subfamilies (M�, M�, and M�).
There were 99, 6, and 16 members of M�, M�, and M�, respectively, in C. annuum,
134, 8, and 7 members, respectively, in C. baccatum, and 34, 3, and 6 members,
respectively in C. chinense (Supplemental Figure S1). The M� subfamily in C.
baccatum was considerably expanded, while the M� subfamily in C. chinense
was substantially contracted. Type II MADS-box genes were further divided
into 10 subfamilies: SEP, AGL6, AP1, STK/AG, AGL12, SOC1, SVP, PI/AP3,
FLC/MAF, and MIKC*. The ”ABCDE” genes of flower development, such as
SEP, AP1, AG, PI, AP3, and STK, were amplified among the type II genes of
the three pepper species (Supplemental Figure. 1, Supplemental Tables S1).

Conserved motifs of MADS-box family proteins were analyzed using the online
website MEME. A total of 10 motifs with a length of 15–41 amino acids were
predicted (Supplemental Table S2), and their distribution trends were conserved
within every subfamily (Supplemental Figures S2A, S3A, S4A). Motifs 1 and 3
were common to most MADS-box transcription factors, but motif 6 was unique
to type II protein members. Motif 5 was also a unique domain to MIKC-type
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protein members.

Most MADS-box genes belonging to the same subfamily exhibited the same pat-
tern of gene structure, but there were great differences among different members
(Supplemental Figures S2B, S3B, S4B). Most type I genes were composed of one
exon, but CbMADS28, CbMADS81, CbMADS124 and CcMADS47 had two ex-
ons. Meanwhile, type II genes contained multiple introns and exons. Compared
with type II genes, type I genes had suffered intron loss. Differences in exon
and intron structure between type I and type II genes may be one of the reasons
for the increase in MADS-box gene family members during evolution.

3.3 Phylogenetic relationships of MADS-box genes in pepper

To investigate homologous MADS-box genes in pepper and possible gene dupli-
cation in each pepper species, we next identified the evolutionary relationships
of MADS-box genes in the three capsicum species. There were 39 groups of
orthologous genes, accounting for 22.9% (40/174) of MADS-box genes in C. an-
nuum, 19.3% (40/207) of MADS-box genes in C. baccatum, and 55.5% (40/72)
of MADS-box genes in C. chinense (Figure 2). This indicated that some MADS-
box genes were preserved during evolution of C. annuum and C. baccatum, while
MADS-box genes were highly conserved during the evolution of C. chinense. In
addition to 40 groups of orthologous genes shared by the three pepper species
(Supplemental Table S3), 193 MADS-box homologs were found between any two
pepper species (Supplemental Table S4). There were 85 pairs of orthologous
genes between C. baccatum and C. annuum, 61 pairs of orthologous genes be-
tween C. annuum and C. chinense, and 47 pairs of orthologous genes between C.
baccatum and C. chinense (Supplemental Table S4). Furthermore, C. annuum,
C. baccatum, and C. chinense possessed 70, 117, and 10 unique MADS-box
genes, respectively (Figure 2). There were 140 pairs of paralogous MADS-box
genes, of which 47 pairs were tandem repeats (Supplemental table S5). Among
these duplicated genes, some displayed have one-to-many relationships, such
as CaMADS40, which was the tandem repeat gene of both CaMADS39 and
CaMADS41. This was reflected in C. baccatum, with tandem repeat genes of
CbMADS20 including CbMADS18, CbMADS17, CbMADS9, CbMADS8, and
CbMADS191. However, there were no one-to-many situations in C. chinense.
This indicates that the MADS-box gene family of pepper has an obvious gene
replication phenomenon, which explains why the number of MADS-box genes
in C. annuum and C. baccatum is more than that in C. chinense.

To further explore the evolutionary mechanisms of MADS-box genes in pepper,
we constructed collinear circos of the three Capsicum species based on orthol-
ogous genes and tandem repeat genes (Figure 3). The results revealed that
MADS-box genes are distributed on every chromosome, mainly located at the
terminus of each chromosome arm. Orthologous genes in the three Capsicum
species were very close on the chromosome, anchored in a highly conserved
collinearity block. Based on the genomic information available so far, we found
39 genes not localized to chromosomes in C. annuum, 69 genes not localized to
chromosomes in C. baccatum, and one gene not localized to a chromosome in
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C. chinense. This phenomenon may also result from the error generated during
chromosome assembly or the poor quality of assembly (Kim et al., 2017).

In conclusion, the results revealed that the MADS-box transcription factor fam-
ily of pepper is somewhat conserved. The 10 pairs of genes found in C. annuum
formed linear relationships between pairs (Figure 3), indicating that duplica-
tion occurred between MADS-box genes. We calculated the selection pressure
of paralogous as well as orthologous genes of the MADS-box gene family in Cap-
sicum spp. pepper. The results showed that among the paralogous homologs
(Figure 4A), Ka/Ks < 1 for all paralogous genes in C. annuum, while in C. bac-
catum there were 32 pairs of paralogs with Ka/Ks > 1 (Supplemental Table S6).
This indicates that C. annuum was subject to strong purifying selection during
its evolution, whereas C. baccatum was susceptible to environmental changes.
However, no Ka/Ks values for paralogous genes were detected in C. chinense.
Among the orthologs in the three Capsicum species, Capsicum annuum (Ca), C.
baccatum (Cb), and C. chinense (Cc) (Figure 4B), the mean Ka/Ks values of the
orthologs of Ca-Cb, Ca-Cc, and Cb-Cc were 0.6055, 0.6003, and 0.5952, respec-
tively, with Ca-Cb having the largest mean value, implying that the MADS-box
homolog of Ca-Cb was subject to greater purifying selection.

3.4 Comparative evolutionary relationships of type II MADS-box
genes in three Capsicum spp.

To study the contraction and expansion of type II MADS-box family members
during evolution, the phylogenetic relationships among MIKC MADS-box genes
in the three pepper species were explored using collinearity analysis. The re-
sults revealed 33 pairs of colinear genes between C. annuum and C. baccatum,
and 18 pairs of colinear genes between C. baccatum and C. chinense (Figure
5, Supplemental Table S7). Most type II genes were located at both ends of
chromosomes, such as CaMADS8 on chromosome 1 and CbMADS80 on chro-
mosome 8. In addition, the homologous genes on chromosomes 1, 2, 11, and
12 of C. annuum were distributed on chromosomes 4 and 5 of C. baccatum; the
type II homologous genes on chromosomes 1 and 2 of C. annuum were located
on chromosomes 6 and 3 of C. chinense. In C. baccatum, the type II homolo-
gous genes of chromosomes 1, 5, and 8 were distributed on chromosomes 1, 2,
and 6 of C. chinense. There was no type II MADS-box gene on chromosome
9 in the three Capsicum species, which may be related to interchromosome 9
translocations (Kim et al., 2017). In summary, most of the type II MADS-box
genes in the three peppers showed conserved collinearity among chromosomal
regions, but there was also deviation in duplicated gene pairs.

3.5 Expression characteristics of MADS-box genes in different pepper
tissues

We next analyzed the expression profiles of the MADS-box genes in root,
stem, leaf, and flower tissues using RNA-seq data for the three pep-
pers. The results showed that the expression of MADS-box genes in 73
groups of orthologous genes was considerably different among the three
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pepper species in the four tissues (Figure 6). Comprehensive analysis
revealed that their expression patterns could mainly divide the genes
into three categories: (1) genes expressed in all four tissues, such as Ca-
MADS93/CbMADS35/CcMADS58, CaMADS82/CbMADS198/CcMADS4 and
CaMADS116/CbMADS134/CcMADS66, indicating that they are widely in-
volved in the growth and development of pepper; (2) genes with high expression
during flower development, such as CaMADS26/CbMADS31/CcMADS11, Ca-
MADS30/CbMADS33/CcMADS14, and CaMADS74/CbMADS83/CcMADS41,
belonging to type II, suggesting that they play important roles in flower
development; (3) genes with high expression in roots, such as Ca-
MADS9/CbMADS81/CcMADS2 and CaMADS68/CbMADS74/CcMADS36,
indicating that these genes may be involved in root development and some
physiological and biochemical processes in underground plant part. In addition
to the three distinct expression patterns, most of the orthologous genes
showed the same expression trend in the three pepper species, but some
homologous genes displayed different expressions in the same tissue. For
example, CcMADS69 was not expressed in any tissues, while its homologous
gene CaMADS127 was highly expressed not only in flowers but also in stems,
indicating that orthologous genes in pepper may have gained or lost functions
in the process of evolution.

To further observe the expression of the type II MADS-box genes in different
tissues of pepper, an expression heat map of 39 CaMADS-box genes in root,
stem, leaf, and flower tissues were drawn (Supplemental Figure S5). Six MADS-
box genes, CaMADS74, CaMADS30, CaMADS61, CaMADS26, CaMADS105,
and CaMADS63, were selected for analyzing expression levels in root, stem,
leaf, flower and fruit tissues using qRT-PCR. The results revealed that the
six MADS-box genes were differentially expressed in different tissues of pepper
(Supplemental Figure S5A), but they were highly expressed in flowers, which
was consistent with the results of RNA-seq data (Figure 6). Both CaMADS26
and CaMADS30 were highly expressed in flowers, moderately expressed in fruits,
and almost not expressed in other tissues. Both CaMADS61 and CaMADS74
were highly expressed in flowers, with little or no expression in other tissues,
but CaMADS74 was weakly expressed in roots. Expression of CaMADS63 was
the highest in flowers, followed by fruits and leaves, and low or trace expression
was found in other tissues. However, the expression of CaMADS105 was higher
in fruits than in flowers, and low or no expression was found in other tissues.

We next further analyzed the expression profiles of these six type II genes using
qRT-PCR in sepal, petal, stamen, and pistil tissues (Supplemental Figure S5B).
In the sepal, CaMADS61 expression was the highest, followed by CaMADS105
and CaMADS74. CaMADS30 was moderately expressed, while CaMADS63
and CaMADS26 were weakly expressed. CaMADS61 was highly expressed in
petals, while the expression levels of CaMADS105 and CaMADS30 were rela-
tively low. For other genes, there was little or no expression in petals. In stamen
tissue, CaMADS63, CaMADS26, and CaMADS74 showed slightly expressed;
CaMADS105 and CaMADS30 were moderately expressed, and CaMADS61 was
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highly expressed. CaMADS74 was the highest expression in the pistil, followed
by CaMADS105. CaMADS30, CaMADS26, and CaMADS63 were slightly ex-
pressed, but CaMADS74 was not expressed in the pistil.

3.6 Interaction network of type II CaMADS proteins

To better understand the biological functions of type II MADS-box genes in
pepper, we next predicted the interaction network of CaMADS proteins. Only
17 of 39 type II CaMADS-box members interacted each other (Figure 7). The
interacting proteins were mainly flowering pathway proteins, among which AP1,
AG, SEP3, AGL20, and AGL21 were at the core of the network. AtAP1 regu-
lates the transition of inflorescence meristem and the morphological development
of flower organs (Mandel & Yanofsky, 1995). AtAG controls the stamens and
carpels and inhibits the expression of AtAP1 (Smaczniak et al., 2012). AtSEP3
belongs to the class D gene, which involved in the process of flower development
and activates the function of AtAG (Castillejo et al., 2005).

4. DISCUSSION

Gene duplication often accompanies plant evolution and is an important reason
for the expansion of gene families (Cannon et al., 2004). The MADS-box family
is one of the largest transcription factor families and plays an important role
in growth and development, and signal transduction (Becker & Theissen, 2003;
Kim et al., 2005). With the development of sequencing technology, MADS-box
gene family members have been identified in a variety of plants in varying num-
bers, such as 107 MADS-box gene members in A. thaliana (Parenicová et al.,
2003), 83 in Camellia sinensis (Zhang et al., 2021), 44 in Nelumbo nucifera (Lin
et al., 2020), 44 in Erigeron breviscapus (Tang et al., 2019), 131 in Solanum
lycopersicum (Wang et al., 2019), 54 in Morella rubra (Zhao et al., 2019), 42
Phyllostachys heterocycle (Zhang et al., 2018), 80 in Triticum aestivum (Ma
et al., 2017), 54 in Ziziphus jujuba (Zhang et al., 2017), and 144 in Raphanus
sativus (Li et al., 2016). These studies indicate that MADS-box genes have
undergone obvious amplification and contraction, and the number and distribu-
tion in different subfamilies is also different. We study identified 174, 207, and
72 MADS-box genes from C. annuum, C. baccatum, and C. chinense, respec-
tively (Figure 1; Supplemental Tables S1), in line with this trend. Moreover,
the number of MADS-box family genes in C. baccatum was more than that in C.
annuum and C. chinense, which may be due to the expansion of the C. baccatum
genome caused by the amplification of retrotransposons (Kim et al., 2017). The
number of MADS-box genes of type I and MIKC subfamilies in C. annuum and
C. baccatum was more than that of the model plant A. thaliana and the related
species tomato. These results indicate that the MADS-box genes in C. annuum
and C. baccatum have significantly expanded, but it is strange that the number
of genes identified in C. chinense was lower than that in C. annuum and C. bac-
catum, suggesting that a large number of genes have been lost during evolution.
Among the MADS-box family members, those belonging to the same subfamily
possessed similar motif composition and gene structure, but there was a unique
motif composition and gene structure between type I and type II genes. The
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MADS-box genes of type I, including M�, M�, and M�, generally contained no
or few exons (Supplemental Figures S2-S4), and may have lost multiple introns
during the diversification of the MADS-box family. In addition, the distribution
of introns in pepper MADS-box genes was also different. MIKC type genes had
more introns than those of type I, which are also found in A. thaliana, tomato,
and rice (Wang et al., 2017), indicating that evolution between species is con-
served. However, some genes of the same subfamily showed different intron and
exon arrangements, indicating the complexity of gene structure evolution, which
needs further study. The same conserved motifs in the same subfamily (Supple-
mental Figures S2B, S3B, S4B) suggest that these motifs play an important role
in gene functional specificity. Analyses of gene structure and conserved motifs
provide clues for the expansion and contraction of the MADS-box gene family
in pepper.

In eukaryotes, gene replication plays an important role in amplifying the number
of transcription factor families and genomic complexity (Castillejo et al., 2005;
Wang et al., 2019) Previous studies confirmed that C. annuum diverged from C.
chinense 1.14 million years ago and C. baccatum diverged from C. chinense and
C. annuum 1.7 million years ago (Kim et al., 2017). Our study revealed only 47
groups of orthologous genes among three pepper species, while other orthologous
genes were lost to a certain extent (Figure 2). We also identified 144 groups of
paralogous genes and 195 groups of orthologous genes (Figure 3, Supplemental
Tables S3-S5). However, some homologous genes were lost in the three species
of pepper. For example, CcMADS43/CaMADS76 and CcMADS45/CaMADS76
had only one homologous gene, CbMADS101, in C. baccatum; with C. annuum
gene CaMADS76 having no homolog in C. baccatum, which indicates that some
homologous genes have been lost, but some homologous genes have been ex-
panded during the evolution of pepper. These results further demonstrate both
obvious contraction and expansion trends that the different subfamily members
of the MADS-box gene family during the process of pepper evolution.

Genome sequencing revealed a dynamic rearrangement of chromosomes 3, 5,
and 9 in C. baccatum, namely translocation (Kim et al., 2017). MADS-box
genes at these loci were also changed, such as CbMADS35 on chromosome 3
of C. baccatum, and its homologous gene CcMADS58 on chromosome 9. In
addition, some homologous genes were also located on different chromosomes,
such as CbMADS26/CcMADS30 located on chromosomes 1 and 6 respectively,
CaMADS104/CbMADS121 located on chromosome 11, and CcMADS32 located
on chromosome 6. Moreover, most of the orthologous genes with Ka/Ks greater
than 1 displayed positive selection and may show positive changes in function
under the influence of the environment (Figure 4).

Most MADS-box genes were differentially expressed in different tissues of pepper
(Figure 6; Supplemental Figure S5), indicating their functional diversity in dif-
ferent tissues. Some MADS-box genes showed tissue-specific expression, such as
CaMADS9/CbMADS81/CcMADS2 and CaMADS66/CbMADS75/CcMADS35,
which were mainly specifically expressed in roots, and are important candidate
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genes for further functional analysis. Some MADS-box genes were highly ex-
pressed in fruits (Supplemental Figure S5A), such as CaMADS30, CaMASDS61,
CaMADS63, and CaMADS105, suggesting important roles in controlling fruit
development. Several studies have proved that MADS-box genes play an impor-
tant role in the morphogenesis and growth of roots and fruits (Ng & Yanofsky,
2001; Riechmann et al., 1996).

The MIKC MADS-box genes play an important role in floral organ identity
and flowering regulation in A. thaliana and Petunia hybrida (Heijmans et al.,
2012; Ma et al., 1991). In A. thaliana, these genes include A genes (AP1,
AP2), B genes (AP3, Pl), C genes (AG), D genes (STK, SHP1/2), and E genes
(SEP1/2/3/4) (Ditta et al., 2004; Pelaz et al., 2000; Robles et al., 2005). Petu-
nia possesses class A genes PETUNIA FLOWERING GENE (PFG), FLORAL
BINDING PROTEIN 26 (FBP26), and FBP29; class B genes MADS-box
gene 6 (TM6), PMADS1/GP, PMADS2, and FBP24; class C genes PMADS3,
FBP6, and FBP24; class D genes FBP1/7/2/4/5/9; class E genes FBP23,
PMADS4, and PMADS12 (Robles et al., 2005). In this study, we predicted the
possible key genes in pepper flower organ development through phylogenetic
relationships, such as class A genes (CcMADS13/CaMADS31/CbMADS34),
class B gene (CcMADS41/CaMADS74/CbMADS83), class C gene (Cc-
MADS11/CaMADS26/CbMADS31), class D gene (CcMADS8/CaMADS17/CbMADS27),
and class E gene (CcMADS14/CaMADS30/CbMADS33, CcMADS61/CaMADS101/CbMADS114).
Based on the typical ”ABCDE model”, class A gene AP1 functions in control-
ling sepal formation (Irish & Sussex, 1990). Phylogenetic analysis showed that
CcMADS13/CaMADS31/CbMADS34 occupies the same branch as AP1 and
CAULIFLOWER/FRUITFUL, suggesting that they are involved in the develop-
ment of sepals. AP3 and PI, class B genes, are involved in controlling petal and
stamen formation (Mao et al., 2015; Sundström et al., 2006). The MADS-box
genes of pepper in this branch include CcMADS41/CaMADS74/CbMADS83
and CaMADS53/CaMADS60, suggesting functions in the development of
petals and stamens. Our study showed that the pepper genes homologous
to class C gene AG are CcMADS11/CaMADS26/CbMADS31, which may
function in controlling stamen and ovule development (Pan et al., 2010). Cc-
MADS8/CaMADS17/CbMADS27 occupies the same branch as class D genes
STK and SHP1/2, which is postulated to be involved in ovule development
(Jack et al., 1990; Pinyopich et al., 2003). A. thaliana SEP genes are typical
class E genes, which interact with the other four classes and are essential
genes for the development of the sepals, petals, stamens, and carpels. The
homologous SEP genes of pepper are CcMADS14/CaMADS30/CbMADS33
and CcMADS61/CaMADS101/CbMADS114. Gene expression analysis using
qRT-PCR showed that pepper E genes were expressed in sepal, petal, stamen,
and pistil (Supplemental Figure S5B), suggesting that they plays vital roles
in all stages of flower development. MIKC MADS-box genes play a central
role in plant development (Schilling et al., 2018). The MIKC MADS-box genes
identified in this study should be candidate genes for pepper breeding and
improvement.
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Figure 1 Phylogenetic tree of type II MADS-box genes in Arabidopsis thaliana,
Capsicum annuum, C. baccatum, and C. chinense.

Figure 2 Number of MADS-box orthologs in Capsicum annuum, C. baccatum,
and C. chinense.

Figure 3 Homologous MADS-box gene pairs in Capsicum annuum (Ca), C.
baccatum (Cb), and C. chinense (Cc). Tracks from outside to inside are chro-
mosomes numbers, gene density of the chromosome, and homologous gene pairs
among the three Capsicum species. Blue lines connect homologous gene pairs
that exist in three Capsicum species; red lines connect homologous gene pairs
in two species; green lines connect paralogous genes.

Figure 4 Selection pressure statistics of paralogous (A) and orthologous (B)
MADS-box genes in pepper. Ca, Capsicum annuum; Cb, C. baccatum; Cc, C.
chinense. The ‘dots’ reflect the maximum and minimum Ka/Ks scores.

Figure 5 Collinearity of type II MADS-box genes in Capsicum annuum, C.
baccatum, and C. chinense.

Figure 6 Expression profiles of MADS-box genes in different tissues from Cap-
sicum annuum (Ca), C. baccatum (Cb), and C. chinense (Cc). Color bar in-
dicates the variation range of log10(FPKM+1) values of MADS-box genes in
different tissues. Expression of genes marked in red was verified by qRT-PCR.

Figure 7 Type II CaMADS-box protein interaction network diagram. Con-
nection between nodes vary with the combined_score value (representing the
reliability of the predicted interaction between the two proteins, the value is
0-1), thickening with an increase in score value. The size of nodes increases
with the number of proteins interacting with node proteins.
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