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Abstract

Geophysical monitoring of geologic carbon sequestration is critical for risk assessment during and after carbon dioxide (CO2)

injection. Integration of multiple geophysical measurements is a promising approach to achieve high-resolution reservoir mon-

itoring. However, joint inversion of large geophysical data is challenging due to high computational costs and difficulties in

effectively incorporating measurements from different sources and with different resolutions. This study develops a differentiable

physics model for large-scale joint inverse problems with reparameterization of model variables by deep neural networks and

implementation of a differentiable programming approach of the forward model. The main novelty is the use of automatic

differentiation and parallel computing for efficient multiphysics data assimilation. The application to the Sleipner benchmark

model demonstrates that the proposed method is effective in estimation of reservoir properties from seismic and resistivity data

and shows promising results for CO2 storage monitoring.
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Key Points: 8 

•  A novel inverse model is developed by combining differentiable physics and deep neural 9 

networks 10 

• The developed model provides an accurate and efficient approach for the joint inversion 11 

of geophysical data from different sources 12 

• The inverted models accurately characterize subsurface properties and structures and 13 

identify the migration of CO2 plume 14 

 15 

16 



ABSTRACT 17 

Geophysical monitoring of geologic carbon sequestration is critical for risk assessment 18 

during and after carbon dioxide (CO2) injection. Integration of multiple geophysical 19 

measurements is a promising approach to achieve high-resolution reservoir monitoring. However, 20 

joint inversion of large geophysical data is challenging due to high computational costs and 21 

difficulties in effectively incorporating measurements from different sources and with different 22 

resolutions. This study develops a differentiable physics model for large-scale joint inverse 23 

problems with reparameterization of model variables by deep neural networks and 24 

implementation of a differentiable programming approach of the forward model. The main 25 

novelty is the use of automatic differentiation and parallel computing for efficient multiphysics 26 

data assimilation. The application to the Sleipner benchmark model demonstrates that the 27 

proposed method is effective in estimation of reservoir properties from seismic and resistivity 28 

data and shows promising results for CO2 storage monitoring. 29 

  30 



Plain Language Summary 31 

This study develops a complete inversion model for the joint quantification and interpretation 32 

of geophysical measurements from different sources for geologic carbon sequestration 33 

monitoring. By combining deep neural networks for model reparameterization and differentiable 34 

programming for inverse modeling, the developed approach accurately characterizes subsurface 35 

reservoirs, it identifies the migration of CO2 plume, and it quantifies global parameters that are 36 

uncertain in the forward models. One of the major advantages of this method is that all 37 

components in the model are seamlessly integrated and updated simultaneously. Moreover, the 38 

model can be easily deployed to high-performance computing platforms, thereby providing a 39 

computationally efficient approach for large geophysical data.  Therefore, the developed model 40 

illustrates promising results for geophysical subsurface monitoring. 41 

  42 



1. Introduction 43 

Geologic CO2 sequestration (GCS) is one of the main mitigation strategies to prevent carbon 44 

dioxide (CO2) from entering the atmosphere by capturing and injecting it into subsurface 45 

geological formations, such as depleted oil reservoirs and deep saline aquifers (Metz et al. 2005; 46 

Aminu et al. 2017). To ensure safe and long-term CO2 storage, geophysical monitoring surveys 47 

are periodically acquired to surveil the behavior of the injected CO2 and make informed 48 

decisions for storage management (Davis et al., 2019).  49 

Time-lapse (4-D) seismic data is one of the monitoring techniques widely deployed in GCS 50 

projects, where a series of seismic surveys are sequentially acquired to quantify changes in 51 

reservoir properties (e.g., elastic properties, fluid pressure and saturation) during and after CO2 52 

injection (Chadwick et al., 2010; Caspari et al., 2011; Rubino et al., 2011; Grude et al., 2013; 53 

Egorov et al., 2017; Glubokovskikh et al., 2020; Li and Li, 2021). However, in some cases, 54 

depending on the rock stiffness, the time-lapse seismic response might be insensitive to fluid 55 

changes. (Gasperikova et al., 2022). To address this issue, non-seismic monitoring techniques 56 

have been investigated and successfully applied to GCS. For example, interferometric synthetic-57 

aperture radar (InSAR) is an effective tool for measuring reservoir surface displacements and to 58 

infer reservoir pressure changes (Tang et al., 2022). Time-lapse gravity data are sensitive to bulk 59 

density, hence mass balance changes due to CO2 injection (Bonneville et al., 60 

2022). Electromagnetic (EM) and electrical techniques are used to estimate CO2 saturation 61 

because of the distinct resistivity differences between brine- and CO2-saturated rocks (Bhuyian et 62 

al., 2012). The spatial resolution of non-seismic surveys, however, is generally lower than the 63 

resolution of seismic surveys. Joint time-lapse monitoring of seismic and non-seismic 64 

measurements is then a potential approach to achieve high-resolution reservoir monitoring and 65 



reduce the uncertainty. This approach has been used in hydrocarbon exploration but it is 66 

relatively new for GCS monitoring. Eliasson et al. (2014) investigated the integration of 67 

controlled-source electromagnetic (CSEM) inversion with full waveform seismic inversion for 68 

CO2 quantification. Dupuy et al. (2021) developed a Bayesian joint inversion method for CO2 69 

storage monitoring with uncertainty quantification. Huang (2022) comprehensively reviewed the 70 

advantages and limitations of different geophysical techniques and their applications in long-71 

term GCS monitoring. 72 

The main challenge of joint geophysical monitoring is how to efficiently assimilate 73 

geophysical measurements from different sources. In general, joint geophysical inversion 74 

methods can be categorized into sequential or simultaneous schemes (Tveit et al., 2020). The 75 

sequential scheme inverts geophysical measurements in separate steps with the resulting model 76 

from one measurement as initial model or constraint for the next step, while the simultaneous 77 

scheme inverts all measurements in a single step. In the sequential scheme, measurements with 78 

lower resolution are generally inverted first, such that low frequency models are used as initial 79 

models for the inversion of higher resolution datasets. In the simultaneous scheme, model 80 

parameters are coupled with structural or rock-physics constraints and the forward operator 81 

includes multi-physics models. For this reason, simultaneous schemes are preferred to sequential 82 

schemes despite the higher computational complexity.  83 

Recently, scientific machine learning (SciML) is getting increasing attention in the 84 

geophysics community, especially for its ability to address the computational challenges in large-85 

scale geophysical inverse problems. These approaches mainly involve physics-informed neural 86 

networks (PINNs) (Raissi et al., 2019; Rasht‐Behesht et al., 2022) and differentiable physics 87 

(Hernández et al., 2022). PINNs embed the governing physics laws (i.e., partial differential 88 



equations) into deep neural networks (DNNs) as prior information to overcome the issue of 89 

limited data, bridging the gap between the data scarcity of inverse problems and data 90 

requirements of DNNs. PINNs are a mesh-free method that is theoretically advantageous for 91 

high-dimensional problems. However, PINNs still face difficulties of training and convergence 92 

in practice due to the lack of information about connectivity between neighboring points (or 93 

nodes). Differentiable physics provides an alternative approach for physics modeling by 94 

integrating differentiable programming with classical numerical methods (e.g., finite difference 95 

method and finite element method). Differentiable programming is a new programming 96 

paradigm in which all numerical operations are implemented by differentiable building blocks. 97 

Such differentiable mechanism enables solving the forward and inverse problems via automatic 98 

differentiation and can be easily combined with DNNs. Differentiable programming has been 99 

applied in geophysics, such as geostatistical seismic inversion (Liu and Grana, 2019), full 100 

waveform inversion (Zhu et al., 2022) and subsurface flow problems (Li et al., 2020). 101 

To address the computational challenges in geophysical CO2 monitoring, we propose a 102 

differentiable physics model that assimilates time-lapse seismic and resistivity data to predict 103 

porosity and the evolution of CO2 saturation over time. In this approach, large geological models 104 

are represented by a DNN with fewer parameters than the actual model and geophysical forward 105 

operators are implemented using the differentiable programming framework. We also use a 106 

Bayesian neural network (BNN) to estimate global parameters that are uncertain in the forward 107 

physics model. By adopting automatic differentiation and graphics processing unit (GPU), model 108 

parameters are automatically updated in a computationally efficient manner to minimize the 109 

mismatch between predicted and true measurements.  110 

 111 



2. Methods 112 

In this study, we focus on joint inversion of time-lapse pre-stack seismic and resistivity data, 113 

with the goal of predicting porosity and the evolution of CO2 saturation over time. Seismic data 114 

are linked to the reservoir properties (i.e., porosity and fluid saturations) through rock physics 115 

models, e.g., the unconsolidated sand model (Dvorkin and Nur, 1996) and convolution-based 116 

seismic wave propagation model (Yilmaz, 2001), whereas resistivity is linked to porosity and 117 

saturation through empirical equations, e.g., Archie’s law (Archie, 1942). Rock physics 118 

parameters, such as coordination number and critical porosity in the unconsolidated sand model 119 

and the cementation and saturation exponents in Archie’s law, are often uncertain in practical 120 

applications; hence, we assume that those rock physics parameters are unknown global model 121 

parameters. The proposed differentiable physics inversion is illustrated in Figure 1a. The global 122 

model parameters (coordination number, critical porosity, and cementation and saturation 123 

exponents) and reservoir model spatial variables (porosity and CO2 saturations) are re-124 

parameterized by a BNN and a convolutional neural network (CNN), respectively. Then, time-125 

lapse seismic and resistivity data are predicted from the output model parameters of the neural 126 

networks through the forward models implemented by differentiable programming. With the 127 

technique of automatic differentiation, the network parameters are iteratively updated to 128 

minimize the loss function. After training, the inverted global parameters and reservoir properties 129 

can be obtained as the outputs of the trained BNN and CNN, respectively. 130 



 131 

Figure 1. (a) Workflow of complete differentiable physics model for joint geophysics inversion; (b) Data 132 

Flow Graph corresponding to the workflow. Circles with solid and dashed line represent operators and 133 

variables, respectively. Purple circles (𝛉  and 𝛉 ) represent the learnable neural network parameters and 134 

(a)

(b)



gray circles (𝐳  and 𝐳 ) represent constant inputs (latent vectors) that are non-trainable. Other symbols 135 

and notations are defined in Section 2. 136 

 137 

2.1 Forward Modeling 138 

The forward operator for the prediction of the seismic response includes a rock physics 139 

model that maps petrophysical properties (porosity and water saturation) to elastic properties (P- 140 

and S-wave velocity and density) and a convolution-based seismic wave propagation model that 141 

computes seismic travel time and reflection amplitudes. The mathematical-physical equation of 142 

the forward seismic model is expressed symbolically as follows 143 𝐝 = 𝐟 𝐟 𝐦 , 𝐦 + 𝛜 ,     (1) 144 

where 𝐝  represents the predicted seismic data, 𝐦 represents the global model parameters 145 

(coordination number, and critical porosity), 𝐦  represents the spatially-varying petrophysical 146 

properties (porosity and water saturation), 𝐟  is the rock physics model for the prediction of 147 

elastic properties 𝐦 , 𝐟  is the seismic wave propagation model, and 𝛜 represents the 148 

measurement errors. The rock physics model adopted in this study is the unconsolidated sand 149 

model (Dvorkin and Nur, 1996). The detailed descriptions of the unconsolidated sand model and 150 

the convolution-based seismic wave propagation model can be found in Appendix A and B, 151 

respectively.   152 

The forward operator for resistivity is Archie’s law (Archie, 1942), that calculates the 153 

electrical resistivity of reservoir rocks 𝐝  as a function of 𝐦  and 𝐦   154 𝐝 = 𝐟 𝐦 , 𝐦 = 𝛟 𝑅 𝐒 + 𝛜 ,    (2) 155 

where 𝐟  is the electrical rock physics model (Archie’s law), the cementation 𝑚 and saturation 156 

exponent 𝑛   are two empirical parameters, 𝐦  includes porosity 𝛟  and water saturation 𝐒 , 157 



while 𝛜  is the associated error. Here we assume that CO2 saturation 𝐒 = 1 − 𝐒  and the 158 

resistivity of the brine 𝑅  is known and constant.  159 

In the following example, we introduce measurement error (𝛜  and 𝛜 ) to the “true” 160 

seismic (𝐝 ) and resistivity (𝐝 ) measurements to avoid the “inversion crime” and discard 161 

the error terms when predicting data (𝐝  and 𝐝 ) from inverted models. 162 

 163 

2.2 Model Reparameterization 164 

Two neural networks (𝓝  and 𝓝 ) are used for the reparameterization of the global 𝐦  and 165 

petrophysical parameters 𝐦 : 166 𝐦 = 𝓝 𝐳 ; 𝛉 ,    (3) 167 𝐦 = 𝓝 𝐳 ; 𝛉 ,    (4) 168 

where 𝐳 represents the input latent vectors of the neural networks that are sampled from standard 169 

Gaussian distribution and are non-trainable, and 𝛉 represents the trainable parameters (network 170 

weights) of the neural networks. The goal is to estimate 𝛉  and 𝛉  instead of 𝐦  and 𝐦 . Model 171 

reparameterization with neural networks provides a convenient way to control the range of 172 

model parameters, for example 𝐒  and 𝐒  within [0, 1], which is helpful for the stability of 173 

inversion. 174 

Specifically, 𝓝  is a BNN that takes a 4-dimensional latent vector 𝐳  as input and outputs a 175 

4-dimensional vector (whose elements correspond to coordination number, critical porosity, 176 

cementation 𝑚 and saturation exponent 𝑛, respectively) after the transformation of three fully-177 

connected layers. As illustrated in Figure 2, BNN is a probabilistic model where unlike standard 178 

neural networks the weights 𝛉 are not fixed but follow a distribution 𝑝(𝛉) (Dürr et al., 2020) and 179 

thus it allows quantifying the uncertainty of the global parameters. The goal of BNN is to find 180 



the posterior distribution 𝑝(𝛉|𝒟) that best fit the data 𝒟. The distribution of network weights 181 

allows us to quantify the prediction uncertainty.  The solution for the posterior distribution 182 𝑝(𝛉|𝒟)  is usually not tractable analytically due to the complexity of BNN. We therefore 183 

approximate the posterior distribution with a variational distribution 𝑞 (𝛉)  with variational 184 

parameters 𝜆  according to the variational inference approach. In practice, the variational 185 

distribution is generally assumed to be a Gaussian distribution with parameters 𝜆 = (𝜇, 𝜎), i.e., 186 

mean 𝜇  and variance 𝜎 . The objective of variational inference is to estimate the variational 187 

parameters 𝜆 so that 𝑞 (𝛉) accurately approximates 𝑝(𝛉|𝒟). Mathematically, this objective is 188 

achieved by minimizing the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) 189 

between the variational and true distribution 190 

KL[𝑞 (𝛉)||𝑝(𝛉|𝒟)] = 𝑞 (𝛉) log (𝜽)(𝜽|𝒟) 𝑑𝛉.     (5) 191 

Therefore, the corresponding optimization problem associated to BNNs is expressed as 192 

determining the optimal variational parameters 𝜆∗ as 193 

𝜆∗ = argmin{KL[𝑞 (𝛉)||𝑝(𝛉|𝒟)] − 𝔼𝜽~ [log 𝑝(𝒟|𝛉)]},   (6) 194 

where the first term is the KL divergence and the second (negative) term is the average negative 195 

log-likelihood that measures the data misfit.  196 



 197 

Figure 2. (a) Standard neural network; (b) Bayesian neural network. 198 

 199 

The network 𝓝  is a CNN that takes another latent vector 𝐳  of size 𝑛 𝑛 𝑛 𝑛  as 200 

input and outputs a (𝑁 + 1) 𝑁 𝑁 𝑁  (𝑁  is the number of monitoring years, 𝑁 , 𝑁  and 201 𝑁  are the number of grids along the x-, y- and z- direction) tensor whose elements correspond to 202 

the porosity and CO2 saturations of 𝑁  years. In the above, 𝑁  is the number of monitoring 203 

surveys, 𝑁 , 𝑁  and 𝑁  are the number of grids along the x-, y- and z- direction, and the output 204 

has a dimension of (𝑁 + 1) as there are 𝑁  surveys and one porosity model that is assumed to 205 

be constant over the time of the surveys. In this study, the latent vector is increased by eight 206 

times after three up-sampling layers (i.e., 𝑁 = 8𝑛 , 𝑁 = 8𝑛 , 𝑁 = 8𝑛 ), while 𝑛  is the 207 

number of channels in the CNN input layer. The parameters of CNN are listed in Table 1. 208 

Table 1. Parameters of each layer in the CNN model. 209 

Layer Kernel/Scale Factor Activation function Output size 

1. Input - - 64×15×15×28 



2. Conv3D 3×3×3 ReLU 64×15×15×28 

3. Upsample 2 - 64×30×30×56 

4. Conv3D 3×3×3 ReLU 32×30×30×56 

5. Upsample 2 - 32×60×60×112 

6. Conv3D 3×3×3 ReLU 16×60×60×112 

7. Upsample 2 - 16×120×120×224

8. Conv3D 3×3×3 Sigmoid 4×120×120×224 

 210 

2.3 Loss Function 211 

The definition of an appropriate objective function (or cost function) is crucial for large-scale 212 

geophysical inverse problems. In this study, the objective function is defined as follows 213 𝐽 (𝛉 , 𝛉 ) = 𝛼 𝐝 − 𝐝 + 𝛼 𝐝 − 𝐝 + 𝛼 KL 𝑞 𝛉 ||𝑝 𝛉 +214 

𝛼 𝐒 (1 − 𝐒 ),      (7)  215 

where 𝑁 , 𝑁  and 𝑁  are the number of elements of the seismic data, resistivity data and 216 

CO2 saturation model, respectively;  𝛼  (𝑖 = 1, … 4) are the weights of the loss terms. The first 217 

two terms in Equation 7 are mean square errors (MSE) that measure the mismatch between “true” 218 

and predicted data. The third term is the KL divergence of the Bayesian neural network 219 𝓝 𝐳 ; 𝛉  that measures the difference between the variational distribution 𝑞 𝛉  and the true 220 

distribution 𝑝 𝛉  of the BNN weights. The last term is a regularization term to constrain the 221 

model values of CO2 saturation in the interval [0,1] that is necessary for multimodal variables 222 

like saturations (Vo and Durlofsky, 2014). 223 

 224 

2.4 Differentiable Programming 225 



The inversion workflow is implemented according to the differentiable programming 226 

framework. Differentiable programming provides an efficient way to jointly estimate model 227 

parameters (i.e., global parameters, spatial distribution of porosity, and time-dependent spatial 228 

distribution of CO2 saturation) where all variables are simultaneously updated.  229 

Differentiable programming organizes a program as a Data Flow Graph (DFG). The DFG is 230 

a directed acyclic graph in which graph nodes represent mathematical operations (e.g., addition 231 

and multiplication) or variables (tensors) and edges correspond to the flow of intermediate values 232 

between the nodes (Martin and Estrin, 1967). Figure 1b shows the DFG of the inversion model in 233 

this study. Different from traditional programming paradigms that specify explicit instructions to 234 

the computer, constructing DFG is like building blocks in which the program is defined by the 235 

input-output data and the associated transformations composed of differentiable blocks. The 236 

mechanism of DFG makes the program very flexible and scalable to modify and incorporate 237 

prior knowledge.  238 

The network parameters 𝛉  and 𝛉  in the DFG are learned from the data by minimizing the 239 

loss function in Equation 7 240 𝛉 , 𝛉 = arg min𝛉 ,𝛉 𝐽 𝛉 , 𝛉 .     (8) 241 

With the technique of automatic differentiation (Rall, 1981), the gradients of the loss function 242 

with respect to 𝛉  and 𝛉  are automatically computed according to the chain rule 243 ∂𝐽  ∂𝛉 = ∂𝐽  ∂𝐟  ∂𝐟∂𝐟  ∂𝐟∂𝓝 + ∂𝐽  ∂𝐟 ∂𝐟∂𝓝 ∂𝓝∂𝛉 ,    (9) 244 

∂𝐽  ∂𝛉 = ∂𝐽  ∂𝐟  ∂𝐟∂𝐟  ∂𝐟∂𝓝  ∂𝓝∂𝛉 + ∂𝐽  ∂𝐟  ∂𝐟∂𝓝  ∂𝓝∂𝛉 .    (10) 245 

The optimal network parameters 𝛉  and 𝛉  are then obtained by the gradient-based 246 



backpropagation method. Here, we use the adaptive moment estimation algorithm (Adam) 247 

(Kingma and Ba, 2014), which is computationally efficient for high-dimensional problems.  248 

 249 

3. Application 250 

We demonstrate the proposed model for joint geophysical monitoring of CO2 storage with an 251 

synthetic model and data modified from the Sleipner 2019 Benchmark Model 252 

(https://co2datashare.org/dataset/sleipner-2019-benchmark-model). The Sleipner field located in 253 

the Norwegian Sea is the first commercial GCS plant and is the longest ongoing CO2 storage 254 

project in the world. The Utsira Formation is the target storage unit, consisting of nine sandstone 255 

layers that are vertically separated by eight thin shale layers with low-permeability and a caprock 256 

layer. Porosity and permeability of each layer are assumed to be constant in the original 257 

benchmark dataset. To make the GCS model more realistic, porosity and permeability of each 258 

layer of the reservoir model used in this study are taken to be spatially variable and are 259 

geostatistically simulated by sequential Gaussian simulation (SGS) (Deutsch and Journel, 1998) 260 

to mimic the spatial heterogeneity of subsurface rocks. Porosity and permeability are assumed to 261 

be constant in time. The reference “true” models of porosity and permeability are shown in 262 

Figure 3a and 3b, respectively. The GCS model consists of 64×118×263 grid cells. The lateral 263 

resolution of the model is 50 m by 50 m and the vertical resolution is about 2 m for the sandstone 264 

layers, 0.5 m for the shale layers and 5 m for the caprock. The model parameters such as fluid 265 

properties and well configurations are provided in the benchmark dataset. The multiphase flow 266 

behavior of CO2 flow is simulated from the year 1996 to 2010 using the Open Porous Media 267 

Flow reservoir simulator (Rasmussen et al., 2021). The detailed parameters of the reservoir are 268 

listed in Table 2. 269 



Table 2. Reservoir model parameters of the example modified from the Sleipner benchmark model. 270 

Layer Formation Porosity mean Porosity range Permeability mean 
(mD) 

Permeability range 
(mD) 

1 Caprock 0.016 [0.002, 0.036] 5.93e-4 [0, 0.0058] 

2 Sandstone  0.17 [0.018, 0.40] 734.44 [0.031, 11969] 

3 Shale 0.017 [0.002, 0.04] 7.36e-4 [0, 0.0115] 

4 Sandstone  0.18 [0.018, 0.35] 629.81 [0.028, 5172.8] 

5 Shale 0.017 [0.002, 0.036] 5.55e-4 [0, 0.0059] 

6 Sandstone  0.17 [0.021, 0.35] 559.58 [0.048, 5317.1] 

7 Shale 0.018 [0.002, 0.033] 6.40e-4 [0, 0.0041] 

8 Sandstone  0.20 [0.027, 0.35] 810.07 [0.12, 5439.1] 

9 Shale 0.022 [0.003, 0.034] 0.0010 [0, 0.0048] 

10 Sandstone  0.21 [0.024, 0.38] 1065.6 [0.079, 9202.0] 

11 Shale 0.021 [0.003, 0.039] 9.75e-4 [0, 0.0097] 

12 Sandstone  0.20 [0.019, 0.39] 822.73 [0.037, 9599.8] 

13 Shale 0.019 [0.002, 0.037] 7.87e-4 [0, 0.0078] 

14 Sandstone  0.20 [0.02, 0.40] 910.26 [0.043, 11269] 

15 Shale 0.019 [0.003, 0.036] 8.93e-4 [0, 0.0067] 

16 Sandstone  0.19 [0.019, 0.35] 771.31 [0.033, 5152.0] 

17 Shale 0.018 [0.003, 0.032] 6.68e-4 [0, 0.0035] 

18 Sandstone 0.18 [0.019, 0.35] 701.91 [0.035, 5604.5] 

 271 

In this application, we aim to quantify porosity and CO2 plumes at years 2000, 2003 and 272 

2006 from the base seismic and resistivity surveys at year 1996 (before CO2 injection) and 273 

monitor seismic and resistivity surveys of the three years. The area of interest is a sub-region of 274 

the reservoir model around the injector well (dashed red rectangle in Figure 4a). The synthetic 275 

data in the area of interest are simulated in time domain and consist of 120×120×224 grid cells 276 

with lateral resolution of 25 m (downscaled by scatter interpolation in 3-D) and time interval of 1 277 



ms.  Porosity and CO2 saturations in the area of interest are shown in Figure 3c – f. The reference 278 

“true” seismic and resistivity responses predicted by the forward model (Section 2.1) at year 279 

1996, 2000, 2003 and 2006 are shown in Figure 4 – 7. Observations of year 1996 are base 280 

surveys that are acquired before CO2 injection, while observations of the latter three years are 281 

monitor surveys aiming to characterize CO2 displacement. The pre-stack seismic data include 282 

near, mid and far stacks corresponding to incidence angles of 12, 24 and 36 degrees, respectively. 283 

The dominant frequencies of wavelets for near, mid and far stacks are 30, 25 and 20 Hz, 284 

respectively. We introduce measurement error to the seismic data by adding Gaussian noise with 285 

zero mean and 0.02 standard deviation to the reflection coefficients and then convolve them with 286 

wavelets. For the resistivity, we add Gaussian noise with zero mean and 0.5 standard deviation in 287 

the common logarithm scale and then smooth it with a Gaussian filter with standard deviation of 288 

3 pixels. This represents for example, resistivity that would be available from an inversion of 289 

CSEM data. The implementation details and the parameters of the reference models and 290 

geophysical observations are included in the code.  291 



 292 

Figure 3. Reservoir models of porosity (a) (dashed red rectangle is the area of interest) and permeability 293 

(b) for CO2 flow simulation. Porosity (c) and CO2 saturations at year 2000 (d), 2003 (e) and 2006 (f) in 294 

the area of interest. The injector well is located at the intersection of the dashed red lines. 295 



 296 
Figure 4. Observations of year 1996 (base survey): (a) near seismic stack; (b) mid seismic stack; (c) far 297 

seismic stack; (d) resistivity data. 298 



 299 
Figure 5. Observations of year 2000 (monitor survey): (a) near seismic stack; (b) mid seismic stack; (c) 300 

far seismic stack; (d) resistivity data. 301 



 302 
Figure 6. Observations of year 2003 (monitor survey): (a) near seismic stack; (b) mid seismic stack; (c) 303 

far seismic stack; (d) resistivity data. 304 



 305 
Figure 7. Observations of year 2006 (monitor survey): (a) near seismic stack; (b) mid seismic stack; (c) 306 

far seismic stack; (d) resistivity data. 307 

 308 

Figure 8 shows the seismic and resistivity responses as function of the change in CO2 309 

saturation and the sensitivity of P-impedance and resistivity to CO2 saturation. In this case, it will 310 

be hard to detect CO2 saturation changes above 0.3 using time-lapse seismic data. Inversion of 311 

seismic data alone can predict the porosity model and roughly delineate the CO2 plumes, but the 312 

CO2 saturations are obviously underestimated. Instead, time-lapse resistivity data are highly 313 

sensitive to changes in fluid volumes but the spatial resolution of the resistivity measurements is 314 

limited and the coupling of porosity and the CO2 saturation in Equation 2 makes the inversion of 315 



resistivity data by itself highly uncertain.  The inverted results using only one type of data, i.e., 316 

seismic or resistivity data alone, are shown in Figure 9 and 10.  317 

 318 
Figure 8. (a) Geophysical responses to the change in CO2 saturation and (b) sensitivity of P-impedance 319 

and resistivity to CO2 saturation. 320 

 321 
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 322 
Figure 9. Inverted results with only seismic data: (a) porosity; (b) CO2 saturation at year 2000; (c) CO2 323 

saturation at year 2003; (d) CO2 saturation at year 2006; (e) critical porosity and coordination number 324 

obtained from the trained BNN. 325 



 326 
Figure 10. Inverted results with only resistivity data: (a) porosity; (b) CO2 saturation at year 2000; (c) 327 

CO2 saturation at year 2003; (d) CO2 saturation at year 2006; (e) cementation and saturation exponents 328 

obtained from the trained BNN. 329 

 330 



The proposed differentiable physics model provides an efficient way to jointly invert time-331 

lapse seismic and resistivity data for the simultaneous prediction of porosity and CO2 saturations. 332 

Figure 11a – d shows the inverted models of porosity and CO2 saturations at years 2000, 2003 333 

and 2006. Compared to the reference models in Figure 3, the predicted porosity and CO2 334 

saturations accurately match the true model. The R2 score of porosity is 0.92 and of CO2 335 

saturations are 0.90, 0.92 and 0.92 for the three years under examination. Figure 11e and 11f 336 

show the global model parameters, i.e., critical porosity, coordination number, cementation and 337 

saturation exponent, with associated uncertainties predicted by the BNN. The mean values of the 338 

predicted global parameters are close to the true parameters used to generate the synthetic data. 339 

Unlike traditional trace-by-trace inversion algorithms, the proposed model predicts geologically 340 

consistent and spatially continuous models, thanks to the simultaneous inversion in 4-D and the 341 

prior information encoded in the CNN for model re-parameterization (Zhu et al., 2022). The total 342 

loss defined by Equation 7 and the MSE between the predicted and true data over iterations are 343 

shown in Figure 12. The other advantage of the proposed method is the computational efficiency. 344 

The inversion takes approximately 2.2 hours with an Intel Xeon E5-1650 CPU and the 345 

computing time is further reduced to 15 minutes with a Nvidia GTX 1080 GPU. Overall, the 346 

proposed inversion model shows great promises for joint geophysical monitoring for CO2 storage 347 

and could be applied to any large scale geophysical inverse problem with noisy data from 348 

multiple sources. 349 

 350 

 351 



 352 

Figure 11. Joint inversion results of the proposed model: (a) porosity; (b) CO2 saturation at year 2000; (c) 353 

CO2 saturation at year 2003; (d) CO2 saturation at year 2006; (e) posterior distribution of critical porosity 354 

and coordination number; and (f) cementation and saturation exponents, obtained from the trained BNN.  355 
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 356 
Figure 12. Loss function values over iterations. 357 

 358 

4. Discussion 359 

The differentiable physics model provides a promising tool for joint inversion of large 360 

geophysical data for GCS monitoring. The synthetic example focuses on the inversion of pre-361 

stack seismic and resistivity data based on the seismic wave propagation and elastic-electrical 362 

rock physics models and provides an accurate validation of the approach. The proposed model 363 

can be also extended to the inversion and assimilation of other data types and other geophysical 364 

operators, including, for example, seismic angle gathers with full waveform inversion or 365 

amplitude and phase measurements of electromagnetic fields with electromagnetic wave 366 

propagation models by implementing the forward operators according to the differentiable 367 

programming approach. According to the proposed model, the gradients of the forward operators 368 

can be efficiently evaluated by automatic differentiation and the computational effort can be 369 

deployed to high-performance computing platforms (e.g., GPUs). One potential limitation of the 370 

proposed model is the high demand for computing resources in cases with extremely large 371 



geological models and geophysical data (up to billions of grids), especially when involving 372 

computationally intensive forward modeling. A possible solution might include the integration of 373 

PINNs and deep-learning surrogate models into the inversion model. 374 

 375 

5. Conclusion 376 

A novel inversion model has been developed for the joint inversion of large-scale 377 

geophysical data from different sources and applied to geologic carbon sequestration monitoring. 378 

The proposed model is built upon the technique of differentiable physics with the integration of 379 

deep neural networks for model re-parameterization. Thanks to automatic differentiation and 380 

parallel computing, the inversion is computationally efficient, and all parameters are updated 381 

simultaneously to minimize the loss function through the backpropagation algorithm. Moreover, 382 

the model can also predict global model parameters that are uncertain in the forward model. The 383 

presented approach has been validated on a synthetic example modified from the Sleipner 384 

benchmark model. The inverted models accurately reproduced the actual reference model, 385 

including porosity and time dependent CO2 saturation. We conclude that the proposed model 386 

provides an efficient and accurate tool to assimilate multiphysics data for subsurface monitoring. 387 

 388 

Appendix A: Unconsolidated sand model 389 

In the unconsolidated sand model (Dvorkin and Nur 1996), the matrix bulk and shear moduli 390 

(𝐾  and 𝜇 ) are computed by the Voigt-Reuss-Hill average as function of the mineral 391 

fractions (e.g., clay and quartz volumes), while the moduli of dry rock (𝐾  and 𝜇 ) at the 392 

critical porosity 𝜙  are computed using the Hertz-Mindlin equations (Mindlin, 1949) 393 



𝐾 = [ ( ) ][ ( )] ,        (A-1) 394 

     𝜇 = ( ) [ ( ) ][ ( )] ,        (A-2) 395 

where 𝑃  is the effective pressure, 𝜈 is the grain Poisson’s ratio and 𝑛 is the coordination number 396 

(i.e., average number of contacts per grain). Then, the moduli of the dry rock (𝐾  and 𝜇 ) 397 

with porosity in the range [0, 𝜙 ] are obtained by interpolating two end members (matrix and dry 398 

rock moduli at critical porosity) using the modified Hashin-Shtrikman lower bounds (Hashin and 399 

Shtrikman 1963) 400 

      𝐾 = + − 𝜇 ,     (A-3) 401 

     𝜇 = + − 𝜉𝜇 ,                 (A-4) 402 

with 403 𝜉 = .         (A-5) 404 

For the fluid saturated rock, the bulk and shear moduli (𝐾  and 𝜇 ) are computed using 405 

fluid substitution with Gassmann’s equations (Gassmann 1951) 406 

𝐾 = 𝐾 + ,       (A-6) 407 

𝜇 =  𝜇 .         (A-7) 408 

where 𝐾  is the bulk modulus of the fluid phase and it depends on the water and CO2 saturations 409 

and their corresponding bulk moduli. Here the bulk moduli of brine water and CO2 are 3.06 and 410 

0.10 GPa, respectively; the density of brine water and CO2 are 1.08 and 0.72 g/cc, respectively 411 

(Davis et al., 2019). Finally, the P- and S-wave velocities can be computed from the moduli by 412 



definition 413 

𝑉 = ,         (A-8) 414 

𝑉 =  ,         (A-9) 415 

where 𝜌  is the density of the saturated rock which is weighted average of the matrix density 416 𝜌  and fluid density 𝜌  417 

𝜌 = (1 − 𝜙)𝜌 + 𝜙𝜌 .        (A-10) 418 

 419 

Appendix B: Convolution-based seismic model 420 

In the convolution-based seismic wave propagation model (Yilmaz, 2001; Grana et al., 2021), 421 

the seismic response 𝐝 (𝑥, 𝑡, 𝜃) is computed by convolving the source wavelet 𝒘(𝜃) with a 422 

series of reflectivity coefficients 𝑹(𝑥, 𝑡, 𝜃) as  423 

𝐝 (𝑥, 𝑡, 𝜃) = 𝒘(𝜃) ∗ 𝑹(𝑥, 𝑡, 𝜃),       (B-1) 424 

where 𝑥 is the spatial location, 𝑡 is the two-way vertical seismic travel time and 𝜃 is the angle of 425 

incidence. For pre-stack seismic data, the reflectivity coefficients 𝑹(𝑥, 𝑡, 𝜃) are obtained from the 426 

elastic parameters (P-wave velocity 𝑉 , S-wave velocity 𝑉 , and density 𝜌 ) by the Knott-427 

Zoeppritz equations (Aki and Richards, 2002) 428 



⎣⎢⎢
⎡𝑅 (𝜃 )𝑅 (𝜃 )𝑇 (𝜃 )𝑇 (𝜃 )⎦⎥⎥

⎤ = ⎣⎢⎢
⎢⎢⎡ − sin 𝜃 − cos 𝜑 sin 𝜃 cos 𝜑cos 𝜃 − sin 𝜑 cos 𝜃 − sin 𝜑sin 2𝜃 cos 2𝜑 sin 2𝜃 cos 2𝜑− cos 2𝜙 sin 2𝜑 cos 2𝜙 − sin 2𝜑 ⎦⎥⎥

⎥⎥⎤ sin 𝜃cos 𝜃sin 2𝜃cos 2𝜙 , (B-2) 429 

where 𝜃  is the angle of incidence, 𝜃  is the angle of the transmitted P-wave, 𝜑  is the angle of 430 

reflected S-wave, and 𝜑  is the angle of the transmitted S-wave; 𝑅 (𝜃 ), 𝑅 (𝜃 ), 𝑇 (𝜃 ) 431 

and 𝑇 (𝜃 ) are the reflected P-, reflected S-, transmitted P-, and transmitted S-wave amplitude 432 

coefficients, respectively; the subscripts 1 and 2 represent elastic parameters of the upper and 433 

lower layers, respectively. In this study, we only consider reflected P-wave amplitudes (i.e., 𝑅 ). 434 

 435 
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The code and data are freely available on the GitHub repository 437 
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