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Abstract

Recent estimates of the crustal thickness of Mars show a bimodal result of either 20 km or 40 km beneath the InSight lander.

We propose an approach based on random matrix theory applied to receiver functions to further constrain the subsurface

structure. Assuming a spiked covariance model for our data, we first use the phase transition properties of the singular value

spectrum of random matrices to detect coherent arrivals in the waveforms. Examples from terrestrial data show how the method

works in different scenarios. We identify three new converted arrivals in the InSight data, including the second multiply reflected

phase from a deeper third interface. We then use this information to jointly invert receiver functions with the absolute S-wave

velocity information in the polarization of body waves. Results show a crustal thickness of 43±5 km beneath the lander with

two mid-crustal interfaces at depths of 8.5±1.5 km and 22±3 km.
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Abstract

Recent estimates of the crustal thickness of Mars show a bimodal result of either ∼ 20
km or ∼ 40 km beneath the InSight lander. We propose an approach based on random
matrix theory applied to receiver functions to further constrain the subsurface structure.
Assuming a spiked covariance model for our data, we first use the phase transition properties
of the singular value spectrum of random matrices to detect coherent arrivals in the wave-
forms. Examples from terrestrial data show how the method works in different scenarios.
We identify three new converted arrivals in the InSight data, including the second multi-
ply reflected phase from a deeper third interface. We then use this information to jointly
invert receiver functions with the absolute S-wave velocity information in the polarization
of body waves. Results show a crustal thickness of 43± 5 km beneath the lander with two
mid-crustal interfaces at depths of 8.5± 1.5 km and 22± 3 km.

1 Introduction

The InSight mission landed in the Elysium Planitia plain of Mars on November 26, 2018
(Banerdt et al., 2020) and deployed a 3 component very broadband seismometer (SEIS)
(Lognonné et al., 2019, 2020) on the surface. Along with measuring the seismicity and the
present thermal state of its interior, a primary goal of the mission is to constrain the interior
structure of Mars. In comparison with the Earth, Mars has a relatively lower seismicity rate
with quakes of smaller magnitude (2-5 Mw) (Giardini et al., 2020). Receiver function (RF)
analysis is a robust single station technique that can be used in this case to constrain the
crustal structure. Primary body waves (P and S) give rise to converted secondary phases
(Ps and Sp) when they impinge upon a seismic discontinuity from beneath. RFs exploit
these converted phases to gain information about the discontinuities in the crust and upper
mantle. They have previously been used to investigate the thickness of the lunar crust
using seismic data from the Apollo mission (Vinnik et al., 2001; Lognonné et al., 2003;
Gagnepain-Beyneix et al., 2006). Using the data from the InSight mission, Lognonné et
al. (2020) computed RFs from two marsquakes and showed evidence of subsurface layering
with low seismic velocities in the first upper 8–11 km. Recently, Knapmeyer-Endrun et
al. (2021) used RFs from three marsquakes and showed the observations to be consistent
with either a two-layer model with the Moho at 20± 5 km or a three-layer model with the
Moho at 39± 8 km depth below the lander. Although the thicker model is more compatible
with geodynamical constraints, this ambiguity could not be resolved from the data due to
a lack of phase move-out information and excessive noise in the later part ( > 10 s) of the
waveforms which inhibited the identification of multiply reflected arrivals. Compaire et al.
(2021) and Schimmel et al. (2021) analyzed ambient field autocorrelations and identified
reflection signals consistent with the first two interfaces. Li et al. (2022) confirmed the first
interface at ∼ 8 km depth and the anisotropic nature of the layer above based on SH-wave
reflections. Kim et al. (2021) and Durán et al. (2022) later used updated RF datasets with
more events to provide additional constraints and connoted a preference for the three-layer
crustal model. Khan et al. (2021) and Drilleau et al. (2022) arrived at similar results using
body wave travel-times. In this paper, we build upon the previous work of Knapmeyer-
Endrun et al. (2021) to infer further constraints on the crustal structure of Mars using new
techniques and additional data from the InSight mission.

We first focus on the problem of detection of multiply reflected phases in our selected RF
dataset. For this, we propose a method that utilises recent results from the random matrix
theory to extract coherent signals in the RF waveforms. Assuming the observed signal to be
a superposition of random noise and an underlying low-rank signal, the eigenvalues of the
data covariance matrix follow a well behaved and deterministic limiting spectral distribu-
tion dictated by the generalized Marchencko-Pastur law. This information can be effectively
used to decouple and identify coherent signal eigenvalues reflecting primary subsurface fea-
tures from a bulk spectrum formed by incoherent scattering, random noise, and small-scale
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heterogeneity with distinct eigenvector rotation properties. Once identified, the secondary
phase arrivals together with the primary conversions from crustal interfaces can be used to
invert for the structure. We then address the problem of non-uniqueness of RF inversions.
Being primarily sensitive to shear velocity contrasts of interfaces and relative travel-time
of converted waves, inversions of RF data alone can be affected by depth velocity trade-off
(Ammon, 1991). They are therefore usually inverted jointly with other independent data
sets that provide additional constraints on absolute shear wave velocities like surface-wave
dispersion (e.g. Du & Foulger (1999); Julia et al. (2000); Bodin et al. (2012)). Svenningsen
& Jacobsen (2007) showed that P-wave polarization can also be used to constrain the S-wave
velocity structure of the subsurface using a simple relation between the observed apparent
incidence angle and half-space S-wave velocity (Wiechert, 1907). Following this, we previ-
ously showed how a joint inversion of apparent velocity curves and receiver function data
can lead to a well constrained velocity structure for limited data sets comprising only a few
events (Joshi et al., 2021). We adopt a similar methodology here to jointly invert an RF
dataset with a mean apparent velocity curve using a transdimensional approach.

2 Data and Method

2.1 RF processing

InSight has identified 1244 marsquakes (InSight Marsquake Service, 2022) since its
operations started in 2018. Each quake is assigned a type and quality depending on its
energy content and uncertainty in location estimate (Giardini et al., 2020). Only a few of
these propagate through the mantle like teleseismic earthquakes, most of which do not have
a precise location. Our database for Mars thus consists of 8 LF and BB seismic events
(InSight Mars SEIS Data Service, 2019) with high SNR and event quality A-B (Clinton
et al., 2021). Details of the events used in this study are provided in the supplementary
material. Most of these events have similar distances and back-azimuths as they all originate
in the Cerberus Fosse region which is a young tectonic structure located to the east of the
lander. S0183a is located farther away but we nevertheless use it as its inclusion does not
have a significant effect on the results. For the terrestrial example, we use data from seismic
station VSU in Vasula, Estonia. We select events with similar back-azimuth and distance
range to mimic the InSight data.

To calculate RFs, we apply a time-domain Wiener filter for deconvolution as described
by Hannemann et al. (2017). We first remove the transfer functions from the individual
components of the data, rotate to ZNE coordinates as VBB uses the U, V, W component
system, and filter the seismograms between the corner frequencies (listed in supplementary
materials) using a zero-phase Butterworth filter. Subsequently, the ZNE coordinate system
is rotated into ZRT to obtain radial and transverse components using the back-azimuth
estimates provided by MQS. A Wiener filter is determined such that it transforms the P-
wave signal on the vertical component into a band-limited spike. All the components of the
data are then folded with this filter to obtain the RFs. The terrestrial data was processed
similarly but was filtered between 5 Hz and 50 s.

2.2 Phase identification

In RF data, the travel-times of the converted phases relative to the direct P arrival
depend on the epicentral distance. This is generally seen as phase move-out which is differ-
ent for direct and multiply converted phases, and helps to distinguish between these. For
complex structures with dipping interfaces and seismic anisotropy, the travel-times and am-
plitudes of conversions also vary with back-azimuth. Although events generated from similar
epicentral distance and back-azimuths should theoretically have coherent conversions and
multiples, interference with scattered wave-field, small scale heterogeneity and random noise
generates variations which can be seen as perturbations superimposed on the response of
the primary sub-surface feature. The observed RF data matrix, Yn×p = Xn×p + σZn×p,
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can now be modelled as a fixed rank perturbation (rank[X] = r ≤ n) of the random noise
matrix Z ∼ N (0, 1). This is known as the spiked covariance model (Johnstone, 2001). To
extract an approximation of the uncontaminated response X̂(Y )n×p ≈ Xn×p, we exploit
the fact that the asymptotic eigenvalue distribution of the covariance of a random matrix
follows the Marchenko-Pastur (MP) law (Marchenko & Pastur, 1967) which has a compact
support Ω with bounds λ±

p(λ|σ, γ) =


√

(λ+−λ)(λ−λ−)

2πλγσ , λ− ≤ λ ≤ λ+

0, otherwise
, with λ± = σ2(1±√

γ)2 (1)

λ−, λ+, σ, and γ denote the smallest eigenvalue, largest eigenvalue, noise level and
matrix aspect ratio n/p, respectively. λ± fluctuate on the small scale n−2/3 according
to the Tracy-Widom distribution (Tracy & Widom, 1996). Qualitatively, the empirical
distribution of the eigenvalues of Z forms a deformed quarter circle bulk with bulk edges
given by λ± and bulk width 4

√
γσ2, and all eigenvalues lie strictly within these bounds.

The eigenvalues show a sort of self-arranging behaviour which, in presence of a non-random
sample coherency (i.e., X ̸= 0), have a repulsion effect on the signal eigenvalue if present.
Thus we see a phase transition phenomenon (Baik et al., 2005) where, above a certain
signal threshold, the signal eigenvalues separate away from the bulk ”noise” eigenvalues and
converge asymptotically to a different distribution. The same follows for the singular values
which scale as the square root of the eigenvalues (Benaych-Georges & Nadakuditi, 2012).
Setting Xn =

∑p
i=1 an,ixib

T
n,i and Yn =

∑p
i=1 un,iyiv

T
n,i, the BBP (Baik–Ben Arous–Péché)

phase transition results in a mapping of singular values yi of the observed matrix Y to xi

of the uncontaminated low rank signal X:

yi
a.s.−−→

 σ(1 +
√
γ) xi ≤ σγ

1
4√

(xi +
σ
xi
)(xi + γ σ

xi
), xi > σγ

1
4

(2)

Similarly, the left and right singular vectors pairs (ui, ai) and (vi, bi) are orthogonal
within the bulk but become strongly correlated and show a non-zero dot product past the
critical point:

| ⟨an,i, un,j⟩ |2
a.s.−−→

{
x4
i−γ

x4
i+γx2

i
, xi = xj

0, xi ̸= xj

(3)

| ⟨bn,i, vn,j⟩ |2
a.s.−−→

{
x4
i−γ

x4
i+x2

i
, xi = xj

0, xi ̸= xj

(4)

Using these transition equations, Gavish & Donoho (2014) derive an analytical ex-
pression for the optimal rank-r approximation of the data matrix X̂(Y ) by minimising
the asymptotic mean squared error of their misfit ∥X − X̂(Y )∥2F over all singular values
ui > σ

√
1 + γ and 0 < γ ≤ 1. This results in an expression for a threshold value τ

τ = λ⋆(γ) ·
√
nσ (5)

where

λ⋆ =

√
(2γ + 1) +

8γ

(γ + 1) +
√

(γ2 + 14γ + 1)
(6)
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This threshold marks the unique transition point of the signal singular values from
those of random noise matrix Z for a given spectral distribution of Y with noise σ, taking
into account the support fluctuations. The median of a standard MP distribution (σ = 1)
is given by

µMP =
1

2πt

∫ x

λ−

√
(λ+ − t)(t− λ−)dt (7)

The noise σ can be estimated by matching the median of the standard MP distribution
to that of the bulk singular values. This results in a robust noise estimator that estimates
noise by comparing the perturbed singular values with the MP distribution

σ̂(Y ) :=
λmed√
nµMP

(8)

Using σ̂(Y ) for σ in eq. 5, we get

τ̂⋆ = ω(γ) · ymed (8)

where
ω(γ) ≈ 0.56γ3 − 0.95γ2 + 1.82β + 1.43 (9)

In the final step, the singular value matrix yi is replaced by ŷi where the values below
the threshold limit given by eq. 5 are padded and the approximate uncontaminated signal
matrix X̂(Y ) is reconstructed from the observations Y using X̂(Y ) =

∑p
i=1 un,iŷiv

T
n,i. In

essence, the outlined procedure provides objective criteria to select the number of principal
components that describe the variance of the structural signal by modelling noise as an
additive independent and identically distributed (i.i.d.) random matrix.

2.3 Apparent velocity curves

In order to reduce non-uniqueness in the inversion of receiver functions, we make use
of the absolute S-wave velocity information contained within the P-wave polarization as a
complementary constraint. A consequence of Snell’s law, the relation between the apparent
P-wave incidence angle (īp) and the subsurface S-wave velocity was derived by Wiechert
(1907) and is given by eq. 10. Here p denotes the ray parameter. This apparent P-wave
incidence angle can be calculated directly from the amplitudes of vertical and radial receiver
functions at time t=0, as described in Svenningsen & Jacobsen (2007)

vS,app
= sin(0.5ip)/p (10)

tan ip =
RRF (t = 0)

ZRF (t = 0)
(11)

Following a similar procedure as Knapmeyer-Endrun et al. (2018) and estimating ip as a
function of low pass Butterworth filter period (T), we calculate a frequency-dependent S-
wave velocity curve vS(T ) which emphasises the absolute S-wave velocity variation with
depth. A mean RF is calculated from all the raw RF waveforms in the dataset. This is then
used to compute a vS,app curve which is jointly inverted together with the mean RF. We
measure the dominant period of the spike in the mean ZRF and discard the values of filter
periods smaller than that.
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Figure 1. (a) Raw RFs from terrestrial station VSU in epicentral distance range 65◦ - 69◦

and back-azimuth 10◦ - 40◦ (b) distribution of the singular spectrum (top) and the singular values

arranged in decreasing amplitude (below). The red dashed line denoted the noise threshold. (c)

RFs reconstructed using singular values above noise threshold. The epicentral distance increases

from top to bottom in (a) and (c).

Figure 2. Same as Figure 1 but for epicentral distance range 55◦ - 85◦ and back-azimuth between

80◦ - 120◦. The epicentral distance increases from top to bottom.

2.4 Inversion

A Markov-chain Monte Carlo (McMC) transdimensional Bayesian inversion method
based on Bodin et al. (2012) (Dreiling & Tilmann, 2019) was used for the joint inversion of
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the mean RF and vS,app curve. In this formulation, the number of layers itself becomes an
unknown and is also inverted for along with the other model parameters. The solution is an
ensemble of models that are distributed according to a posterior probability density function
given by Bayes’s rule. Each layer is parameterised by depth, Vs and the vP /vS ratio. Density
is not inverted for but is calculated using the Birch law (Birch, 1961). We use flat model
priors and their ranges for depth, Vs and vP /vS ratio were set to 0 − 100 km, 1 − 5 km/s
and 1.4 − 2.2, respectively. A maximum of 20 layers was imposed and the range for noise
amplitude was set to 0.01− 0.5 with correlation values of RF and vS,app data fixed to 0.96
and 0, respectively. For calculating synthetic RFs, we use the forward calculation module
implemented by Shibutani et al. (1996). The algorithm calculates the impulse response of
a layer stack in the P-SV system. The resulting synthetic Z- and RRFs are convolved with
the observed ZRF in order to account for the observed waveform complexity (Knapmeyer-
Endrun et al., 2018). A vS,app profile is then calculated for the RFs using the procedure
described in Section 2.3.

3 Results

To illustrate the method we show its application on data from the terrestrial seismic
station VSU. The Figure 1(a) shows the raw data which consists of RFs computed from
closely located events. In general the data are noisy. The subplot (b) shows the distribution
of singular values and its spectrum for the data. We see the general singular value repulsion
behaviour with a ”bulk” noise region well separated away from the signal ”spike”. This noise
bulk follows the limiting spectral distribution given by the MP law with support values and
variance given by Eq. 1 and 8. The red line shows the optimal threshold for singular value
truncation when noise is modelled as an i.i.d. random matrix. Using the singular value
lying above this threshold, we reconstruct the data by projecting it onto the corresponding
eigenvector. Subplot (c) shows the reconstructed RF data showing clear coherent energy
arrivals at ∼ 1, 5, 12 and 14 and 23 s. We interpret these as the the intra-crustal, Moho Ps,
a low velocity zone, PpPs and PpSs phases, respectively. The reference timing for the Moho
Ps phase here is taken from Knapmeyer-Endrun et al. (2014). In general, the method is
applicable equally well to data sets covering a wider range of distances and back-azimuths.
The number of singular values above the threshold then increases to accommodate the
data variance. In Figure 2 shows the reconstruction of RFs from similar back-azimuths
but a wider epicentral distance range (55◦ − 85◦). Here the threshold increases to three to
accommodate the move-out of various phases.

Figure 3 shows the result of applying the phase identification methodology to our se-
lected data from the InSight mission. Apart from the three primary phases at 2.4, 4.8, and
7.2 s previously identified in Knapmeyer-Endrun et al. (2021), the raw RF data (subplot(a))
does not seem to contain any consistent phases after the initial 8 s. From subplot (b), we
see that the first principal component is sufficient to identify the main phase arrivals within
the first 30s of the RF waveforms. This is expected as all the events considered here have
similar distances and back-azimuths. The reconstructed RF waveforms are shown in sub-
plot (c). In addition to the three primary phases, we report three new multiply reflected
phases at 15, 20, and 23 s. We interpret these as the P2pPs, P2pSs and P3pPs phases,
where the sub-scripted numeral in the phase name denotes the generating interface. Note
that the P3pPs phase holds significant importance as it corroborates the existence of the
much speculated third inter-crustal layer below the InSight landing site. A misfit function
is calculated using these arrival timings using which the mean RF is jointly inverted with
the mean vS,app

. We initialised 72 chains of 1,000,000 iterations, each sampling the model
space simultaneously and independently, with 500,000 iterations discarded as the burn-in
phase. Outlier chains were removed and the models were thinned to obtain a final ensemble
of 100,000 models. The main results of the inversion are shown in Figure 4. A three-layer
model exhibits the highest probability density in the solution ensemble. Subplot (a) shows
the posterior distribution of the vS profiles as a function of depth, along with the probability
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Figure 3. Same as Figure 1 but for Mars. The shaded regions show the denoted arrivals.

for each interface depth. We see two well-defined mid-crustal interfaces at depths of 8.5±1.5
km and 22±3 km, along with the crust-mantle transition at 43±5 km. The resulting crustal
models agree well with the three-layer models predicted in Knapmeyer-Endrun et al. (2021)
and Durán et al. (2022). The modelled vS,app

curves and the RFs follow the observed data
closely and are shown in subplots (b) and (c), respectively. Due to the low SNR of the
individual RF waveforms at longer periods, the vS,app curves are limited to periods < 14s.
This helps provide tight constraints on the observed vS value within the shallow part of the
crust but the uncertainty increases with depth where the vS values and their increases are
primarily controlled by the RF amplitudes. The estimated mean vP /vS ratio for the three
layers is 1.81 ± 0.05, 1.77 ± 0.06 and 1.64 ± 0.08, yielding an average value of ∼ 1.75 for
the crust. A plot of the 1D distribution for vS and vP /vS ratio for the models along with
noise characteristics is provided in the supplementary materials. A distinct negative arrival
of unclear origin is seen at 11.5 s. Although we do not include this in our analysis to avoid
over-interpretation, it could either be a Pp phase from the second interface or a low-velocity
zone at a depth of ∼ 70− 75 km. The P1pSs would arrive earlier between 8-10 s, ruling out
its possibility.

4 Discussion

With just a handful of good quality, small magnitude and closely located marsquakes,
the analysis of the RF data from the Insight mission present us with many challenges. In
this work, we attempt to use this close distance range to our advantage to uncover addi-
tional features in the data using concepts of random matrix theory and principal component
analysis. For events from similar distances and back-azimuths, considerably fewer principal
components can reconstruct the main features present in the data. Additional components
are needed as distance and back-azimuth ranges increase. Using synthetics and real data,
Zhang et al. (2019) demonstrated that just the first few principal components could effec-
tively reconstruct all the data variance within events from varying back-azimuths. Here
we used events with varying distances and similar back-azimuths to establish an equivalent
idea. A few points are, however, worth noting. Occasionally, data reconstruction with a few
principal components can lead to an erroneous broadening of phases. Though it does not
affect the detection of phases, it could sometimes lead to an unwanted merger of very close
arrivals. We also find that the singular spectrum, and hence the resulting threshold, can
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Figure 4. (a) Posterior density of resulting Vs profiles along with histograms for interface depth

(b) Fit to the mean vS,app curve (c) Fit to the mean RF waveform. The red dashed lines denotes

the observed data and green dash-dotted lines represent the 2σ uncertainty.

show slight variations based on the dataset’s quality. For highly irregular RF waveforms,
this could severely bias the threshold estimate to lower values. In this case, utilising higher
principal components for data reconstruction will likely result in individual waveform vari-
ations instead of emerging features like phase move-out and back-azimuth variations. We
recommend removing such outlier waveforms before the analysis. The compact support
of the random singular values can sometimes be disconnected, and therefore, choosing the
threshold based only visually on the histograms can lead to errors. On the other hand,
histogram bins might not always clearly reflect the transition gap from random to signal
singular values. A full computation of the threshold is therefore required. An inspection
of the data covariance matrix can often reveal how well the data follows the spiked co-
variance model and can provide extra insight into the validity of the assumptions for the
particular dataset. The number of events is also an essential factor. As the size of the
dataset (m,n) increases, the fluctuations of the Tracy-Widom distribution decrease. Thus,
the larger the dataset, the higher the stability of the threshold. For a small dataset, the
assumption of the spiked covariance model can break down. Finally, the noise in receiver
functions is not entirely random and generally has a finite covariance. A recent study by
Donoho et al. (2020) generalises the spiked covariance model to include correlated noise.
We performed further tests with the new method, and although the variations were not
significant, it seemed to affect more the case with events from a larger distance range. The
results remained unchanged for events within close distances like the InSight with a slight
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increment in the threshold value. Extending this analysis to include the correlated case is
nevertheless essential and will be the subject of a later study.

5 Summary and Conclusion

The receiver function method has played an instrumental role in the analysis of the
Martian crustal structure using data from the InSight mission. In order to contribute to that
effort, here we present a method to identify coherent phase arrivals in noisy RF waveforms
by modelling data noise as samples from an i.i.d random matrix and using this information
to jointly invert the RFs with apparent velocity curves. With examples from terrestrial
data, we first show how only a few singular values can help reconstruct coherent parts of the
signals enabling the detection of phase arrivals in RF waveforms. The number of singular
values needed for this depends on the range of the distance and back-azimuths of the events
in the dataset, with often a single value being sufficient in the special case of closely located
events. We then apply this method to a set of 8 marsquakes detected by the InSight mission
and evaluate the crustal structure below the landing site based on these data. Three new
crustal phases were identified in the RF waveforms, which we interpret as P2pPs, P2pSs and
P3pPs phases. A subsequent joint inversion of the RFs with the mean vS,app

curve shows
that the crust of Mars below the InSight landing site is composed of three distinct layers
with increasing velocity. A crustal thickness of ∼ 43 km is estimated. The results are in
agreement with previous work from Knapmeyer-Endrun et al. (2021), with the new P3pPs
phase suggesting a strong preference for the three-layer model in their study. A variety
of interpretations are available for the existence of the first two interfaces ranging from a
change in porosity to chemical composition. The preferred interpretation from Wieczorek
et al. (2022) considers this a result of a series of transitions from sediments or pyroclastic
deposits that experienced aqueous alterations to less porous Utopia ejecta and finally to the
pre-existing crustal materials from early differentiation of Borealis impact melt. A thicker
crust, like one obtained from such a three-layer model, is also more compatible with the
amount of heat-producing elements within the Martian crust estimated by spectroscopy
observations (Taylor, 2013; Knapmeyer-Endrun et al., 2021) and geodynamical modelling.
A much lower bulk crustal density and significant enrichment in crustal heat-producing
elements would otherwise be needed for a thinner crust (Knapmeyer-Endrun et al., 2021).
However, it is unlikely that this three layered formation is indicative of the global Martian
crustal structure which is known to have large lateral variations (Wieczorek et al., 2022),
and can be plausibly just a feature of the local geology in the vicinity of the InSight landing
site
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.18715/SEIS.INSIGHT.XB 2016) are publicly available through the Planetary Data System
(PDS) Geosciences node of the Incorporated Research Institutions for Seismology (IRIS)
Data Management Center under network code XB (https://pds-geosciences.wustl.edu/
missions/insight/seis.htm), and through the data center of Institut de Physique du
Globe, Paris (http://seis-insight.eu).
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Introduction 

This document provides information on the search criteria needed to 
retrieve the InSight and terrestrial seismic data used in the manuscript 
along with the 1D probability distributions for vS,  vp/vs  ratio and noise 
parameters. Terrestrial data for seismic stations VSU are publicly 
available and can be  obtained from EIDA  
http://eida.gfz-potsdam.de/webdc3/

Event Time Lat. (°N) Long.
(°E)

Type Quality Filter
Freq.

S0173a 2019-
0523T02:19:33

3.45 164.48 LF A 0.1-0.8

S0183a 2019-06-
03T02:22:25

15.09 179.59 LF B 0.1-0.8

S0235b 2019-07-
26T12:19:16 

11.59 163.79 BB A 0.3-0.8

S0784a 2021-02-
09T12:11:32

- - BB B 0.3-0.8

S0809a 2021-03-
07T11:09:26

5.40 165.55 LF A 0.3-0.8

S0820a 2021-03-
18T14:51:33

4.9 165.91 LF A 0.3-0.8

S01048d 2021-11-
07T22:04:04

-1.10 165.31 LF A 0.12-0.8

S01133c 2022-02-
03T08:08:25

3.89 165.89 BB A 0.12-0.8

Table S1. Event information for InSight data

http://eida.gfz-potsdam.de/webdc3/


Figure S2. 1D distributions of  model parameters



Station code Network code Latitude (°N) Longitude (°E)

VSU GE 58.462 26.7347

Table S3.  Station information for seismic station VSU

Event Time

2008-10-06 08:39:04

2006-05-11 17:32:03

2007-06-02 21:44:37

2007-07-30 22:51:45

2010-03-30 17:04:46

2008-06-27 11:50:25

2008-06-28 13:04:59

2010-05-31 20:01:54

2010-06-12 19:37:18

2006-06-21 12:45:28

2007-10-04 12:51:26

2010-05-09 06:10:37

2006-08-11 21:05:24

2008-07-14 04:56:00

2010-04-06 22:26:00

2006-05-16 15:39:50

2009-09-30 10:27:24

2009-08-16 07:49:58

2007-09-20 8:42:57

2008-02-25 21:13:59

2008-02-25 18:17:45

2009-10-01 2:04:18

2008-05-18 12:29:08



Table S4.  Event information for station VSU (large-distance case)

Event Time

2010-12-23 14:10:27

2008-05-25 19:28:20

2006-10-01 09:16:04

2006-09-30 18:00:28

2009-01-15 17:59:43

2007-01-13 04:33:20

2007-10-02 18:10:12

2010-07-18 06:06:56

2008-05-02 01:43:50

2006-08-26 23:50:53

2006-05-10 2:53:07

2006-07-08 20:50:13

2006-09-18 03:56:16

2007-08-15 20:32:38

Table S5.  Event information for station VSU (small-distance case)


