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Abstract

A new method is presented to efficiently estimate daily groundwater level time series at unmonitored sites by linking groundwater

dynamics to local hydrogeological system controls. The presented approach is based on the concept of comparative regional

analysis, an approach widely used in surface water hydrology, but uncommon in hydrogeology. The method uses regression

analysis to estimate cumulative frequency distributions of groundwater levels (groundwater head duration curves (HDC)) at

unmonitored locations using physiographic and climatic site descriptors. The HDC is then used to construct a groundwater

hydrograph using time series from distance-weighted neighboring monitored (donor) locations. For estimating times series at

unmonitored sites, in essence, spatio-temporal interpolation, stepwise multiple linear regression, extreme gradient boosting,

and nearest neighbors are compared. The methods were applied to ten-year daily groundwater level time series at 157 sites in

alluvial unconfined aquifers in Southern Germany. Models of HDCs were physically plausible and showed that physiographic

and climatic controls on groundwater level fluctuations are nonlinear and dynamic, varying in significance from “wet” to “dry”

aquifer conditions. Extreme gradient boosting yielded a significantly higher predictive skill than nearest neighbor and multiple

linear regression. However, donor site selection is of key importance. The study presents a novel approach for regionalization

and infilling of groundwater level time series that also aids conceptual understanding of controls on groundwater dynamics,

both central tasks for water resources managers.
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Abstract 18 

A new method is presented to efficiently estimate daily groundwater level time series at 19 

unmonitored sites by linking groundwater dynamics to local hydrogeological system controls. The 20 

presented approach is based on the concept of comparative regional analysis, an approach widely 21 

used in surface water hydrology, but uncommon in hydrogeology. The method uses regression 22 

analysis to estimate cumulative frequency distributions of groundwater levels (groundwater head 23 

duration curves (HDC)) at unmonitored locations using physiographic and climatic site 24 

descriptors. The HDC is then used to construct a groundwater hydrograph using time series from 25 

distance-weighted neighboring monitored (donor) locations. For estimating times series at 26 

unmonitored sites, in essence, spatio-temporal interpolation, stepwise multiple linear regression, 27 

extreme gradient boosting, and nearest neighbors are compared. The methods were applied to ten-28 

year daily groundwater level time series at 157 sites in alluvial unconfined aquifers in Southern 29 

Germany. Models of HDCs were physically plausible and showed that physiographic and climatic 30 

controls on groundwater level fluctuations are nonlinear and dynamic, varying in significance from 31 

“wet” to “dry” aquifer conditions. Extreme gradient boosting yielded a significantly higher 32 

predictive skill than nearest neighbor and multiple linear regression. However, donor site selection 33 

is of key importance. The study presents a novel approach for regionalization and infilling of 34 

groundwater level time series that also aids conceptual understanding of controls on groundwater 35 

dynamics, both central tasks for water resources managers. 36 

1 Introduction 37 

Groundwater head observations are the basis for most investigations in hydrogeology. 38 

However, boreholes for groundwater observation as well as corresponding groundwater level time 39 

series are often scarce and unevenly distributed in both space and time. This is a disadvantage for 40 

effective management of groundwater resources at the regional scale (Butler et al., 2021), where 41 

water managers assess the current and future status of groundwater resources (Lóaiciga & Leipnik, 42 

2001). In consequence, methods are needed to estimate groundwater head time series at ungauged 43 

sites. 44 

Two main approaches are commonly used by hydrogeologists to predict temporal changes 45 

in groundwater head at a given site, (a) numerical and (b) statistical models. The typical approach 46 

is to implement a process-based, numerical groundwater flow model. However, numerical models 47 
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typically require large amounts of data and effort, while investigators commonly are confronted 48 

with a lack of comprehensive description and documentation of the subsurface. This results in 49 

significant uncertainty, both regarding conceptualization and parametrization (e.g. Enemark et al., 50 

2019). Dealing with this uncertainty leads to a tedious and time-consuming process to construct, 51 

calibrate, and run these process-based models (Bakker & Schaars, 2019). Additionally, models for 52 

meaningful local projections at large spatial scales are not yet available (Berg & Sudicky, 2019). 53 

An alternative to regional scale modelling with less need for detailed subsurface description are 54 

lumped (rainfall-runoff) hydrological models with a groundwater component (Barthel & Banzhaf, 55 

2016). However, these models are problematic as they usually imply oversimplification of the 56 

groundwater component, disregarding the local descriptors of hydrogeological systems and their 57 

3-dimensional setup (Barthel & Banzhaf, 2016; Butler et al., 2021). Generally, lumped models 58 

may provide adequate descriptions of groundwater systems only for simple hydrogeological 59 

situations such as shallow, unconfined aquifers, but not for more complex systems, such as deep 60 

and confined aquifers.  61 

A different type of approach requiring only measured groundwater level data for 62 

groundwater time series estimation are parametric or data-driven methods. This approach requires 63 

few data on local system descriptors, while often long and measurement-dense series of input 64 

signal and groundwater measurements are necessary to achieve good calibrations. In contrast to 65 

groundwater-gradient driven methods, data-driven methods either use spatio-temporal 66 

geostatistics (e.g. Ruybal et al., 2019; Varouchakis et al., 2022) or transfer net precipitation input 67 

into groundwater level changes (Z. Chen et al. (2002)). However, available methods predict 68 

groundwater level only at monthly or annual resolution and consequently do not capture the large 69 

intra-annual and intra-monthly variability of groundwater dynamics (e.g. Heudorfer et al., 2019). 70 

An approach to predict time series at higher temporal scales are transfer functions, that can be used 71 

to yearly, monthly and daily temporal resolutions, such as impulse-response functions (e.g. 72 

Collenteur et al., 2019; Marchant & Bloomfield, 2018; Von Asmuth, 2012) or artificial neural 73 

networks (c.f. Rajaee et al., 2019; Wunsch et al., 2022). However, no formal method is known to 74 

transfer information from such models from monitored to unmonitored aquifers, although recently 75 

attempted in streamflow (Kratzert et al., 2019). This means that these methods can only make 76 

predictions when sufficient local time series data are available (e.g., 10 years weekly data (Wunsch 77 

et al., 2021)). 78 
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In summary, neither numerical models nor the currently available data-driven tools provide 79 

a straightforward approach to estimate daily groundwater levels at unmonitored sites to aid 80 

regional scale management. Therefore, new and complementary methodologies are required to 81 

overcome scarcity and patchy data distribution. Such approaches should be less data hungry than 82 

numerical models, yet account for local hydrogeological conditions and allow prediction at high 83 

temporal resolution despite limited local data availability. In surface-water-orientated hydrology, 84 

data scarcity has been countered with approaches of classification and similarity analysis, 85 

embraced by the hydrological community particularly within the PUB initiative (Predictions in 86 

Ungauged Basins; (Blöschl et al., 2013; Hrachowitz et al., 2013; McDonnell & Woods, 2004; 87 

Sivakumar & Singh, 2012; Wagener et al., 2007). These concepts attempt to systematically link 88 

the physical form and structure of catchments to their functioning by comparative analysis. Such 89 

links can then be used to transfer information to similar systems for prediction, i.e., regionalization 90 

or spatio-temporal interpolation. However, such approaches are rarely considered in groundwater 91 

research, which is pointed out by various authors, e.g., Barthel et al. (2021); de Marsily et al. 92 

(2005); Green et al. (2011); Voss (2005). Recently, a number of studies initiated the 93 

implementation of these approaches in groundwater, quantitatively connecting groundwater 94 

response to physiographic and climatic descriptors (Boutt, 2017; Giese et al., 2020; Haaf & 95 

Barthel, 2018; E. Haaf et al., 2020; Heudorfer et al., 2019; M. Rinderer et al., 2017; M. Rinderer 96 

et al., 2019; M. Rinderer et al., 2014; Michael Rinderer et al., 2016). These approaches, however, 97 

have not yet been exploited to predict daily groundwater levels at unmonitored sites.  98 

When looking for methodological inspiration in the body of literature within the surface 99 

water community, and more specifically the PUB initiative, a large majority of approaches use 100 

regionalization mainly as a tool to calibrate lumped rainfall-runoff models at unmonitored sites 101 

(He et al., 2011; Hrachowitz et al., 2013). As mentioned above, such lumped models are often not 102 

useful for describing groundwater dynamics and, when available, are time-consuming to set up 103 

and calibrate (Jackson et al., 2016; Mackay et al., 2014). Simpler statistical methods for 104 

regionalization of streamflow time series, however, have been proposed by e.g. Shu and Ouarda 105 

(2012) based on Hughes and Smakhtin (1996). These methods make use of the characteristic 106 

relationship between flow duration curve (FDC; cumulative frequency of time where a flow is 107 

equaled or exceeded) and physiographic and climatic site descriptors, a relationship that is well 108 

investigated (Yokoo & Sivapalan, 2011). FDCs in surface water hydrology are commonly used to 109 
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study the flow regime throughout the range of discharges and integrate effects of climate, 110 

topography, geology, and also anthropogenic activity (Ridolfi et al., 2020; Sugiyama et al., 2003; 111 

Vogel & Fennessey, 1995). This implies that the shape of a specific FDC is theoretically inferable 112 

from site descriptors. The technique evaluated in this study takes advantage of this through 113 

estimation of duration curves at unmonitored (target) sites based on similarity to neighboring donor 114 

sites. Then, from the estimated duration curve, time series are reconstructed at the target site into 115 

a daily time series (Hughes & Smakhtin, 1996; Mohamoud, 2010; Shu & Ouarda, 2012; Smakhtin, 116 

1999).  117 

Cumulative frequency or duration curves of groundwater heads are not as broadly used for 118 

studying groundwater resources, except when for example analyzing the relative state of 119 

groundwater storage (e.g. Maxe, 2013). Giese et al. (2020) estimated aggregates (indices) of head 120 

duration curves (HDC) and linked differences in shapes to local, intermediate, and regional 121 

groundwater flow patterns. Ezra Haaf et al. (2020) found correlation between HDC indices and 122 

map-derivable physiographic and climatic site descriptors. These are indications that alike 123 

streamflow, system controls are integrated in groundwater level regimes and may be exploited by 124 

analysis of duration curves. 125 

Accordingly, regionalization and subsequent estimation of daily time series at unmonitored 126 

sites through duration curves of groundwater head is evaluated in this paper. Hereby the approach 127 

is based on the methodology proposed by Shu and Ouarda (2012) for streamflow. It is adapted to 128 

groundwater, where groundwater head duration curves as well as groundwater-relevant and map-129 

derivable site descriptors are used. Within surface-water, this method has only been tested using 130 

stepwise multiple linear regression (MLR). In this study, a comparison is carried out with 131 

estimation through averaging of the nearest neighbor sites (NN), MLR, and extreme gradient 132 

boosting (XGB). XGB can represent nonlinear relationships between groundwater dynamics and 133 

site descriptors and has shown to be powerful in e.g., recharge studies (Naghibi et al., 2020). In 134 

summary, a method is evaluated that may be used when aquifer and time series data at a site of 135 

interest are unmonitored. The regionalization approach is applied to unconfined, alluvial aquifers 136 

in a humid climate in Southern Germany at unmonitored sites using solely map-derivable site 137 

descriptors and data from neighboring locations.  138 
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2 Method and Data 139 

2.1 General strategy 140 

The methodology of estimating groundwater level time series at an unmonitored site , is 141 

based on information from donor sites and requires the steps as explained in Figure 1. In the 142 

beginning, donor sites are selected with a time series period that is of interest for target site 143 

estimation. Next, time series are transformed to HDCs, and at 15 fixed percentile levels, models 144 

are constructed based on multiple regression analysis and gradient boosted regression trees, and 145 

logarithmically inter- and extrapolated (section 2.4.1-2.4.2). Finally, time series at ungauged sites 146 

are then reconstructed with a distance-based weighting method using the sequence of records from 147 

donor sites (section 2.4.3). For performance comparison, time series are also evaluated using only 148 

a distance-based average of time series from donor sites, further called Nearest-Neighbour (NN). 149 

Then, the number of neighbors and the performance of daily groundwater level estimations at 150 

target sites are evaluated using leave-one-out cross-validation (2.5). The models that are used for 151 

estimation of time series are then checked for plausibility (section 2.6). In section 2.7 the case data 152 

set is described, which is further analyzed using cluster analysis to understand results with regard 153 

to different groundwater regimes and systems. All data analysis was carried out by using the 154 

programming language R (R Development Core Team, 2022). 155 
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 156 

Figure 1. Principle steps to estimate groundwater level time series at unmonitored sites using 157 

the head duration curve methodology. 158 

2.2 Data Selection and Processing 159 

Groundwater level time series are selected from a data set described by E. Haaf et al. 160 

(2020). The data set contains groundwater level time series from the Upper Danube catchment in 161 

Bavaria, Southern Germany, with available geological information and absence of patterns of 162 

direct anthropogenic impact (for a more detailed explanation refer to Heudorfer et al. (2019)). 163 

From this data set observation wells were selected that come (1) with continuous daily time series 164 

and at least 10 year record length, (2) less than 1% missing data, which are (3) concurrent with a 165 

record period 2004–2014. The resulting set of 157 obervation wells are mostly located in shallow, 166 

quaternary sediments in river valleys and fluvial sand as well as in gravel deposits, with a few 167 

boreholes located in deeper tertiary sediments. All wells are classified as penetrating unconfined 168 

aquifers. Then, at each site, 47 physiographical and meteorological descriptors were derived, 169 

described in detail in Ezra Haaf et al. (2020). In addition to Ezra Haaf et al. (2020), percentage of 170 

land cover within a 3 km radius of each site was derived from the CORINE land cover data set 171 

(Bossard et al., 2000). Table 1 shows selected descriptors that are most important for models on 172 
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this study and therefore discussed in more detail. Remaining descriptors can be found in the 173 

supporting information SI (Table S1). Descriptors are called predictors when in context of 174 

regression models. 175 

 176 

Table 1. Descriptive statistics of physiographic and climatic descriptors, discussed in the 177 

paper. Class of variable in parenthesis: (G) Geology, (M) Morphology, (L) Land cover, (B) 178 

Boundaries and (C) Climate. 179 
Variable Description Range Unit 

Minimum Maximum 

dist_stream (B) ‡ Estimated distance from well to nearest stream (main rivers) 6 10958 m 

well_elevation (B) Estimated Elevation of well 310 839 m asl. 

P_avg (C) Mean annual precipitation 675 1613 mm 

T_avg (C) Mean annual temperature 6.4 9.3 °C 

SI (C) Seasonality index of precipitation .11 .31 - 

A_thickness (G) Average thickness of saturated zone 1 50.1 m 

A_Depth (G) Bottom of formation  3 110 m 

Depth_to_GW (G) Average depth to Water table  0.3 39.8 m 

Broadleaved_forest (L) % of 3 km buffer occupied by broadleaved forest 0 44.5 % 

Coniferous_forest (L) % of 3 km buffer occupied by coniferous forest 0 93.5 % 

Urban (L) % of 3 km buffer occupied by urban fabric 0 74.9 % 

slp_sk (M) † Mean slope 0/-0.1  1.95/2.6 - 

twi (M)  Mean value of Topographic Wetness index 5.8 8.9 - 

† skewness was calculated for local and regional scale respecitvely. For these, the ranges are given seperated by a 180 
slash l/r. 181 

2.3 Transformation to head duration curves (HDCs) 182 

In a first step, groundwater head time series were normalized. Subsequently, duration 183 

curves of groundwater levels were calculated at each site. This was done, by first ranking all 𝑛𝑛 184 

observed, normalized (on a 0-1 scale) groundwater levels 𝑙𝑙𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛 in descending order, 185 

where 𝑖𝑖 is the rank of an observation. The head duration curve (HDC) is then constructed following 186 

the Weibull plotting formula (Sugiyama et al., 2003): 187 
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𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝐿𝐿 ≥ 𝑙𝑙𝑖𝑖) = 𝑖𝑖
𝑛𝑛+1

, (1) 188 

where 𝑝𝑝𝑖𝑖 is the percentage of time that a given level 𝑙𝑙𝑖𝑖 is equaled or exceeded. Groundwater 189 

level or head duration curves are subsequently the plot of percentage level 𝑝𝑝𝑖𝑖 against the 190 

corresponding level 𝑙𝑙𝑖𝑖 (as seen in Figure 1). 191 

2.4 Regression analysis for percentile models 192 

To be able to estimate the duration curve at an ungauged site, forward stepwise regression 193 

(MLR, see section 2.4.1) and extreme gradient boosting (XGB, see section 2.4.2) were applied to 194 

build models from physiographic and climatic predictors at selected percentage level (0.1%, 0.5%, 195 

1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%). Models are fit using a 196 

nested cross-validation approach on 80% training data with 20% hold-out data on which evaluation 197 

is performed. Models were trained 30 times by leaving out one group each time and then evaluating 198 

against predictions in the left-out group. 199 

2.4.1 Construction of percentile models with MLR 200 

Multiple linear regression models at selected percentage levels are built using a selective 201 

inference framework. Selective inference adjusts p-values for the effect of sequentional selection 202 

of variables (Taylor & Tibshirani, 2015). This is necessary since conventional stepwise regression 203 

leads to an overestimation of the strength of apparent relations. The consequence of conventional 204 

models is therefore selection of non-significant predictors and therefore overfitting (Taylor & 205 

Tibshirani, 2015). Instead of using p-values based on the t-test for forward selection, the procedure 206 

is here stopped based on the false discovery rate (exceeding 0.1; (G'Sell et al., 2016). The selected 207 

variables are then used to build a regression relationship for the training data set with n 208 

observations (from well locations) and percentage levels, 𝑝𝑝 = 1,2 …𝑛𝑛, where 𝐻𝐻𝑝𝑝 is the percentile 209 

of the normalized head 𝐻𝐻 and 𝑥𝑥𝑝𝑝 the selected climatic and physiographic descriptors with the 210 

following form: 211 

𝐻𝐻𝑝𝑝 = 𝛽𝛽0 + ∑ 𝑥𝑥𝑝𝑝𝑝𝑝𝛽𝛽𝑝𝑝 + 𝜖𝜖𝑝𝑝𝑝𝑝 , (2) 212 

errors 𝜖𝜖𝑝𝑝 being independent and normally distributed and where 𝛽𝛽 is a vector of model 213 

parameters that are estimated.  214 
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2.4.2 Construction of percentile models with XGB 215 

Alternative models for each percentile were constructed using extreme gradient boosting, 216 

an implementation of boosted regression trees (Friedman, 2001). Hereby, the xgb.train function 217 

from the XGBoost R package (T. Chen & Guestrin, 2016) was used to predict 𝐻𝐻𝑝𝑝 based on the 218 

entire set of climatic and physiographic descriptors. To optimize the model fit but reduce risk of 219 

overfitting, two further steps were carried out, after the 80/20 hold-out split mentioned above. 220 

After this, hyperparameters were determined on the training data using 5-fold cross validation, 221 

using the performance measure root mean square error (RMSE). Finally, after cross-validation, the 222 

risk for overfitting was reduced by stopping the ensemble at the number of decision trees, where 223 

the difference between training and evaluation error reaches a minimum.  224 

2.4.3 From percentile models to estimated time series 225 

Once percentile levels are predicted for a given target site using XGB and MLR models, 226 

logarithmic interpolation is used to estimate percentiles of groundwater levels between the 227 

percentage points in order to construct the entire duration curve. The percentile to be estimated is 228 

found by identifying the closest (modelled) fixed percentage levels 𝑝𝑝𝑖𝑖 above and 𝑝𝑝𝑖𝑖−1 below and 229 

their corresponding groundwater heads 𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑖𝑖−1. The groundwater level 𝐻𝐻 can then be found 230 

using the following equation: 231 

ln(𝐻𝐻) = ln(𝐻𝐻𝑖𝑖) + ln(𝐻𝐻𝑖𝑖−1)−ln (𝐻𝐻𝑖𝑖)
𝑝𝑝𝑖𝑖−1−𝑝𝑝𝑖𝑖

× (𝑝𝑝 − 𝑝𝑝𝑖𝑖) (3) 232 

In cases where percentiles are estimated that are larger than the highest percentage point or 233 

lower than the lowest (modelled) percentage point, logarithmic extrapolation is used. Hereby, the 234 

closest two percentage points are found (𝑝𝑝𝑛𝑛1,𝑝𝑝𝑛𝑛2) and the corresponding groundwater levels 235 

(𝐻𝐻𝑛𝑛1,𝐻𝐻𝑛𝑛2). Extrapolating to the percentile 𝑝𝑝 is done using the equation below. 236 

ln(𝐻𝐻) = ln(𝐻𝐻𝑛𝑛1) + ln(𝐻𝐻𝑛𝑛1)−ln (𝐻𝐻𝑛𝑛2)
𝑝𝑝𝑛𝑛1−𝑝𝑝𝑛𝑛2

× (𝑝𝑝 − 𝑝𝑝𝑛𝑛2) (4) 237 

Reconstruction of the groundwater level time series from interpolated duration curves can 238 

then be carried out following the principle given by Smakhtin (1999) for streamflow estimation. 239 

Groundwater levels 𝐻𝐻𝑡𝑡 at the target site are estimated by looking up the donor site's percentile of 240 

the duration curve at the first date to be estimated. Then the same percentile is found in the target 241 

site's duration curve and the corresponding groundwater level is chosen as the estimated level at 242 
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the particular date. This process is repeated for all dates available within the record of the donor 243 

sites. However, not all donor sites are given the same weight for estimation at the target site. The 244 

estimated series of groundwater levels at the target site 𝐻𝐻𝑡𝑡 are rather put together (equation 5) by 245 

weighting each source site’s contribution based on the Euclidean distance 𝑑𝑑𝑡𝑡 to the target. 246 

𝐻𝐻𝑡𝑡 = ∑ 𝑤𝑤𝑝𝑝𝐻𝐻𝑠𝑠𝑝𝑝𝑛𝑛
𝑝𝑝=1 /∑ 𝑤𝑤𝑝𝑝𝑛𝑛

𝑝𝑝=1  (5) 247 

The weights are calculated based on a dissimilarity measure:  248 

𝑤𝑤𝑝𝑝 = 1/𝑑𝑑𝑡𝑡
∑ 1/𝑑𝑑𝑡𝑡𝑛𝑛
𝑗𝑗=1

 (6) 249 

Groundwater levels are also estimated at each target site using a straightforward nearest 250 

neighbor method (NN). Here, NN means that no duration curve is reconstructed but only the actual 251 

time series of each source site 𝐿𝐿𝑡𝑡𝑝𝑝 is used, however, weighted according to eq. 5 and 6. 252 

2.5 Evalutation of Time Series Estimation 253 

The performance of the daily groundwater level prediction was evaluated using leave-one-254 

out cross validation as performed by Shu and Ouarda (2012). Using a leave-one-out cross 255 

validation procedure means that one (target) site is considered unmonitored and thus left out from 256 

the dataset. With the remaining data set (𝑛𝑛 − 1 sites), the groundwater level time series are 257 

estimated at the target site. Here, a maximum of n=20 sites were allowed as donor sites. Then, the 258 

performance at that site is evaluated by calculating the Kling-Gupta Efficiency (KGE), Pearson 259 

correlation coefficient (R), and Root-mean-square error (RMSE) as goodness of fit measures 260 

between estimated and observed time series. These steps are repeated at each of the 𝑛𝑛 sites and the 261 

average (cross-validated) estimate is found by aggregating the goodness of fit-estimates from each 262 

sub-sample. 263 

2.6 Plausibility Analysis of Models 264 

To examine the plausibility of models used to predict percentile points along the HDC, the 265 

impact on model output is analyzed using standardized regression coefficients (MLR) and Shapley 266 

Additive Explanations values (SHAP) for XGB (Lundberg et al., 2020) using the R package 267 

SHAPforxgboost (Liu & Just, 2021). SHAP values quantify how much individual predictors, 268 

across the predictor’s value range, contribute to the output variable (here the percentile point). 269 
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More specifically, the SHAP value gives the difference in the model output depending on if the 270 

model is fit with or without the predictor. Using scatterplots, SHAP values can then be interpreted 271 

locally which allows understanding of the dependence structure within each model for each 272 

predictor. Further, mean absolute SHAP of all data points for each model is estimated, yielding 273 

global feature importance across each percentile. This supports understanding of the dynamic 274 

changes of importance of controls across different aquifer states and allows qualitative comparison 275 

to standardized regression coefficients of MLR models. 276 

2.7 Cluster Analysis 277 

In order to get a better understanding of the dataset, regarding similarities in dynamics and 278 

subsequently site descriptors, hierarchical cluster analysis was performed. Prior to cluster analysis, 279 

the selected groundwater level time series are transformed to z-scores. As input into the clustering 280 

algorithm, Euclidean pairwise distances between time series were computed. Subsequently, 281 

hierarchical cluster analysis using Ward linkage is performed on the matrix of pairwise distances. 282 

The hierarchical relationship between the series can then be displayed in a dendrogram. From the 283 

dendrograms a scree plot is constructed, by sorting the heights of the dendrograms branches and 284 

plotting these against the number of nodes. The inflection point of the scree plot is then identified 285 

to select the number of clusters that sufficiently describes the patterns of member time series, while 286 

still generalizing the data set to a managable level. 287 

 288 

3 Results and Discussion 289 

3.1 Hydrogeological Description of Clusters 290 

Cluster analysis of the data set based on similarity of groundwater level time series results 291 

in hydrogeologically meaningful groups. The six identified clusters (see SI, Figure S1-S2) are 292 

either made up of wells exclusively located in alluvial deposits or in alluvial deposits and outwash 293 

plains. Further, cluster separation can be linked to differences in distance to stream, depth to water 294 

table, size of aquifer, local hydrology and geographical location.  295 

Figure 2A and B show that groundwater level time series in clusters C1 and C6 have similar 296 

groundwater regimes. Time series in C1 show a relatively fast response (flashy) and overprinting 297 
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of high peaks to varying degree, which is seen to a slightly lesser degree in C6. Inter- and intra-298 

annual patterns are mostly absent. Groundwater levels in these two clusters are shallow (75% < 5 299 

m) and with the wells relatively close to groundwater basin boundaries and streams in medium 300 

size aquifers (Figure 2D). Presumably, these clusters represent wells tapping mainly local 301 

groundwater flow systems (Giese et al., 2020). The pronounced flashiness is linked to interaction 302 

with streams (E. Haaf et al., 2020) and can also be seen in the low percentiles of the duration curves 303 

that are significantly steeper in the flashier C1 and C6 than other clusters (Figure 2B). Differences 304 

between C1 and C6 can be attributed to the different geographical areas, with C1 located in more 305 

extensive aquifers far downstream of the headwater catchment in the South and C6 located mainly 306 

in smaller alluvial aquifers in the Salzach and Inn catchments at the foot of the Alps (Figure 2C 307 

and SI, Figure S3).  308 

Flashiness in cluster C2 is like C6, however, exhibiting intra-annual variations and weak 309 

inter-annual seasonality. Like C1 and C6, C2 is characterized as local flow due to the very shallow 310 

wells, however, wells are in intermediate locations in large aquifers. Therefore, dynamics are not 311 

closely coupled to the major rivers, which are at larger distances, but presumably to (unmapped) 312 

smaller creeks and to vegetation considering the shallow groundwater table. 313 

C3 is less flashy than C2, but shows a similar inter- and intra-annual pattern, which can 314 

also be seen in the similarity of the two cluster’s head duration curves (Figure 2B). C3 wells are, 315 

similar to C2, located in larger aquifers, but are deeper and closer to streams, likely representing 316 

local and intermediate flow systems. 317 

C4 has dominant inter-annual variability, which is linked to the larger distance to 318 

groundwater level and streams (E. Haaf et al., 2020). The larger inter annual variability in C4 is 319 

also seen in the less steep lower percentiles of the duration curves (Figure 2B) and is linked to 320 

mainly intermediate and regional flow systems. 321 

Groundwater hydrographs in cluster C5 show a very distinct pattern compared to the 322 

remaining clusters. The HDC falls steeply at lower percentiles, following the flashier C1 and C6, 323 

until stabilizing and resembling more the weakly intra-annual dominated HDCs of C2 and C3, 324 

before crossing back to C1 and C6 at higher percentiles, due to cluster’s weak intra-annual 325 

periodicity. The distinct pattern and in-group similarity of the 14 wells in C5 is explained by their 326 
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locations, concentrated near the Inn, which is regulated by run-of-the-river hydroelectric plants 327 

with pondage (Figure 2C).  328 

 329 

 330 
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Figure 2. A. Time series within each cluster. B. Mean of groundwater level duration curve of 331 

color related to cluster in A. C. Location of cluster members with convex hull and stream 332 

network, ISO 3166-1 alpha-3 country codes. D. Hydrogeological descriptors of sites within 333 

each cluster. 334 

3.2 Performance of HDC reconstruction 335 

After regression analysis, models were found for all fifteen fixed percentage points. 336 

Regression models fitted on 30 different sets of hold-out data resulted in a distribution of results 337 

that are robust with regard to central tendency. Median XGB model performance on hold-out data 338 

expressed as R2 is around 0.5, except for the lowest and upper percentiles (0.1%, 80-99%), i.e., 339 

wet and dry states, where goodness-of-fit declines (Figure 3). A lower fit at the extremes is 340 

expected since fewer data points make these values less robust compared to other percentiles. XGB 341 

models perform significantly better than MLR models that show a similar behavior across 342 

percentiles but with lower goodness-of-fit (median R2: 0.3). Figure 3 also shows that the range of 343 

R2 is large, which is very likely related to the size of the data set. The consequence of small data 344 

sets, when using hold-out data is that the evaluation data (here, n=32) may not be representative 345 

of the training data across sets of hold-out data. Further, when running models on the entire data 346 

set (training+evaluation), both XGB and MLR models show around 100% and 70% performance 347 

improvement from median R2. Performance loss across hold-out data and against the entire data 348 

set indicates that generalization from the training set is moderate and likely to improve with larger 349 

data sets. 350 

When comparing results to studies using an analogous methodology in streamflow, model 351 

results of R2 between 0.72 and 0.99 are reported and analogous lower values in the extremes 352 

(Mohamoud, 2010; Shu & Ouarda, 2012). This study’s performance is nearly 100% higher, 353 

however, neither hold-out data, cross-validation methods, or p-value adjustment for stepwise MLR 354 

is used. This means that models presented in these studies are likely overfitting and generalization 355 

outside of the data set could be questioned. The performance achieved on evaluation+training data 356 

by XGB and MLR models in this study would thus be more comparable and are in fact in parity 357 

with performance reported in streamflow studies. 358 
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 359 

Figure 3. Performance of percentile regression models. 360 

3.3 Dynamic Controls on Groundwater Levels 361 

Relative predictor importance across percentage point models stratified by predictor class 362 

for MLR and XGB models respectively is shown in Figure 4. Standardized regression coefficients 363 

in MLR give both relative predictor importance (higher absolute value) but also the direction of 364 

the relationship between predictor and output variable (percentile level of HDC) through the sign 365 

of the coefficient (Figure 4A). Mean absolute SHAP value on the other hand, shows only relative 366 

predictor importance (Figure 4B). Further, for clarity of presentation, only the most salient 367 

variables are shown (MLR: variables are shown that are selected in at least 30% of hold-out data 368 

sets; XGB: only the top two predictors are shown per predictor class (based on overall mean 369 

absolute SHAP value).  370 

The main result is that the importance of predictors varies across percentiles. This implies 371 

that different site (or system) descriptors to varying extents control the groundwater dynamics 372 

when the aquifer is moving from “wet” to “dry” states and vice versa. An example is distance to 373 

stream that is important through all aquifer states but dominating in wet states (both MLR and 374 

XGB, Figure 4A-B). Depth to the groundwater table, on the other hand, becomes more dominant 375 

when the aquifer is in dry states (only XGB, Figure 4B). A pattern that can be seen across all 376 
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variables is that predictor strength declines significantly (approaches zero) at higher percentiles, 377 

which is also connected to lower goodness-of-fit at these percentiles (Figure 3). Consequently, 378 

predictability of percentiles coupled to groundwater drought is low.  379 

Another important finding is that many of the most important predictors are consistently 380 

selected across both MLR and XGB as well as show a similar importance progression across 381 

percentiles (distance to stream, well elevation, average annual precipitation, broadleaved Forest 382 

and regional slope skewness). This means that many of the important variables have a sufficiently 383 

linear relationship with percentiles of groundwater head duration curves so that it can be picked 384 

up by MLR. For instance, MLR models show that percentage points of the HDC increases with 385 

distance to stream (the further away from streams, the less flashy the groundwater level). This is 386 

plausible and expected, since streams are the aquifer’s given drainage boundary and known 387 

through previous regional scale empirical studies (e.g. Boutt, 2017; Giese et al., 2020; E. Haaf et 388 

al., 2020; Vidon, 2012). However, SHAP values of individual data points related to XGB 389 

prediction allows us to look more closely at linearity of relationships between HDC and predictor 390 

value ranges (Figure 5). The SHAP values reveal a more complex relationship, where the 391 

relationship between distance to stream and dynamics is constant up to about 500 m distance, 392 

turning into a linear relationship, where groundwater dynamics become less flashy with distance 393 

until reaching a plateau at about 3000 m distance. Here, presumably a decoupling between 394 

groundwater and stream occurs and a constant contribution to the HDC is reached (Figure 5). This 395 

effect is consistent across aquifer states, however weakens, when the groundwater level drops into 396 

dry states. The nonlinearity of relationships with threshold effects is common, as described below 397 

for variables selected in Figure 5:  398 

• Average annual precipitation has relatively low impact on the HDC, which is also true for 399 

other climate predictors in this study. However, precipitation below approximately 800 mm 400 

leads to slightly less flashy dynamics in wet states. This can be coupled to less infiltration 401 

and recharge events. At higher precipitation rates, no systematic impact on HDC can be 402 

seen. 403 

• Depth to groundwater table only affects the HDC when very shallow, approximately 2 m 404 

and above. Shallow water tables increase the percentile level accordingly, meaning that 405 

less flashiness may be expected. Sites, where groundwater levels are very shallow may be 406 

coupled to discharge zones. Here the aquifer is continuously replenished through recharge 407 
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from uplands with significant upward hydraulic gradients (Gribovszki et al., 2010; Winter, 408 

2001). Generally, this effect increases in importance at higher percentiles, i.e., in a drier 409 

aquifer state 410 

• If the percentage of broadleaved forests exceeds approximately 10%, groundwater levels 411 

become flashier in wet states, which can be linked to higher soil moisture, preferential flow 412 

and recharge than other land cover types, reducing surface runoff (Brinkmann et al., 2019; 413 

Dubois et al., 2021). 414 

• If regional slopes are right skewed, sites are located in alluvial valley bottoms at the fringes 415 

of higher hill ranges (Ezra Haaf et al., 2020; Montgomery, 2001). In these locations 416 

amplitudes are expected to be higher due to front slope flow and mountain block recharge, 417 

which is also seen here particularly in wet aquifer states with lower SHAP values at higher 418 

slope skewness. Low slope skewness (<.0.3) on the other hand contributes to less flashy 419 

groundwater dynamics. 420 

Overall, the progression of controls have implications not only for prediction but also 421 

conceptual understanding of groundwater dynamics in this region. The nonlinear relationships of 422 

groundwater dynamics and controls and the alternating dominance of these controls throughout 423 

different aquifer states are likely of interest, when studying e.g., vulnerability to drought events 424 

and climate change. Certainly, there is a need for a dedicated analysis of the dependence of controls 425 

on aquifer states, which was outside of the scope in this study. 426 
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 427 

Figure 4. Relative predictor importance across percentage point models stratified by 428 

predictor class for MLR and XGB models (scales not comparable). Data from all hold-out 429 

datasets are plotted and fitted with a local polynomial regression to emphasize the central 430 

behavior of the data. A. Standardized regression coefficients show both relative predictor 431 

importance and direction of relationship between predictor and model output. B. Mean 432 

absolute SHAP value shows relative importance through impact on the output variable. 433 
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 434 

Figure 5. Relationship between feature value and impact on prediction for five selected 435 

variables across four percentiles. Each point represents an observation of the predictor 436 

variable and its SHAP value. Data from all hold-out datasets are plotted and fitted with a 437 

local polynomial regression to emphasize the central behavior of the data. 438 

 439 

3.4 Performance of estimation techniques 440 

Daily groundwater level time series were estimated at target sites, using representative 441 

models from each of MLR and XGB models as well as using the Nearest Neighbor method (NN). 442 

The XGB model had a higher KGE than NN at 120 of 157 (76%) sites, and a higher KGE than 443 

MLR at 136 of 157 (87%) sites. In consequence KGE is also significantly higher for XGB than 444 

NN and MLR (Figure 6A). Interestingly, MLR has a lower median KGE than NN, (slightly higher 445 
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performance at the lower quartiles) which means that HDC modelling in the case of MLR 446 

deteriorates estimation on average, compared to the simple NN approach.  447 

The higher performance of XGB can almost entirely be attributed to smaller amplitude 448 

errors between simulated and observed time series. Amplitude errors are expressed by the RMSE 449 

component of KGE, which is significantly improved when using XGB compared to NN and MLR 450 

(Figure 6B). The correlation component of the KGE on the other hand shows no significant 451 

differences between methods, meaning that timing errors between observed and simulated time 452 

series are not significantly improved through XGB or MLR (Figure 6C). As discussed by 453 

Mohamoud (2010), timing errors are coupled to the mismatch of time sequence in hydrograph 454 

events (here, e.g., recharge events) at donor and target sites. Still, from a water resources 455 

management perspective, the HDC estimation approach using XGB implies better estimation of 456 

the quantitative status of groundwater resources through significantly reduced amplitude errors. 457 

Figure 6D shows that an optimal number of donor sites (neighbors) is generally reached 458 

with only 1-3 neighbors, as expressed by the maximum KGE. Sourcing more neighbors generally 459 

results in plateauing or even decrease of estimation performance across different groundwater 460 

regimes, as expressed by clusters C1 – C6. Although the number of optimal donor sites is 461 

consistent, C4 and C6 exhibit a sharp decline, when more than three or two source sites 462 

respectively are added. A possible reason for this is that these two clusters contain sites with 463 

significantly deeper groundwater tables (Figure 2D). This means that source sites with e.g., more 464 

shallow water table and therefore deviating groundwater response will be weighted in and cause a 465 

mismatch of time sequence, decreasing the quality of the predicted groundwater level time series 466 

at the target site. 467 

Not only hydrogeological suitability of donor sites is important, but also proximity (Figure 468 

6E). Performance decreases approximately with the natural logarithm of mean distance of 469 

neighbors. However, even at large mean distances to source sites (e.g. > 5 km), estimation 470 

performance at many sites may remain high. This is particularly the case for cluster C2 and C3. 471 

These cluster also show significantly higher performances by both HDC-based estimation 472 

techniques MLR and XGB. On the other hand, at sites with sufficient neighbors nearby (< 5 km), 473 

NN is preferred over MLR. Overall, however, XGB yields best performance independently of 474 

mean distance to neighbors.  475 
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 476 
Figure 6. A.-C. Performance of estimation of daily groundwater level time series for the three approaches across all 477 
unmonitored sites, measured as KGE (A), RMSE (B), Pearson’s r (C). D. Mean performance – measured as KGE - of the 478 
three estimation methods plotted against number of included neighboring sites, stratified by cluster. E. Performance of 479 
all sites – measured by KGE - plotted versus mean distance to neighbors, stratified by estimation method and cluster. 480 

3.5 Hydrogeological Controls and Plausibility of Models 481 

From a hydrogeological perspective, there are obviously missing descriptors to describe 482 

groundwater levels, such as aquifer properties, transmissivity and storativity. These are often not 483 

consistently available at the scale of this study (regional scale), or only with a low level of certainty 484 

at the level of 1-2 orders of magnitude (e.g., hydraulic conductivity in this study). However, it can 485 

be argued that the importance of storativity in this study is reduced, since normalization on a 0-1 486 

scale of groundwater level time series reduce the importance of amplitude. Regarding hydraulic 487 

conductivity a relatively homogenous selection of sites is used (Figure 2D). When assuming order 488 

of magnitude similarity of hydraulic conductivity, the predictor aquifer thickness (A_thickness) 489 
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may be considered a rough proxy. With these simplifications and proxy variables, model fits are 490 

acceptable, but still contain significant uncertainty, resulting in lower quality of time series 491 

prediction. Adding hydraulic properties, i.e., storativity values and less uncertainty regarding 492 

hydraulic conductivity to the set of predictors would likely improve the fit of regression models. 493 

It would further allow for use of more heterogeneous data sets. Different strategies to extract such 494 

hydraulic properties at wells from groundwater level time series of unconfined aquifers was 495 

recently proposed using transfer function noise models (Peterson & Fulton, 2019) and spectral 496 

analysis (Houben et al., 2022). 497 

Apart from the missing hydraulic properties, other factors likely also play a role in 498 

explaining the moderate goodness-of-fit of the HDC models. Some of the uncertainty may be due 499 

to different hydraulic properties stratified within the zone of fluctuation. This is the case at only a 500 

few sites according to the borehole logs. Other sources of uncertainty may be found in data 501 

(groundwater level measurements, spatial resolution of DEM and climate data) or method of 502 

estimating physiographic and climatic descriptors.. Other reasons may be found in the 503 

overrepresentation of relatively shallow alluvial aquifers, particularly in the north-east of the study 504 

area. Using mean squared error as a loss function, regression models tend to better represent the 505 

bulk of the sites within the data set, which are mainly lowland riverine aquifers with shallow 506 

groundwater levels (local groundwater flow) and less so the peri-alpine river valleys in the north-507 

east. A functional stratification of the data prior to HDC model building by e.g., the dominating 508 

predictor distance to stream, or more conceptually-based, using the hydrological landscape concept 509 

(Winter, 2001) may improve the predictive performance of the HDC models for sites that are less 510 

well represented. Using these functional pre-classifications should also improve transferability of 511 

methods to other study domains. For such an exercise, however, a data set would be necessary 512 

with sufficient data points that ensures robust models in each functional stratum. 513 

3.6 Improvement of Donor Selection 514 

The bias of the models towards well-represented hydrogeological settings as described 515 

above, also has consequences on donor-based reconstruction of time series at unmonitored sites. 516 

As discussed in section 3.4, differences in timing error between the three methods, NN, MLR and 517 

XGB, are very small and related to the similarity of time sequences between target and donor sites. 518 

A mismatch occurs, when inadequate donor sites are selected, which can be seen for example in 519 
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cluster C4 and C6 (Figure 6D). Performance in these clusters declines with each additional donor 520 

and is presumably related to donors for intermediate/regional flow (C4) target sites being selected 521 

from (C6) sites that are located near rivers. In other words, donor sites have hydrological responses 522 

that differ from the target sites. Similar responses at sites with intermediate and regional flow 523 

systems can however be expected even at larger distances (Giese et al., 2020; Haaf & Barthel, 524 

2018). In consequence, careful selection of donor sites is crucial to the performance of the method 525 

(also pointed out by authors applying the approach to streamflow: e.g., Hughes & Smakhtin, 1996; 526 

Shu & Ouarda, 2012; Smakhtin, 1999) and geographical proximity should not always be the main 527 

or sole selection criteria for source sites.  528 

Likely, a cleverer approach than solely proximity for donor site selection, would surely 529 

improve the performance of the presented approach significantly. Such a strategy could be based 530 

on a distance metric that uses physiographic and climatic site descriptors for quantification of 531 

similarity between sites, as proposed for streamflow by Shu et al, 2012. However, after studying 532 

the nonlinearity of relationships between site descriptors and groundwater dynamics, a non-533 

continuous approach may be more useful. Often, step changes could be seen, which indicates that 534 

a discrete classification approach may provide a more optimal pool of donor sites. Such classes of 535 

similar responses could be developed from the SHAP values in Figure 5, for example, that 536 

neighbors must be within the same distance to stream, i.e., within one of three classes (1-500m, 537 

500-1500, > 1500m). For many of the sites, however, nearby sites still provide the most adequate 538 

timing of events. Therefore, any of the donor selection strategies discussed above must be 539 

combined with an approach that applies weights to donors within the similar class based on 540 

proximity. 541 

4 Conclusions 542 

Using the presented method, groundwater head duration curves can be transferred based 543 

on comparative regional analysis of map-derivable site descriptors from monitored to unmonitored 544 

sites. Neighboring donor sites can then be used to successfully reconstruct the daily groundwater 545 

level time series based on the transferred duration curve. Apart from time series estimation at 546 

unmonitored sites - in essence spatio-temporal interpolation - the modelling approach also gives 547 

insight into hydrological processes through identification of significant controls. Specifically, at 548 

the study site, controls on groundwater dynamics were nonlinear, which favors use of Machine 549 
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Learning (i.e., gradient boosted regression trees) over multiple linear regression and therefore 550 

makes possible improved conceptual hydrogeological understanding as well as higher predictive 551 

skill. The method and results were robust as tested through nested cross-validation, however, 552 

require thorough testing with larger data sets for application in other hydrogeological settings. 553 

The study also showed that only 1-3 neighboring donor sites are generally necessary to 554 

optimally reconstruct time series of unmonitored sites. Further, the fewer nearby donor sites are 555 

available, the more benefit can be drawn from using the proposed comparative regional analysis 556 

approach, compared to nearest neighbor averaging of time series. Importantly, the selection of 557 

donor sites was identified as a key factor to improve predictive skill and should be expanded on 558 

using a combination of geographical proximity and functional classes of groundwater sites from 559 

which to draw appropriate neighbors.  Finally, the study shows ways forward to investigate the 560 

dynamic nature of controls on groundwater levels, which may provide valuable insight to studies 561 

of recharge seasonality, droughts and floods. 562 
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