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Abstract

Data assimilation (DA) aims at forecasting the state of a

dynamical system by combining a mathematical representation of the

system with noisy observations taking into account their uncertainties.

State of the art methods are based on the Gaussian error statistics and the linearization of the non-linear dynamics which may

lead to sub-optimal methods. In this

respect, there are still open questions how to improve these methods.

In this paper, we propose a \textit{fully data driven deep learning architecture}
generalizing recurrent Elman networks and data assimilation algorithms which

approximate a sequence of prior and posterior densities conditioned on noisy observations. By construction our approach can

be used for general nonlinear dynamics

and non-Gaussian densities.

On numerical experiments based on the well-known

Lorenz-95 system and with Gaussian error statistics, our architecture achieves

comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state

at a given time without using any explicit regularization technique.
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2Université de Toulouse / ANITI, Toulouse, France5

3CERFACS / ANITI, Toulouse, France6

∗
7

Key Points:8

• We propose a general framework DAN based on an extended Elman Network for9

Bayesian Data Assimilation.10

• We show that DAN can achieve optimal prior and posterior density estimations11

by optimizing likelihood-based objective function.12

• Numerically DAN can achieve comparable performance to the EnKF on Lorenz-13

95 system, without tuning of localization or inflation.14

∗Partially supported by 3IA Artificial and Natural Intelligence Toulouse Institute, French “Investing for

the Future - PIA3” program under the Grant agreement ANR-19-PI3A-0004

Corresponding author: Sixin Zhang, sixin.zhang@irit.fr

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract15

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining16

a mathematical representation of the system with noisy observations taking into account17

their uncertainties. State of the art methods are based on the Gaussian error statistics and18

the linearization of the non-linear dynamics which may lead to sub-optimal methods. In19

this respect, there are still open questions how to improve these methods. In this paper,20

we propose a fully data driven deep learning architecture generalizing recurrent Elman net-21

works and data assimilation algorithms which approximate a sequence of prior and posterior22

densities conditioned on noisy observations. By construction our approach can be used for23

general nonlinear dynamics and non-Gaussian densities. On numerical experiments based24

on the well-known Lorenz-95 system and with Gaussian error statistics, our architecture25

achieves comparable performance to EnKF on both the analysis and the propagation of26

probability density functions of the system state at a given time without using any explicit27

regularization technique.28

Plain Language Summary29

Data assimilation (DA) aims at forecasting the state of a dynamical system by combining30

information coming from the model dynamics and noisy (sparse) observations based on their31

error statistics. Bayesian data assimilation uses the random nature of both the physical and32

observational error which can be described in terms of probability density functions. This is33

formally accomplished by using Bayes’ Theorem, which requires calculation of the densities34

that may be quite complex. Practical algorithms then perform linearization of nonlinear35

operators which are optimal for Gaussian statistics and may use limited information due to36

computational cost. This results in sub-optimal DA algorithms which requires then the use37

of explicit regularization techniques to increase the performance of the algorithm or obtain38

stable algorithms.39

With the advances in Machine Learning (ML) and deep learning, there has been sig-40

nificant increase in the research of using ML for data assimilation to decrease the compu-41

tational cost, or to have better estimation of the state. In this paper, we propose a fully42

data driven algorithm to learn the prior and posterior pdfs conditioned on the given obser-43

vations. Our learning is based on the reference trajectories of the model and observations,44

and loss function minimizes the information loss in the sense of the Kullback-Leibler (KL)45

divergence. Numerical experiments show that we obtain comparable performance to that46

of EnKF without the need of localisation and inflation techniques. These numerical results47

shows the potential advantage of NN based algorithms when the used practical algorithms48

are sub-optimal.49

1 Introduction50

1.1 Context51

In Data assimilation (DA, (Asch et al., 2016)), the time dependent state of a system is52

estimated using two models that are the observational model, which relates the state to53

physical observations, and the dynamical model, that is used to propagate the state along54

the time dimension. These models can be written as a Hidden Markov Model (HMM).55

Observational and dynamical models are described using random variables that account56

for observation and state errors. Hence DA algorithms are grounded on a Bayesian approach57

in which observation realizations are combined with the above statistical models to obtain58

state predictive and posterior density sequences. This estimation is done in two recursive59

steps: the analysis updates a predictive density into a posterior one with an incoming60
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observation; and the propagation updates a posterior density into a the next cycle predictive61

(or prior) density.62

DA methods use additional assumptions or approximations to obtain closed expressions63

for the densities so that they can be handled by computers. Historically in the Kalman64

filter (KF, (Kalman, 1960)) approach, statistical models are supposed to be Gaussian and65

operators linear. Hence, the propagation and analysis steps consist in updating mean and66

covariance matrix of densities. In the Ensemble Kalman Filter (EnKF, (Evensen, 2009))67

approach, these densities are represented by a set of sampling vectors. EnKF when used68

with a small number of ensembles results in low-rank representation of the error covariance69

matrices. This causes some spurious errors in the covariance matrix which are filtered70

by using regularization techniques such as localization and inflation (Hamill et al., 2001;71

Houtekamer & Mitchell, 2001; Asch et al., 2016). EnKF can be used for nonlinear dynamics,72

however due to the truncation of the statistics up to the second order, in the limit of large73

ensembles the EnKF filter solution differs from the solution of the Bayesian filter (Le Gland74

et al., 2011), except for linear dynamics and Gaussian statistics. Hence, when using these75

methods for non-linear and non-Gaussian setting there are still open questions in achieving76

an optimal prediction error in the Bayesian setting.77

In this paper, we propose a general supervised learning framework based on Recurrent78

Neural Network (RNN) for Bayesian DA to approximate a sequence of prior and posterior79

densities conditioned on noisy observations. Section 2 explains the sequential Bayesian DA80

framework with an emphasis on the time invariant structure in the Bayesian DA which is81

the key property for RNNs. The proposed approach, Data Assimilation Network (DAN), is82

then detailed in Section 3 which generalizes both the Elman Neural Network and the Kalman83

Filter. DAN approximates the prior and posterior densities by minimizing the log-likelihood84

cost function based on the information loss, related to the cross-entropy. The details of the85

cost function and the theoretical results for the optimal solution of the cost function are86

presented in Section 3.4. The practical aspects of the DAN including the architecture and87

computationally efficient training algorithm are given in Section 4. We then provide the88

numerical results on the Lorenz-95 system in Section 5 which includes the stability analysis89

also beyond the time-interval or the initial condition used in the training. Finally, we provide90

the conclusions in Section 6.91

1.2 Related work92

With the advances in machine learning and deep learning, there has been significant93

increase in the research of using ML to forecast the evolution of physical systems with a94

data-driven approach (Brunton et al., 2016; Rudy et al., 2017; Raissi et al., 2019, 2017a,95

2017b; Li et al., 2020; Jia et al., 2021). Recently, this research has its significant impact on96

the design and use of advanced DA algorithms. We next outline three main directions that97

are related to our research in the hybridization of DA and ML approaches.98

In a first direction, one addresses the traditional DA problem where the goal is to99

estimate the distribution of a state sequence xt conditioned on an observation sequence100

yt, by using explicitly an underlying dynamical model M. Harter and de Campos Velho101

(2012) propose to use Elman Neural Network to learn the analysis equation of KF type102

algorithm where the dynamics are nonlinear. Their main aim is to reduce the computational103

complexity without affecting the accuracy. McCabe and Brown (2021) focus on the learning104

of the analysis equation within an EnKF framework. They propose the Amortized Ensemble105

Filter which aims to improve existing EnKF algorithms by replacing the EnKF analysis106

equations with a parameterized function in the form of a neural network.107

In a second direction, one aims to learn an unknown dynamical model M from noisy108

observations of yt. This direction is more ambitious compared to the first one as the dy-109

namics to be learnt can be non-linear or even chaotic. Bocquet et al. (2019) propose to use110

the Bayesian data assimilation framework to learn a parametric M from sequences of ob-111

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

servations yt. The dynamical model is represented by a surrogate model which is formalized112

as a neural network under locality and homogeneity assumptions. Bocquet et al. (2020)113

extends this framework to the joint estimation of the state xt and the dynamical model M114

with a model error represented by a covariance matrix. They estimate the ensembles of the115

state by using a traditional Ensemble Kalman Smoother based on Gaussian assumption,116

and then with the given posterior ensemble they minimize for the dynamical model and its117

error statistics. Similarly, Brajard et al. (2020) propose an iterative algorithm to learn a118

neural-network parametric model of M. With a fixed M, it estimates the state xt using119

the observations yt, and then uses the estimated state to optimize the parameters of M. A120

related work is from Krishnan et al. (2015), which introduces a deep KF to estimate the121

mean and the error covariance matrix in KF to model medical data, based on variational122

autoencoder (Girin et al., 2021).123

A third direction, which is what we consider in the present paper, is to estimate the124

distribution of a state sequence xt conditioned on a observation sequence yt, without explic-125

itly using the underlying dynamical model M in the propagation. This direction often uses126

training data in a supervised form of (xt, yt). For instance, Fablet et al. (2021) propose a127

joint learning of the NN representation of the model dynamics and of the analysis equation128

for the sub-problem albeit within a traditional variational data assimilation framework. A129

related work to learn an implicit model is Revach et al. (2022), which proposes a parametric130

KF to handle partially known model dynamics, replacing explicit covariance matrices by a131

parametric NN to estimate the model error.132

All these approaches consider improving the DA methodologies which are based on an133

existing DA algorithm within sequential or variational framework. In this work, we propose134

a fully data driven approach for Bayesian data assimilation without relying on any prior DA135

algorithm that can be sub-optimal in case of non-Gaussian error statistics and non-linear136

dynamics.137

1.3 Notation138

We denote a state random variable at time t as xt taking their values in some space139

X = Rn of dimension n. An observation random variable at time t is denoted by yt taking its140

values in some space Y of dimension d (often Rd). We write a sequence of random variables141

x1, · · · ,xt as x1:t. A joint probability density of two sequence of random variables x1:t and142

y1:t with respect to the Lebesgue measure on the finite dimensional Euclidean space Xt×Yt
143

is written as p(x1:t, y1:t) = px1:t,y1:t
(x1:t, y1:t). The set of pdfs over X is denoted by PX. A144

conditional pdf for xt given yt = yt is written as pxt|yt
(·|yt) ∈ PX.145

2 Sequential Bayesian Data assimilation146

In this section, we review the Bayesian optimal solution of sequential Bayesian data147

assimilation for an observed dynamical system and use its repetitive time-invariant structure148

to motivate the introduction of the DAN framework.149

2.1 Sequential Bayesian Data assimilation150

Data assimilation aims to estimate the state of a dynamical process which is modeled
by a discrete-time stochastic equation and observed via available instruments which can be
modeled by another stochastic equation (Asch et al., 2016). These equations are given by
the following system:

xt = M (xt−1) + ηt, (propagation equation) (1a)

yt = H (xt) + εt, (observation equation) (1b)

where M(·) is the nonlinear propagation operator that acts on the model state random151

variable vector at time t, xt ∈ X and return the model state vector xt+1 ∈ X. H(·) is the152
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nonlinear observation operator that acts on the state random variable xt and approximately153

returns the observation random variable yt ∈ Y at time t. Both of these steps may involves154

errors and they are represented by an additive model error, ηt, For example, the observa-155

tion operator may involve spatial interpolations, physical unit transformations and so on,156

resulting in measurement errors.157

and an additive observation error, εt. We assume that these stochastic errors are158

distributed according to the pdf pη and pε and they are are i.i.d. along time, independent159

to the initial state x1. Using these assumptions DA problem can be interpreted as a Hidden160

Markov Model (Carrassi et al., 2018).161

Given such a dynamical model, sequential Bayesian DA aims at quantifying the un-
certainty over the system state each time an observation sample becomes available. Such
an analysis starts by rewriting, under suitable mathematical assumptions, the DA system
in terms of conditional probability density functions pxt|xt−1

(·|xt−1) ∈ PX which represents
(1a), and pyt|xt

(·|xt) ∈ PY which represents (1b). Using these densities, we can quantify
the uncertainty of the state as a function of the observations. This can be done in two steps
sequentially using the Bayesian framework: the analysis step and the propagation (forecast)
step. Let pbt := pxt|y1:t−1

be the posterior distribution of xt given y1:t−1, and pat := pxt|y1:t

be the posterior distribution of xt given y1:t. The analysis step computes pat (·|y1:t) ∈ PX
from pbt(·|y1:t−1) ∈ PX based on Bayes rule,

pat (·|y1:t) =
pyt|xt

(yt|·) pbt(·|y1:t−1)

py1:t−1
(y1:t−1)

(2)

Here, pyt|xt
(yt|·) is considered as a likelihood function of xt, and py1:t−1

is marginal distri-

bution of observations. Similarly, the propagation step computes pbt+1(·|y1:t) from pat (·|y1:t),

pbt+1(·|y1:t) =
∫

pxt+1|xt
(·|x)pat (x|y1:t)dx. (3)

The analysis and forecast steps are then repeated within a given number of cycles (time162

interval) in which the forecast step provides a prior density for the next cycle.163

Performing the analysis and propagation steps in (2) and (3) with linear dynamics for164

the propagation operator M(·) and the observation operator H(·), and using a Gaussian165

assumption for the probabilities pε and pη reduces to the well known Kalman filter (KF,166

(Kalman, 1960)). The challenge is that the calculation of the pdfs become intractable with167

nonlinear ODS or non-Gaussian pdfs of the error terms. When the dynamics are nonlinear,168

ensemble type KFs such as Ensemble KF (Evensen, 2009) are widely used alternative meth-169

ods, but when used with limited number of ensembles, they require additional techniques170

(see Section 3.3 for further discussions).171

2.2 Time-invariant structure in the BDA172

We review the invariant structure of the BDA for the ODS defined in Section 2.1, which
is a key property to motivate the DAN framework. Following the i.i.d. assumptions that we
have made on the errors in (1a) and (1b), the conditional pdfs pxt+1|xt

and pyt|xt
are time

invariant, in the sense that for t = 1, 2, . . .

pxt+1|xt
(u|v) = px2|x1

(u|v)
pyt|xt

(y|v) = py1|x1
(y|v)

for all u, v ∈ X and y ∈ Y.173

As a result, the conditional pdfs representing the ODS are time invariant in the following
sense. The analysis step (2) can then be considered as a time invariant function, aBDA,
which operates on the prior cpdf, pbt(·|y1:t−1) ∈ PX and a current observation, yt ∈ Y, and
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then return a posterior cpdf pat (·|y1:t) ∈ PX:

pat (·|y1:t) = aBDA
[
pbt(·|y1:t−1), yt

]
.

Similarly, according to (3), the propagation transformation can be considered as a time
invariant function, bBDA, that transforms a posterior pdf to a prior pdf,

pbt+1(·|y1:t) = bBDA [pat (·|y1:t)] .

This presentation of the sequential BDA allows us to see the DA cycle as the composition174

of two time invariant transformations aBDA and bBDA, i.e. each transformation is produced175

using the same update rule applied to the previous transformations. Exploiting this repetitive176

time invariant structure, corresponding to a chain of events, leads to a general framework177

named as the DAN based on recurrent neural networks (RNNs). We detail these ingredients178

of the DAN in Section 3 and Section 4.179

3 Data Assimilation Networks (DAN)180

In section 3.1 we present a general framework for DAN which generalizes both tradi-181

tional data assimilation algorithms described in Section 3.2 and 3.3. Thanks to the repetitive182

structure of BDA, it allows one to address nonlinear model dynamics and non-Gaussian er-183

ror distributions. Section 3.4 presents a key ingredient of DAN, which is the cost function184

based on the log-likelihood, and its theoretical properties. Instead of calculating the poste-185

rior pdfs analytically, DAN aims to learn these pdfs by using sequences of (xt, yt) generated186

from the ODS.187

3.1 DAN framework188

For a given set S, DAN is defined as a triplet of transformations such that

a ∈ S× Y → S, (analyzer) (4a)

b ∈ S → S, (propagater) (4b)

c ∈ S → PX, (procoder) (4c)

The term “procoder” is a contraction of “probability coder” as the function c transforms189

an internal representation into an actual pdf over X. A representation of a DAN is given by190

Figure 1a. When S = PX and c is identity, this framework encompasses the transformation of191

aBDA and bBDA in the BDA as a special case. However, it includes also other DA algorithms192

such as Kalman Filter and Ensemble Kalman Filter. Such connections are detailed in193

Section 3.2 and 3.3.194

One important ingredient of DAN as a general framework for cycled DA algorithms is195

the use of memory to transform prior and posterior densities from one cycle to the next196

one. In this respect, S can be interpreted as a memory space which is a finite-dimensional197

vector space within the DAN framework. Considering DAN as a RNN with memory usage198

naturally make the link with the well-known Elman Network. This connection is detailed199

in Section 4.1.200

As a recurrent neural network, we can unroll DAN into a sequence of transformations.
Given an initial memory sa0 ∈ S0, and an observation trajectory y1:T ∈ YT , a DAN recur-
sively outputs a predictive and a posterior sequence such that for 1 ≤ t ≤ T ,

sbt := b
(
sat−1

)
, sat := a

(
sbt , yt

)
qbt := c

(
sbt
)
, qat := c (sat ) .

This recursive application is represented in Figure 1b. Note that {qbt}Tt=1 and {qat }Tt=1201

are candidate conditional densities. This means that for a given sequence of observations202
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S

Y

S

PX PX

a

b
c c

(a) Scheme of a DAN

sat−1

c

qat−1

. . . b sbt

c

qbt

yt

a sat

c

qat

. . .

(b) Scheme of a recursive DAN application

Figure 1: Representation of a DAN: (a) scheme of a DAN (b) unrolled DAN along time
interval

y1:t = (y1, · · · , yt), we have qbt (·|y1:t−1) ∈ PX and qat (·|y1:t) ∈ PX. However, these candi-203

date conditional densities are not required to be compatible by construction with a joint-204

distribution over XT × YT . As a consequence, we do not assume that there is some joint205

distribution q(x1:T , y1:T ) which induces the qbt (·|y1:t−1) and qat (·|y1:t). However, as we shall206

see in Section 4, the construction of DAN using recurrent neural networks implicitly imposes207

some relationships between these candidate conditional densities.208

3.2 The Kalman Filter as a DAN209

In the original Kalman filter (KF, (Kalman, 1960), the propagation operator M is210

supposed affine with M as linear part and the observation operator H also affine with H as211

linear part. In this case, the analysis and propagation transformations preserve Gaussian212

pdfs that are easily characterized by their mean and covariance matrix. The analysis and213

propagation transformations then simplify to algebraic expressions on these pairs as we shall214

see in this section.215

Suppose that the internal representation of a Gaussian pdf is formalized by the injective
transformation, cKF : ZX → GX,

cKF(s) = N (µ,Σ) ,

where s := (µ,Σ), µ and Σ being the mean and covariance matrix respectively and ZX is
the set of mean and covariance matrix pairs over X, GX is the set of Gaussian pdfs over X.
The KF analysis transformation is the function that transforms such a prior pair in ZX and
an observation y in Y into the posterior pair in ZX, i.e. a

KF : ZX × Y → ZX, given by

aKF
(
µb,Σb, y

)
= (µa,Σa) (5)

with Σa =
(
HTR−1H +

(
Σb

)−1
)−1

, µa = µb + ΣaHTR−1
(
y −H

(
µb

))
. The mapping216

diagram for the analysis step of the KF is given by the diagram in Figure 2a, which is a217

commutative diagram.218

As well, the KF propagation transformation is the function that transforms a posterior
pair in ZX into the next cycle prior in ZX, i.e. b

KF : ZX → ZX, given by

bKF (µa,Σa) =
(
µb,Σb

)
(6)

with Σb = MΣaMT+Q, Q being the model error covariance matrix and µb = M (µa). The219

mapping diagram for the propagation step of the KF is given by the diagram in Figure 2b,220

which is a commutative diagram.221
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GX × Y GX

ZX × Y ZX

aBDA

aKF

cKF cKF

(a) Commuting diagram for the KF analysis

GX GX

ZX ZX

bBDA

bKF

cKF cKF

(b) Commuting diagram for the KF propa-

gation

Figure 2: Kalman filter mapping diagram

Unfortunately, operators linearity is rarely met in practice and covariance matrices may222

not be easy to store and manipulate in the case of large scale problems. A popular dimension223

reduction approach is the ensemble Kalman filter that has proven effective in several large224

scale applications.225

3.3 The Ensemble Kalman Filter as a DAN226

In the Ensemble Kalman Filter (EnKF, (Evensen, 2009)), statistics (µ,Σ) ∈ ZX are
estimated from an ensemble matrix X ∈ Xm = Rn×m having m columns with the empirical
estimators

µ = Xu, (7a)

Σ = XUXT, (7b)

where u =
(

1
m , . . . , 1

m

)T ∈ Rm, U = Im−m×uuT

m−1 ∈ Rm×m and Im ∈ Rm×m is the identity
matrix. Thus, the algebra over mean and covariance matrices pairs can be represented by
operators on ensembles. In this approach nonlinear operators can be evaluated columnwise
on ensembles and ensembles with few columns may produce low-rank approximations of
large scale covariance matrices. Hence ensembles are an internal representation for the pdfs
that are transformed by the function into a Gaussian pdf, cEnKF : Xm → GX,

cEnKF (X) = N
(
Xu,XUXT

)
, (8)

when the error covariance matrix XUXT is full-rank, for instance when m ≥ n.227

The EnKF analysis transformation is the function that transforms such a prior ensemble
Xb ∈ Xm and an observation y ∈ Y into the posterior ensemble Xa ∈ Xm, aEnKF : Xm×Y →
Xm, given by

aEnKF (Xb, y) = Xa with Xa = Xb +K (Y − Yb) (9)

where K = XbUY T
b

(
YbUY T

b +R
)−1 ∈ Rn×d is the ensemble Kalman gain, Yb = H (Xb) ∈228

Ym and Y ∈ Ym(= Rd×m) is a column matrix with m samples of N (y,R).229

As well, the EnKF propagation transformation is the function that transforms a pos-
terior ensemble Xa ∈ Xm into the next cycle prior ensemble Xb ∈ Xm, bEnKF : Xm → Xm,
given by

bEnKF(Xa) = Xb with Xb = M (Xa) +W (10)

where W ∈ Xm is a column matrix consisting of m samples distributed according to the230

Gaussian pdf N (0n, Q).231
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In EnKF, as explained above the mean and the covariance matrix for the Gaussian pdf232

are calculated through ensembles and propagation is performed through the ensembles using233

nonlinear dynamics. For large-scale nonlinear systems, when one can use only a limited234

number of ensembles, the error covariance matrix become a rank deficient matrix. This235

leads to sub-optimal performance (Asch et al., 2016) and may introduce errors during the236

propagation. For instance, spurious correlations may appear or ensembles may collapse. As237

a result, for a stable EnKF regularization techniques like localization and inflation needs to238

be applied (Hamill et al., 2001; Houtekamer & Mitchell, 2001; Gharamti, 2018). Localization239

consists in filtering out the long-distance spurious correlations in the error covariance matrix.240

It is not straightforward to find the optimal parameters for the localization, therefore some241

tuning is required. This regularization technique also requires observations to be local, i.e.242

an observation that can be attributed to one model grid point. After filtering out these243

spurious correlations such that the analysis is updated by the local observations, there may244

be still problem with the use of limited ensembles along the propagation. These small errors245

may be problematic when they are accumulated through the cycles. This can still lead246

to filter divergence. A common solution is to inflate the error covariance matrix by an247

empirical factor slightly greater than one. The multiplicative inflation compensate errors248

due to a small size of ensembles and the approximate assumption of Gaussian distribution249

on the error statistics (Bocquet, 2011).250

3.4 DAN log-likelihood cost function251

In this section, we introduce a cost function which allows one to optimize the candidate252

conditional densities, i.e. qat and qbt , based on samples of x1:T and y1:T . The distance253

between the target conditional densities pbt and pat and the candidate conditional densities254

qbt and qat are minimized in the sense of the information loss, related to cross-entropy (Cover255

& Thomas, 2005).256

Definition 1 (log-likelihood cost function). Assume q = (qbt , q
a
t )

T
t=1 ∈ P =

(
ΠT

t=1Yt−1 → PX
)
×(

ΠT
t=1Yt → PX

)
such that the following log-likelihood cost function is well-defined (i.e. for

each t ≥ 1, the Lebesgue integral with respect to x1:t and y1:t exists)

Jt(q
b
t , q

a
t ) := −

∫ [
ln qbt (xt|y1:t−1) + ln qat (xt|y1:t)

]
p(x1:t, y1:t)dx1:tdy1:t. (11)

The total log-likelihood cost function is defined as

J (q) :=
1

T

T∑
t=1

Jt(q
b
t , q

a
t ). (12)

The following results shows that if q ∈ P, the global optima of J is the Bayesian prior257

and posterior cpdf trajectories of the ODS.258

Theorem 1. Let q̄ ∈ argminq∈P J (q), then ∀t ∈ {1, · · · , T}, q̄bt (x|y1:t−1) = pbt(x|y1:t−1)259

for pbt(·|y1:t−1)-a.e x ∈ X and p-a.e y1:t−1 ∈ Yt−1. Similarly, q̄at (x|y1:t) = pat (x|y1:t) for260

pat (·|y1:t)-a.e x ∈ X and p-a.e y1:t ∈ Yt.261

Proof. According to (12), it is sufficient to derive the optimal solution of Jt(q
b
t , q

a
t ) for each262

t independently. The proof is an application of the KL-divergence (Kullback & Leibler,263

1951) to conditional probability densities. For a function f(x) on a measurable space of X264

with probability p, we say f(x) = 0 for p-a.e. x (p-almost everywhere shortly p-a.e.) if there265

exists a measurable set A such that p(A) = 1 and ∀x ∈ A, f(x) = 0.266

We re-write Jt(q
b
t , q

a
t ) as

9
∫

ln qbt (xt|y1:t91)pbt(xt|y1:t91)p(y1:t91)dxtdy1:t91 −
∫

ln qat (xt|y1:t)pat (xt|y1:t)p(y1:t)dxtdy1:t,

(13)
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using the property p(xt, y1:t−1) = pbt(xt|y1:t91)p(y1:t91) and p(xt, y1:t) = pat (xt|y1:t)p(y1:t).
The first term in (13) can be written as conditional relative entropy by including a constant
conditional entropy term:∫ (∫

ln
pbt(xt|y1:t91)
qbt (xt|y1:t91)

pbt(xt|y1:t91)dxt

)
p(y1:t91)dy1:t91 ≥ 0. (14)

We have equality in (14) if and only if qbt (x|y1:t91) = pbt(x|y1:t91) for pbt(·|y1:t91)-a.e x, and267

p-a.e. y1:t91 (see a proof in (Kullback & Leibler, 1951, Lemma 3.1) and (Bogachev, 2007,268

Corollary 2.5.4)). Thus, the minimal solution is given by q̄bt as stated in the theorem.269

Similarly, the minimal solution of the second term (13) is given by the q̄at in the statement.270

271

The theoretical results in Theorem 1 can not be numerically computed without spec-272

ifying a functional class of the candidate conditional pdfs q = (qbt , q
a
t )

T
t=1. As a common273

specific case, we can consider candidate conditional pdfs as the Gaussian pdfs which allows274

one to match the correct mean and covariance of the target prior and posterior cpdf.275

Let GX be the set of Gaussian pdfs over X, and q ∈ G =
(
ΠT

t=1Yt−1 → GX
)
×276 (

ΠT
t=1Yt → GX

)
. For each Jt(q

b
t , q

a
t ) in Definition 1 to be well-defined, it is necessary to277

assume that the target prior and posterior distributions pbt(·|y1:t−1) and pat (·|y1:t) have first-278

order and second-order moments. Under these assumptions, we have279

Theorem 2. Let q̄ ∈ argminq∈G J (q), then ∀t ∈ {1, · · · , T}, the mean and covariance of280

q̄bt (·|y1:t−1) equals to the mean and covariance of pbt(·|y1:t−1) for p-a.e y1:t−1 ∈ Yt−1. Sim-281

ilarly, the mean and covariance of q̄at (·|y1:t) equals to the mean and covariance of pat (·|y1:t)282

for p-a.e y1:t ∈ Yt.283

Proof. We shall only provide a proof for q̄bt (·|y1:t−1) as the proof is similar for q̄at (·|y1:t). Let
p̄bt(·|y1:t−1) be the Gaussian distribution which has the mean and covariance of pbt(·|y1:t−1).
Following the proof of Theorem 1, we can rewrite the first term, up to a constant, in (13)
into ∫ (∫

ln
p̄bt(xt|y1:t−1)

qbt (xt|y1:t−1)
pbt(xt|y1:t−1)dxt

)
p(y1:t−1)dy1:t−1 (15)

This is an equivalent minimization problem because we have added a term of p̄bt which does
not depend on qbt . By definition, qbt (·|y1:t−1) ∈ GX, q̄

b
t (·|y1:t−1) ∈ GX, the logarithm term in

(15) is a quadratic function of xt. As a consequence, we can rewrite (15) as∫ (∫
ln

p̄bt(xt|y1:t−1)

qbt (xt|y1:t−1)
p̄bt(xt|y1:t−1)dxt

)
p(y1:t−1)dy1:t−1 ≥ 0. (16)

where we have replaced the density pbt by p̄bt because they have the same first and second284

order moments. Note that the inner integral in (16) is the KL divergence between p̄bt and285

qbt , so its minimal solution q̄bt (·|y1:t−1) equals almost surely to p̄bt(·|y1:t−1). Therefore the286

mean and covariance of q̄bt (·|y1:t−1) and pbt(·|y1:t−1) match for p-a.e. y1:t−1.287

4 DAN construction and training algorithm288

Having specified the cost function in the previous section, we are now going to discuss289

how to construct the components of a, b, c in DAN in order to fit training data samples.290

To motivate the DAN construction, we first review its connection with the classical Elman291

network in Section 4.1. We then specify the construction of the DAN using recurrent neural292

networks in Section 4.2. Section 4.3 and 4.4 describe how to efficiently train the network.293
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4.1 Connection with Elman network294

DAN can be interpreted as an extension of an Elman network (EN) (Elman, 1990)295

which is a basic structure of recurrent network. An Elman network is a three-layer network296

(input, hidden and output layers) with the addition of a set of context units. These context297

units provide memory to the network. Both the input units and context units activate the298

hidden units; the hidden units then feed forward to activate the output units (Elman, 1990).299

A representation of a EN is given in Figure 3a.300

Hidden Units (S)

Input Units (Y)

Context Units (C)

Output Units (W)

(a) Scheme of a Elman Network

st−1

c

wt−1

. . . b ℓt−1

yt

a st

c

wt

. . .

(b) Scheme of a recursive Elman application

Figure 3: Representation of a Elman Network: (a) scheme of a EN (b) unrolled EN along
time interval

The context units make the Elman network able to process variable length sequences301

of inputs to produce sequences of outputs as shown in Figure 3b. Indeed, given a new input302

yt ∈ Y in the input sequence, the function a updates a context memory from ℓt−1 ∈ C to303

a hidden state memory st = a (ℓt−1, yt) ∈ S. And the function c decodes the hidden state304

memory into an output wt = c (st) ∈ W in the output sequence. The updated hidden state305

memory is transferred to the context unit via function b. In a way, the context memory306

of an Elman network is expected to gather relevant information from the past inputs to307

perform satisfactory predictions. The training process in machine learning will optimally308

induce how to manipulate the memory from data.309

The similarity between DAN and EN can be made explicit with the analogy that the310

hidden layer is connected to the context units by the function b, which includes time prop-311

agation for DAN. In DAN the hidden unit memory S is considered as the same set as312

the context unit memory C, and c function decodes both the hidden and the context unit313

memory into a probability density function.314

The EN can not perform DA operations in all its generality. For instance, EN can315

not make predictions without observations, that is estimating strict future states from past316

observations. This is because the function a performs both the propagation and the analysis317

at once. In a way, the EN only produces posterior outputs and no prior outputs while the318

DAN produces prior or posterior outputs by applying the procoder c before or after the319

propagater b (see Figure 1b and Figure 3b). DAN can also produce strict future predic-320

tions without observations by applying the propagater b multiple times before applying the321

procoder c. Second, the DAN provides a probabilistic representation of the state i.e. an322

element in PX instead of an element in X. Also, note that the compositions of b and c make323

a generalized propagation operator as it propagates in time probabilistic representations of324

the state rather than punctual realizations.325
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4.2 Construct DAN using Recurrent Neural networks (RNN)326

We propose to use neural networks to construct a parameterized family of DANs. Let
θ denote all the weights in neural networks, and the memory space S be a finite-dimensional
Euclidean space. The parametric family of the analyzers and propagators are L-layer fully
connected neural networks:

aθ : S× Y → · · · → S× Y︸ ︷︷ ︸
L times

→ S, (17a)

bθ : S → · · · → S︸ ︷︷ ︸
L times

, (17b)

The construction of aθ is built upon L fully-connected layers with residual connections.
It is based on the LeakyReLU activation function and the ReZero trick (Bing et al., 2015;
Bachlechner et al., 2020) to improve the trainability when L is large. For layer ℓ, the input
vℓ−1 ∈ S× Y is transformed into vℓ ∈ S× Y by

vℓ = vℓ−1 + αℓLeakyReLU (Wℓvℓ−1 + βℓ) . (18)

An extra linear layer is then applied to the output vL in order to compute a memory state as327

the output of aθ. The trainable parameters of aθ are (αℓ,Wℓ, βℓ)ℓ≤L and the weight and bias328

in the linear layer. As illustrated in Figure 1b, the input aθ at time t is a concatenation of329

sbt and yt, i.e. v0 = (sbt , yt). Similarly, the bθ is constructed from the same L fully-connected330

layers as in (18) by using a different set of trainable parameters. The input of bθ at time t331

is set to sat .332

The procoder cθ is specified with respect to the pdf choice of candidate conditional
densities. For instance, for the Gaussian case studied in Theorem 2, cθ can be defined as:

cθ : S → Rn+
n(n+1)

2 → GX (19)

which is a linear layer from S to Rn+
n(n+1)

2 , followed by a function that transforms the333

n + n(n+1)
2 dimension vector into the mean and the covariance of a Gaussian distribution.334

This transformation is detailed in Appendix A.335

4.3 Training and test loss from unrolled RNN336

In order to train a DAN, we will unroll the RNN defined by (aθ, bθ, cθ) so as to define337

the training computing from I i.i.d trajectories of (x1:T ,y1:T ). We also define the test loss338

for training performance evaluation.339

To be clear on how the states sat and sbt depend on aθ, bθ and a given trajectory y1:t, we
will denote the state (memory) at time t informed by the data up to time t91 and generated
using a θ-parametric function as sb,θt|t91. Then we can rewrite sbt and sat more explicitly as:

sb,θt|t91 = bθ

(
sa,θt91|t91

)
, and sa,θt|t = aθ

(
sb,θt|t91, yt

)
, (20)

where sa,θ0|0 = s0 is an initial memory of RNN independent of θ. The procoder cθ outputs
the pdf

qb,θt|t91(·|y1:t−1) = cθ

(
sb,θt|t91

)
, and qa,θt|t (·|y1:t) = cθ

(
sa,θt|t

)
. (21)

To define the training loss computed from the I trajectories, we introduce a trajectory-
dependent loss function which will be needed to define our online training strategy. Let(
x
(i)
1:T , y

(i)
1:T

)
be the i-th trajectory, we write the loss function for the i-th trajectory as:

J
(i)
t

(
qb,θt|t91, q

a,θ
t|t

)
= − log qb,θt|t91

(
x
(i)
t |y(i)1:t−1

)
− log qa,θt|t

(
x
(i)
t |y(i)1:t

)
.
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The training loss is defined accordingly as a function of θ,

1

TI

T∑
t=1

I∑
i=1

J
(i)
t

(
qb,θt|t91, q

a,θ
t|t

)
(22)

We define the test loss J(θ), as in (22), by using another I independent trajectories of340

(x1:T ,y1:T ). It allows one to evaluate how well the DAN learns the underlying dynamics of341

ODS beyond the training trajectories.342

4.4 Online training algorithm: TBPTT343

Direct optimization of the training loss in (22) is impractical for large-scale problems344

since the gradient backpropagation through time generates a large computational graph that345

consumes a lot of memory (Jaeger, 2002). This limits the time length T and batch size I346

which, in turn, might lead to overfitting due to limited data. A workaround is to resort to347

gradient descent with truncated backpropagation through time (TBPTT, (Williams & Peng,348

1990; Williams & Zipser, 1995)). It is commonly used in the machine learning community349

to train recurrent neural networks (Tang & Glass, 2018; Aicher et al., 2020).350

Starting from θ0, the TBPTT is an online method which generates a sequence of model351

parameters θk for k = 1, 2, · · · , T . Each θk is obtained from θk−1 based on the information352

of I training trajectories {(x(i)
k , y

(i)
k )}i≤I on-the-fly.353

More precisely, given the initial memories {s̄(i)0 }i≤I and θ0, we update the memory

s̄
(i)
k = aθk−1

(bθk−1
(s̄

(i)
k−1), y

(i)
k ), k ≥ 1

and then we perform the following gradient update,

θk+1 = θk − ηk
1

I

I∑
i=1

∇θJ
(i)
k+1(cθ · bθ(s̄

(i)
k ), cθ · aθ(bθ(s̄(i)k ), y

(i)
k+1))|θ=θk (23)

where ηk is the learning rate. The gradient is computed over the I training trajectories at354

time k + 1. As a result, the optimization is not anymore limited in time due to computer355

memory constraints.356

To adjust the learning rate ηk adaptively, we apply the Adam optimizer (Kingma &357

Ba, 2014) to the gradient in (23). This simultaneously adjusts the updates of θk based on358

an average gradient computed from the gradients at previous steps.359

5 Numerical experiments360

In this section, we present results of DAN on the Lorenz-95 system (Lorenz, 1995)361

using the Gaussian conditional posteriors presented in Theorem 2. We first explain Lorenz362

dynamics in Section 5.1, and provide experimental details in Section 5.2. Then, Section 5.3363

evaluates the effectiveness of the online training method TBPTT to minimize the test loss364

(defined in Section 4.3). Section 5.4 compares standard rmses performance of DAN to a365

state-of-the-art DA method IEnKF-Q using a limited ensemble memory. We further study366

the robustness of DAN in terms of its performance on future sequences beyond the horizon367

T of the training sequences, as well as its sensitivity to the initial distribution of x1.368

5.1 The Lorenz-95 system369

The Lorenz-95 system introduced by Lorenz (1995) contains n variables xi, i = 1, . . . , n
and is governed by the n equations:

dxi

dt
= −xi−2xi−1 + xi−1xi+1 − xi + F. (24)
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In Eq. (24) the quadratic terms represent the advection that conserves the total energy, the370

linear term represents the damping through which the energy decreases, and the constant371

term represents external forcing keeping the total energy away from zero. The n variables372

may be thought of as values of some atmospheric quantity in n sectors of a latitude circle.373

In this study, we take n = 40 and F = 8 which results in some chaotic behaviour. The374

boundary conditions are set to be periodic, i.e., x0 = x40, x−1 = x39 and x41 = x1. The375

equations are solved using the fourth-order Runge-Kutta scheme, with ∆t = 0.05 (a 6 hour376

time step).377

5.2 Experiment setup378

We study the performance of DAN when trained to map to Gaussian posteriors, i.e. the379

procoder c function is given by (19). This is compared to a state-of-art method of EnKF.380

For comparison, we implemented the Iterative EnKF with model error (IEnKF-Q (Sakov et381

al., 2018)), which handles non-linearities better and accepts additive model error.382

A batch of I trajectories of x ∈ R40 is simulated from the resolvant (propagation383

operator) M : R40 → R40 of the 40 dimensional Lorenz-95 system. To start from a stable384

regime, we use a burning phase which propagates an initial batch of states {x(i)
init}i≤I for385

a fixed number of cycles. The initial states are drawn independently from N (3× 140, I40).386

The operator M is then applied 103 times (burning time) to the given initial batch of387

states (Sakov et al., 2018). The resulting states are taken as the initial state x
(i)
1 .388

After the burning phase, the Gaussian propagation errors {ηit}, sampled independently
from N (040, 0.01× I40), are added each subsequent propagation to get the state trajectories

x
(i)
t+1 = M

(
x
(i)
t

)
+ η

(i)
t ,

Then the Gaussian errors ε
(i)
t+1, sampled independently from N (040, I40), are added to the

observation operator evaluations to get a training batch of observation trajectories

y
(i)
t+1 = H

(
x
(i)
t+1

)
+ ε

(i)
t+1.

In the numerical experiments we assume that the system is fully observed, i.e. H is taken389

to be an identity operator.390

The functions a and b in the cost function of DAN are constructed by L = 20 fully391

connected layers with residual connections (as detailed in Section 4). We consider different392

number of ensembles for EnKF, i.e. m ∈ {5, 10, 20, 30}, which requires m-by-n memory size.393

To make DAN comparable to EnKF we chose the memory space, i.e. S = Rm×n.394

Across all these m, DAN is trained with a batch size of I = 1024 of training samples395

for T = 6 × 105 cycles. The initial learning rate η0 for the TBPTT is set to be 10−4. The396

initial memory s0 of the RNN is set to be zero, while the initial parameter θ0 of the RNN is397

mostly set to be random. More precisely, we use the standard random initialization for the398

weights (W, b) of each linear layer implemented in the Pytorch software. The initial weight399

αℓ in (18) is set to zero for each ℓ.400

5.3 Training performance of TBPTT401

To show the effectiveness of the training method TBPTT specified in (23), we evaluate402

the test loss J(θ) using I = 1024 i.i.d samples, on a sub-sequence of θk. This allows one to403

access whether the online method is effective to minimize the total loss J (q) in (12).404

The test loss J(θk) changes over iteration k are displayed in Figure 4. We observe405

that the minimal loss decreases as m increases, suggesting that the performance of DAN406

is improved with the memory size. Moreover, we find that the test loss decreases during407
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Figure 4: The test loss evaluated at training iterations θk of TBPTT, using various memory
size m of S in DAN.

the training process, which shows that TBPTT implicitly minimizes the test loss J(θ).408

In theory, we expect that this to happen for a suitable large memory size m because it is409

proportional to the capacity of the neural networks used in DAN: a larger m implies a better410

approximation of the posterior distributions due to the universal approximation property411

of neural networks. The trade-off is that a too large m may lead to over-fitting in machine412

learning, as we use only I finite trajectories of (xt, yt) in the training algorithm.413

5.4 Performance of DAN414

After DAN is trained, new observation trajectories are generated from a new unknown415

state trajectory. These testing observations together with a null initial memory vector are416

then given as input of the trained DAN in a test phase and its outputs are compared with417

the unknown state.418

To evaluate the accuracy of the trained DAN (k = T ), we compute the accuracy of
the mean µa

t (resp. µb
t) of q

a,θT
t|t (·|y1:t) (resp. qb,θTt|t−1(·|y1:t−1)), evaluated on a test sequence

(x1:T , y1:T ). A standard evaluation in DA is to compute rmses, i.e. for 1 ≤ t ≤ T , we
compute the following normalized posterior and prior rmses,

Ra
t =

1√
n
∥xt − µa

t∥, Rb
t =

1√
n
∥xt − µb

t∥

In Table 1 and 2, we compare the averaged rmses of DAN over t with IEnKF-Q of419

various ensemble size smaller than the dimension n of xt.. Recall that we use the same size420

m to define the memory space S = Rm×n in DAN.421

For DAN, we report an averaged rmses over t, computed at the parameter θT at the last422

step of training. These rmses are compared to the baseline method IEnKF-Q over the same423

range of t. When m is small, IEnKF-Q performs worse than DAN, due to sampling errors424

when m is too small. Note that with the choice F = 8 in the Lorenz-95 dynamics (Eq. (24),425

the model has 13 positive Lypapunov exponents, i.e. the dimension of the unstable subspace426

is 13 (Asch et al., 2016; Sakov et al., 2018). Therefore, when the model is propagated through427

time small perturbations grow along these directions. This explains why IEnKF-Q does not428

perform well when m ≤ 13, as a result we need to apply localisation and inflation techniques429

to reduce these sampling errors. When m becomes closer to n (e.g. m = 20, 30), we find430

that the posterior and prior rmses of DAN and IEnKF-Q are similar. This tendency of431

rmses as a function the ensemble size m is strongly correlated with the smallest test loss432

achieved by DAN in Figure 4. Note that we use IEnKF-Q with inflation but without any433

localisation. When IEnKF-Q is used with localisation we expect to get similar performance434

compared with DAN for each value of m (Asch et al., 2016). With these experiments we435
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m 5 10 20 30

DAN 0.401 0.388 0.376 0.376

IEnKF-Q 3.939 2.798 0.413 0.355

Table 1: Time averaged posterior (filtering) rmses 1
T

∑T
t=1 R

a
t using various ensemble size

m. Bold numbers indicate the performance of DAN better than the baseline.

m 5 10 20 30

DAN 0.453 0.436 0.423 0.423

IEnKF-Q 4.021 2.920 0.460 0.399

Table 2: Time averaged prior (prediction) rmses 1
T

∑T
t=1 R

b
t with various ensemble size m.

Bold numbers indicate the performance of DAN better than the baseline.

m 5 10 20 30

DAN 0.400 0.388 0.377 0.376

IEnKF-Q 3.941 2.785 0.412 0.356

Table 3: Time averaged posterior (filtering) rmses 1
T

∑2T
t=T+1 R

a
t with various ensemble size.

want to show that DAN does not require regularization technique when less information is436

used unlike EnKF.437

5.5 Predictive performance and sensitivity to initialization438

As DAN is trained on the time interval t ≤ T , it remains important to evaluate its439

predictive performance by considering how well it performs for t > T . Such performance440

can be measured by the average rmses over T + 1 ≤ t ≤ 2T instead of over 1 ≤ t ≤ T ,441

evaluated using the trained model parameter θ = θT ). The comparison with the baseline in442

terms of the posterior rmses is given in Table 3. We find that the rmses over T +1 ≤ t ≤ 2T443

are close to those over 1 ≤ t ≤ T (c.f. Table 1 and 2). This suggests that DAN has learnt444

the dynamics of the Lorenz system in order to perform well on future trajectories.445

All the earlier results are concerned of the performance of DAN under a fixed burning446

time. Using this burning time for the training of DAN, we further evaluate the rmses on447

test sequences which have a different burning time. It allows us to indirectly access how448

well recurrent structures inherited from the ODS are learnt. The results of the ensemble449

size m = 20 are given in Table 4. It shows that the performance of IEnKF-Q and DAN450

are not sensitive to the distribution of the test sample x1 initialized over a wide range of451

burning time.452

We remark that among all the simulations, there is always a relatively large error in453

Ra
t and Rb

t for small t then it decreases very quickly (e.g. m = 20,burning = 1000, both454

Ra
t and Rb

t get close to a constant level when t ≥ 20). This transition is needed for DAN to455

enter a stable regime because the initial memory of the RNN is set to zero.456
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burning time 101 103 105 107

DAN 0.376 0.376 0.377 0.377

IEnKF-Q 0.414 0.413 0.414 0.413

Table 4: Time averaged posterior (filtering) rmses 1
T

∑T
t=1 R

a
t with various burning time.

6 Conclusions457

Based on the key observation that the analysis and propagation steps of DA consist458

in applying time-invariant transformations a and b that update the pdfs using incoming459

observations, we propose a general framework DAN which encompasses well-known state-of460

the art methods as special cases. We have shown that by optimizing suitable likelihood-based461

objective functions, the underlying posterior densities represented by these transformations462

have the capacity to approximate the optimal posterior densities of BDA. By representing463

a and b as neural networks, the estimation problem takes the form of the minimization of a464

loss with respect to the parameters of an extended Elman recurrent neural network.465

Our numerical results on a 40-dimensional chaotic Lorenz-95 system show comparable466

performance compared to a state-of-the-art ensemble technique. We also find that DAN467

is robust in terms of its predictive performance and its initialization. It indicates that468

the DAN framework has the advantage of avoiding some problem-dependent numerical-469

tuning techniques. Although we use a Gaussian approximation of the posterior densities470

in the procoder c, it can still happen that the memory space S may encode non-Gaussian471

information of the posterior distributions. To analyze why DAN can handle problems with472

nonlinear dynamics (even in other nonlinear dynamical systems, or with partially observed473

system) is left as a future study.474
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Appendix A Parameterization of DAN574

We use the following parameterization of µ and Λ to convert the vector v ∈ Rn+
n(n+1)

2

in (19) into a Gaussian distribution N (µ,ΛΛT ). Let v = (v0, · · · , vn+n(n+1)/2−1), we set

µ =

 v0
...

vn−1

 ∈ Rn, (A1a)

Λ =


evn 0 · · · 0

v2n evn+1
. . .

...
...

. . .
. . . 0

v
n+

n(n+1)
2 −1

· · · v3n−2 ev2n−1

 ∈ R
n(n+1)

2 . (A1b)

The exponential terms in Λ ensure the positive definiteness of ΛΛT . This can be easily575

implemented in Pytorch by using the module torch.distributions.multivariate normal:576

MultivariateNormal(loc=µ,scale tril=Λ).577
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