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Abstract

For decades, the distinction between statistical models and machine learning ones has been clear. The former are optimized

to produce interpretable results, whereas the latter seeks to maximize the predictive performance of the task at hand. This

is valid for any scientific field and for any method belonging to the two categories mentioned above. When attempting to

predict natural hazards, this difference has lead researchers to make drastic decisions on which aspect to prioritize, a difficult

choice to make. In fact, one would always seek the highest performance because at higher performances correspond better

decisions for disaster risk reduction. However, scientists also wish to understand the results, as a way to rely on the tool they

developed. Today, very recent development in deep learning have brought forward a new generation of interpretable artificial

intelligence, where the prediction power typical of machine learning tools is equipped with a level of explanatory power typical

of statistical approaches. In this work, we attempt to demonstrate the capabilities of this new generation of explainable artificial

intelligence (ExAI). To do so, we take the landslide susceptibility context as reference. Specifically, we build an ExAI trained

to model landslides occurred in response to the Gorkha earthquake (25 April 2015), providing an educational overview of

the model design and its querying opportunities. The results are surprising, the performance are extremely high, while the

interpretability can be extended to the probabilistic result assigned to single mapping units. This is also showcased in a web-GIS

(\textcolor{blue}{https://arcg.is/0unziD}) platform we built.
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Abstract14

For decades, the distinction between statistical models and machine learning ones has15

been clear. The former are optimized to produce interpretable results, whereas the lat-16

ter seeks to maximize the predictive performance of the task at hand. This is valid for17

any scientific field and for any method belonging to the two categories mentioned above.18

When attempting to predict natural hazards, this difference has lead researchers to make19

drastic decisions on which aspect to prioritize, a difficult choice to make. In fact, one would20

always seek the highest performance because at higher performances correspond better21

decisions for disaster risk reduction. However, scientists also wish to understand the re-22

sults, as a way to rely on the tool they developed. Today, very recent development in23

deep learning have brought forward a new generation of interpretable artificial intelli-24

gence, where the prediction power typical of machine learning tools is equipped with a25

level of explanatory power typical of statistical approaches.26

In this work, we attempt to demonstrate the capabilities of this new generation of27

explainable artificial intelligence (ExAI). To do so, we take the landslide susceptibility28

context as reference. Specifically, we build an ExAI trained to model landslides occurred29

in response to the Gorkha earthquake (25 April 2015), providing an educational overview30

of the model design and its querying opportunities. The results are surprising, the per-31

formance are extremely high, while the interpretability can be extended to the proba-32

bilistic result assigned to single mapping units. This is also showcased in a web-GIS (https://arcg.is/0unziD)33

platform we built.34

1 Introduction35

The evolution of science is marked by historical moments where discoveries or tech-36

nological advancements opened up opportunities that were not there before. The his-37

tory of geoscience and specifically the part of it linked to natural hazards is no differ-38

ent. Specifically, if we take the landslide example, before 1970’s no available study at-39

tempted to estimate locations where landslides were likely to occur over a large landscape.40

This notion was later defined as landslide susceptibility (Reichenbach et al., 2018) and41

its first example dates back to Brabb et al. (1972), with a digital scan of his suscepti-42

bility map still being accessible at this link (https://pubs.usgs.gov/mf/0360/plate-1.pdf).43

The introduction of that document had effect that rippled even to present days. Specif-44

ically, it set the stage for a successful branch of geomorphology that has received wide45

attention and efforts since then. One of the main issues that document had was the fact46

that it relied on expert-based opinions. In other words, the definition of susceptibility47

classes was the result of a subjective decision. Few years later though, the introduction48

of Geographic Information Systems (GIS; Gates & Heil, 1980) laid the foundations to49

collect digital cartographic data and implement numerical operations. As a result, the50

geomorphological community was able to test data-driven approaches suitable to move51

past the subjectivity issue. This later led to the first introduction of bivariate statisti-52

cal models (Naranjo et al., 1994; Soeters & Van Westen, 1994) and their multivariate53

extension (P. Atkinson et al., 1998; P. M. Atkinson & Massari, 1998). The latter still54

constitute the most common method to estimate landslide susceptibility (Reichenbach55

et al., 2018). Their success is due to the satisfying performance they demonstrated through56

the years and their high level of interpretability. The way they work is to assume a vec-57

tor of landslide presence/absence data to behave across the geographic space according58

to a Bernoulli probability distribution, whose relation to the landslide is linearly related59

to a set of covariates. The latter are usually referred to as predisposing or triggering fac-60

tors (Das et al., 2012; Tanyaş et al., 2022). However, the linearity assumption these mod-61

els are based on, limited the performance one could obtain. Therefore, another moment62

of particular importance was the introduction of machine learning tools (e.g., Yesilnacar63

& Topal, 2005). Even the simplest of them allowed for linear combinations of nonlinear64

relations, providing good flexibility and performance. This is the main reason why a mul-65
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titude of scientific contributions got published since then, testing each one of these new66

approaches, from neural network (Melchiorre et al., 2008), to decision trees (Li & Clara-67

munt, 2006) and their subsequent stochastic versions (Vorpahl et al., 2012; Catani et al.,68

2013), and from support vector machines (Ballabio & Sterlacchini, 2012)‘to multivari-69

ate adaptive regression splines (Marmion et al., 2009). All these newly introduced meth-70

ods though, lacked in interpretability, which is why conventional statistical models still71

kept on being the most common modeling choice. Moreover, even statistical models re-72

ceived a boost in their allowed complexity, as contributions based on generalized addi-73

tive models began to flourish (Brenning, 2008; J. N. Goetz et al., 2011). Since, then the74

two applications reached a sort of stalemate, where machine learning tool where sought75

for performance and statistical ones for interpretation. This is reflected even nowadays,76

after a decade, through the number of comparative studies, where the results of one or77

the other option are constantly tested to discern advantages and disadvantages (Pourghasemi78

& Rossi, 2017; J. Goetz et al., 2015).79

The very same period has also witnessed improvements in the choice of the geo-80

graphic object to partition an area under study, with unique condition units (Bednarik81

& Pauditš, 2010; Titti et al., 2021), slope units (Carrara, 1983; Alvioli et al., 2016) and82

grid cells (Dhakal et al., 2000; P. M. Atkinson & Massari, 1998) becoming the most com-83

mon choices, in ascending order (Reichenbach et al., 2018).84

Notably, the recent introduction of deep learning architectures has further set apart85

the statistical and data mining applications for landslide prediction. The classification86

performance of tools such as Convolutional Neural Network (Yi et al., 2020) have been87

shown to be even higher than their traditional machine learning counterparts (Bui et al.,88

2020; Fang et al., 2020) attracting the attention of a large part of the community although89

this is still achieved at the expense of interpretation capacity. And, their use further sup-90

ported the grid cell partition because convolutional operations are commonly based on91

a lattice structure (Van Dao et al., 2020), with the exception of few deep learning stud-92

ies adopting slope units (Hua et al., 2021).93

In this complex system though, a new moment will soon mark the evolution that94

landslide susceptibility models have undergone since Brabb et al. (1972). Information95

science has put forward a huge effort to give machine learning tools the same interpre-96

tation capacity of statistically based models (Štrumbelj & Kononenko, 2014; Ribeiro et97

al., 2016). This has recently resulted in the seminal work of Lundberg and Lee (2017).98

Specifically, the authors have built the first artificial intelligence that can be queried on99

an element by element basis as well as a predictor by predictor basis. In other words,100

their model can be dissected to the level of each components it has been built upon and101

the results can be examined to the point of understanding why the algorithm converged102

to assign a specific label to a specific unit. This in an unprecedented achievement, for103

it opens up an entirely new field of applications in any other scientific field. In the con-104

text of landslide prediction, this can finally unify a modeling framework from which de-105

rive standard practices for susceptibility modeling. Being a complete new breakthrough,106

the present manuscript attempts to showcase the potential of Explainable Artificial In-107

telligence (ExAI, hereafter) for landslide susceptibility modeling. The remainder of the108

manuscript does so by providing context on the basis of the landslides triggered by the109

Gorkha earthquake. Moreover, a web application is also shared with the readers allow-110

ing them to explore and get accustomed to the potential of this new generation mod-111

els.112

2 Materials and Methods113

Below, Section 2.1 will provide an overview of the data used in this work to demon-114

strate the potential of ExAI, whose design and web app graphical interface are presented115

in Section 2.2 and 2.4, respectively.116
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2.1 Data117

2.1.1 Landslide inventory118

We tested our ExAI in the area struck by the Gorkha earthquake (7.8 Mw) on the119

25th of April 2015. Roback et al. (2017) mapped 24,903 coseismic landslides for this event,120

and presented their characteristics in Roback et al. (2018), with a total landslide area121

of 86.5 km2 (Nowicki Jessee et al., 2018). Figure 1 The polygonal inventory is freely ac-122

cessible at the global database of earthquake-induced landslide inventories (Tanyaş et123

al., 2017).124

Figure 1. Overview of the study area, coseismic ground motion and associated landslides.

The small panel to the bottom left shows a detail of the spatial partition we used, later explained

in Section 2.1.2

Notably, this inventory is among the best coseismic ones for its quality and com-125

pleteness (Tanyaş & Lombardo, 2020) for the authors characterize the polygon into source126

and deposition areas.127

In this work, we use the spatial signal carried by this inventory as the target vari-128

able of our susceptibility model, aggregated at the level of slope units (more details be-129

low).130
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2.1.2 Slope unit partition131

Slope units (SU) are irregular polygonal objects bound between ridges and stream-132

lines (Carrara et al., 1995). Their use is an alternative to grid cells, which is particularly133

suited for regional scale susceptibility models. The recent introduction of the r.slopeunits134

software by Alvioli et al. (2016) is able to quickly generate SU under the constraint of135

slope exposition homogeneity, thus requiring only a digital elevation model as input data,136

and a few parameters to control the subdivision process. In our case, we opted for the137

latest version of r.slopeunits, capable of returning a reliable partition removing flat or138

near-flat areas (e.g., Alvioli et al., 2020; Lombardo & Tanyas, 2021).139

Here we opted to run r.slopeunits with the following parameterization (after run-140

ning a number of unreported tests): area min=40000, circular variance=0.4, cleansize=20000,141

thresh=800000. These parameters control certain aspects of the calculations at the core142

of r.slopeunits. Specifically: a) area min indicates the minimum SU area to coverge to;143

b) the circular variance controls how flexible or rigid the aspect criterion should be, with144

0 being extremely rigid and 1 allowing for a large within-SU variability; c) cleansize refers145

to the dimension of spurious SU to be merged to the neighboring polygons; d) thresh146

is the SU extent r.slopeunits should start from.147

This routine returned 16533 SU, with a mean planimetric area of 8.6×105 km2 and148

a standard deviation of 7.8×105 km2. These summary statistics attest for a slightly coarse149

resolution of the SU, which we opted for simply for computational reasons. In fact, as150

we planned to share a web-GIS platform where our model can be interactively queried,151

a finer SU partition would have implied a much slower interface.152

2.1.3 Predictors153

Our model relies on a set of predictors we chose to explain the predisposing and154

triggering factors that have led to the coseismic inventory mapped by Roback et al. (2017).155

Specifically, we opted for eight predictors, the morphometric ones originating from the156

30 m SRTM digital elevation model (Van Zyl, 2001). These encompass: i) Slope steep-157

ness (Slp; Zevenbergen & Thorne, 1987); ii) horizontal (Hc Heerdegen & Beran, 1982)158

and iii) vertical (Vc Heerdegen & Beran, 1982) curvatures; iv) Eastness (Est) and Nrt)159

Northness (Lombardo et al., 2018). As for the expression of the vi) ground motion in160

terms of Peak Ground Velocity (PGV Usgs), this came from the ShakeMap system of161

the United States Geological Survey (Worden & Wald, 2016). Vegetation density was162

brought in via Normalized Difference Vegetation Index (NDVI) (Pettorelli et al., 2005),163

computed from Landsat Imagery (Survey, 2015), whereas the antecedent precipitation164

(Prc) was calculated as accumulated rain over a three months period prior to the earth-165

quake occurrence, from CHIRPS data (Funk et al., 2015).166

The spatial pattern of these covariates was aggregated at the SU level by taking167

the mean value within the given SU, something highlighted in the remainder of the text168

with the suffix “ m”. Notably, it is customary to express the variability of a given pre-169

dictor within a SU by taking its mean behaviour as well as its variance for near Gaus-170

sian distributions (Guzzetti et al., 2006; Lombardo & Tanyas, 2020), or to use a quan-171

tile representation in situation far from the normality assumption (Castro Camilo et al.,172

2017; Amato et al., 2019). However, here to keep the model simple and easy to be ex-173

plained, we opted to avoid adding the variability of each predictor per SU. Our expla-174

nation is that we are not trying to reach high performance through deep learning, this175

is something already shown in a number of contributions (e.g., Meena et al., 2022). Con-176

versely, we seek to demonstrate the power of ExAI in susceptibility modeling.177

As the last preprocessing step, we normalized all predictors between zero and one178

using the following transformation for each predictor:179
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Xnorm = (Xoriginal −min(Xoriginal))/(max(Xoriginal)−min(Xoriginal)) (1)

2.2 Explainable AI design180

The deep learning model we used to test our Explainable AI was kept simple to181

easily diagnose the model output and to prevent it from overfitting. Its basic structure182

is shown in Figure 2, where the model relies on 8 input features in the input layer, fol-183

lowed by 12 hidden layers made out of fully connected layers of size 64 and a output layer184

with a sigmoid activation function. Each hidden layer is accompanied by a Rectified Lin-185

ear Unit (ReLU) non linear activation (Yarotsky, 2017), followed by batch normaliza-186

tion (Ioffe & Szegedy, 2015) and a dropout layer (Baldi & Sadowski, 2013) with 0.3%187

dropout. These three elements have nowadays become standard in most deep learning188

architectures and we refer to the work of Schmidhuber (2015) for further details. For con-189

ciseness, here we will briefly mention that the ReLU activation allows for the model to190

be flexible and incorporate non-linear behaviors. Moreover, the dropout layer is used to191

prevent overfitting, whereas the batch normalization layer prevents weights and biases192

to grow unrealistically.193

Figure 2. Simple architecture of the landslide susceptibility model which is used in our ExAI.

To train our model, we used the dataset as described in the section 2.1. The dataset194

was randomly divided into two disjoint training (70%) and test (30%) set. The train-195

ing set was further randomly divided into 20% validation set which was randomly selected196

with replacement in each training epoch. All of the training performance were evaluated197

in the validation set (for e.g. training performance) and the model’s performance itself198

was evaluated with the test set.199

The developed model is trained using weighted binary crossentropy loss function,200

due to imbalance in the landslide data we provided 4× higher weights to the positive out-201

comes (landslides). The weight set to 4 because amount of slope-units with landslide was202

around 20% and without landslide was around 80%. To train the model we used Adam203

optimizer (Kingma & Ba, 2014) with initial learning rate of 1×10−3 and decayed ex-204

ponentially at 10000 training steps with decay rate of 0.9. The training was done with205

the batch size of 32 for 500 epochs with an early stopping option. This implies that the206

training process automatically stops once the model tends to overfit.207

Once the model was fully trained and shown good performance, we calculated SHap-208

ley Additive exPlanations (SHAP) values to diagnose the model and its decisions (Lundberg209

& Lee, 2017). The SHAP values are calculated using the DeepSHAP method developed210
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by Lundberg and Lee (2017). To provide a explanation about SHAP values below we211

present a simple practical example. Let us assume we are in the context of a simple lin-212

ear regression where the target variable is regressed against only three covariates. The213

relative equation could be denoted as:214

Y =
∑

β0 + β1X1 + β2X2 + β3X3 (2)

Interpreting such simple model would be an easy task as it boils down to a linear215

combination of linear relations. However, machine/deep learning architectures offer the216

ability to extent the modeling framework even towards nonlinear combination of non-217

linear relations, which is something that makes the interpretation a very difficult task.218

For this reason, what SHAP does is to solve the predictive equation for each mapping219

unit of interest and storing the relative results. This provides a unique perspective on220

each predictor’s role with respect to the others, for each slope unit in our case. In other221

words, to compute SHAP, one has to take the weights estimated for each predictors, mul-222

tiply them for the actual predictors value and then combine them for each element in223

the matrix. These can then be stored and queried later on to understand how a specific224

probability value has been assigned to a slope unit. In the linear example mentioned above225

and for a single mapping unit, this would allow starting from the initial intercept value226

β0 then adding the term that contributes the least to the final estimate (say β2X2), then227

adding the second (say β3X3) and the third (say β1X1). As a result, SHAP allows to228

see changes in probability estimates as a function of each predictor offering a unique as-229

sessment tool on the final estimates and how the model has reached them.230

2.3 Performance assessment231

Aside from the added interpretability value of our ExAI, understanding how well232

it labels slope units into stable or unstable is a fundamental requirement of any binary233

classifier. Here, we monitored the ExAI performance via Receiver Operating Character-234

istic (ROC) curves and their Area Under the CUrve (AUC) as per standard (Hosmer &235

Lemeshow, 2000; Rahmati et al., 2019). We used this cutoff-independent metric while236

testing our model over different data realizations. In addition, we also produced cutoff-237

dependent metrics by taking the median of the probability distribution. This operation238

ensures the conversion of the continuous probability spectrum into two classes (stable/unstable239

slopes) which can be further matched to the original data to estimate True Positives (TP),240

False Positives (FP), True Negatives (TN) and False Negatives (FN). To complement241

the non-spatial information provided by the ROC curves, we opted to project these four242

values over the geographic space, producing in turn a confusion map (Titti et al., 2022).243

We used these metrics in a number of performance tests. Specifically, we initially244

tested our best model, built according to the description provided in Section 2.2, and245

then considered it as our reference to compared against two additional cross-validation246

schemes. One corresponds to a purely random 10-fold cross validation (RCV hereafter),247

where 10% of the slope units are randomly extracted for testing, constraining the selec-248

tion just once per mapping units, over ten subsequent replicates. The idea behind this249

validation routine is for us to assess performance while the data is perturbed the least.250

In fact, the random selection essentially keeps the residual spatial dependence, if any,251

almost intact. For this reason, the performance is expected to remain close to the ref-252

erence model. Instead, to really grasp how well a model is capable of performing a sus-253

ceptibility prediction task, one should always include a spatially-constrained cross-validation254

(SCV). A rich description on why and how to implement this technique can be found255

in Brenning (2012) and Pohjankukka et al. (2017). Here we briefly mention that a spa-256

tial cross-validation boils down to testing the model capabilities in an unknown region,257

thus in a context where the model is blind to any potential landslide clustering effect or258

residual spatial dependence. In turn, this usually leads to lower performance compared259
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Figure 3. Aggregation of the slope unit partition into ten subregions, used for spatial cross-

validation purposes.

to the reference model but also offers an overview of what to expect in one of the worst260

cases a classifier can face. In this work we implemented our SCV by dividing the area261

into ten sub-regions according to a squared lattice. Then, all the slope units falling within262

one area were used for testing while the remaining nine were used for calibration. This263

routine has been repeated ten times, until covering the whole study area and testing all264

the slope units partitioning it (see Figure 3).265

2.4 Interactive demonstration through a web application266

Explaining the potential of our ExAI simply through scientific illustrations may267

have not offered the same understanding as an interactive tool. For this reason, we have268

opted for a web application where our model results can be interactively queried to of-269

fer a more immersive experience to the readers and to anybody interested in it. The web-270

GIS is meant to provide the same level of query as it will be shown in the other figures271

in this manuscript. In addition to that, the same operation could be repeated for any272

slope unit in our study area, letting any user grasp why our ExAI assigned a given prob-273

ability value as a linear combination of weights estimated for each predictor multiplied274

by their predictor value at specific locations.275

Our web-GIS relies on a ArcGIS online platform, using a standard ESRI template276

for web applications. The ExAI output was computed outside the platform, a figure for277

every SU created in python and then stored in a repository where our web-GIS goes to278

pick any element queried by the user. When mentioning our choice of a relatively coarse279

slope unit partition in the previous section, we should also stress that a finer partition280

would have also required generating a much larger number of images, one for each slope281
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Figure 4. Panels from left to right: ROC curve and associated AUC of our reference ExAI

model; ten ROC curves generated through a purely random cross-validation, with associ-

ated AUC values boxplotted at the bottom; ten ROC curves generated through spatial cross-

validation, with associated AUC values boxplotted at the bottom.

unit, increasing the data storage requirements beyond the scope of a demonstrational282

online platform.283

3 Results284

Below we will initially report our ExAI performance, after which we will provide285

an extensive description of how the ExAI can be queried to understand why a specific286

probability value has been assigned to a slope unit. Ultimately, we conclude this section287

by illustrating our web application.288

4 Perfomance overview289

The most common characteristic of a machine/deep learning tools is their predic-290

tion capacity. Figure 4, offers an overview of our modeling performance. Specifically, our291

reference model falls in the excellent performance class according to Hosmer and Lemeshow292

(2000). This is also the case for the RCV, with a mean AUC of 0.86 and a very limited293

spread measured in a single standard deviation of 0.01. As mentioned in Section 2.3, the294

SCV procedure is where one would expect a significant drop in performance. This is the295

case also here, with a mean AUC of 0.77 and a standard deviation of 0.06. This still means296

that on average our model still is very close to the excellent performance class accord-297

ing to (Hosmer & Lemeshow, 2000). However, it points out at local performance defi-298

ciencies with a minimum AUC of 0.66.299

Interestingly, this low performance is achieved for the tenth sub-region shown in300

Figure 3. The south-easter sector of the study area is also the one that was shaken the301

least by the Gorkha earthquake and this is likely the reason why our coseismic ExAI sus-302

ceptibility model struggled there.303

Similar considerations emerge also when looking at the three confusion maps shown304

in Figure 5. There, the spatial pattern of TP and FN essentially stay the same for the305

reference model as well as the two cross-validation schemes. This is an indicator of the306

consistent capacity of our ExAI to recognize unstable slope units. The main difference307

among the three maps becomes evident when looking at how FP substitute the TN. This308

is something that may be considered an issue at a first glance. However, we should re-309

–9–



manuscript submitted to Earth’s Future

Figure 5. Confusion maps for the reference model and the two cross-validations we tested.

The barplots correspond to the relative confusion matrices.

call that FP correspond to slope units that did not have a landslide in the original dataset310

but that the model deemed to be unstable. In other words, this is not an issue that should311

raise questions on the quality of our classifier. Conversely, it should be considered an in-312

dication of locations that may have not generated landslides in the occasion of the Gorkha313

earthquake but could still fail in the future.314

5 Looking into the ExAI315

Recent advancements in Artificial Intelligence have significantly pushed the bound-316

aries of what can be queried and visualized out of an explainable AI. In this work, we317

tried to provide several options for the readers and selected the one we considered to be318

the best for our web application.319

The simplest way of understanding why a given AI has assigned a specific label to320

a mapping unit can be done by examining the variable importance (Gunning et al., 2019;321

Aguilera et al., 2022). This measure expresses the influence of each predictor used in the322

model with respect to the others and has already found a few applications in data-driven323

natural hazard models (Stumpf & Kerle, 2011; J. Goetz et al., 2015; Steger et al., 2016).324

Here we re-created a variable importance plot in Figure 6, by using the computed SHAP325

values. The mean slope per slope unit and the peak ground velocity are shown to dom-326

inate the probability estimation. Then, the remaining six predictors appear to exert a327

similar influence onto the final susceptibility.328

Another already available tool to visualize overall predictor’s influence consists of329

response plots (Merow et al., 2013). This tool has also been featured in a number of nat-330

ural hazard (Vorpahl et al., 2012; Lombardo, Fubelli, et al., 2016; Lombardo, Bachofer,331

et al., 2016) applications albeit to a lesser extent compared to the variable importance332

presented above. In this work, we reproposed a response plot graphical summary by plot-333

ting SHAP values against each predictor’s domain. This is shown in Figure 7 where the334

two dominant predictors in the model appear to be again the mean slope steepness (Slpm)335

and the mean peak ground velocity (PGVUsgs) per slope unit.336

The last two illustrations have been routinely included in a number of articles al-337

ready for over a decade. However, this has not been sufficient to label any standard AI338

as explainable. The reason is due to the static vision these tools provide with respect339

to the modeling result. In fact, they essentially tell the same story, this being two pre-340

dictors influencing more than others the final output. But, no other relevant informa-341

tion can be retrieved on how this happens. In other words, these plot lack the capacity342

to provide insight into how each predictor interacts with the others for each mapping units,343

leading to the final probability value. This is where our ExAI enters an uncharted ter-344

ritory in geosciences, providing a full description of these predictors’ interactions. Be-345
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Figure 6. Variable importance plot obtained by taking the mean absolute value of SHAP,

then ranked from the highest to the lowest contributor.

Figure 7. Response plots for each of the predictors used in the model. The x-axis reports the

rescaled domain of each predictor while the y-axis corresponds to the influence each predictor

exerted onto the susceptibility estimates.
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Figure 8. Panel (a) shows the SHAP distribution for each predictor expressed with a violin

plot obtained considering all slope units. Panel (b) does the same but each dot corresponding to

a specific slopes unit has been further colored with the susceptibility it was ultimately assigned

with.

low we will provide tools to do so, presented in order of the level of information they pro-346

vide.347

The simplest way to additionally explore our ExAI is shown in Figure 8, at a in-348

formation level which is not far off from the one provided by the two illustrations above.349

Specifically, panel (a) shows the overall SHAP distribution per predictor computed for350

the whole study area. This is something very similar to what was shown in Figure 7, to351

which we start adding information on specific locations. Panel (b) does accomplish ex-352

actly this task by showing the actually probability assigned to each slope unit (or dot353

in the figure). As a result, one can start seeing that SHAP values computed for single354

predictors assume essentially assume an alternating coloration per slope units until the355

mean NDVI (NVDIm), after which an increase PGVUsgs and Slpm and associated SHAP356

values, also corresponds in an increase in susceptibility. This indicates a dominant ef-357

fect of the last two predictors, which is a similar conclusion to what showed in previous358

illustrations. However, it already provides an indication that our ExAI will delve much359

deeper that usual tools, away from a single perspective over the whole study area and360

much closer to what happens at the level of the single slope unit.361

The level of the single mapping unit is actually where our ExAI aims to provide362

information to the end user. This can be shown in Figure 9, where two slope units have363

been extracted as an example for demonstration. Panel (a) shows how the final suscep-364

tibility of 0.23 was reached adding the contributions of all predictors to the base prob-365

ability of 0.42. We briefly point out here that 0.42 is the starting value as a result of the366

balanced presence/absence data we opted for. Any further imbalance in the proportion367

of stable and unstable slope units would lead to a lower starting value (see Frattini et368

al., 2010; Lombardo & Mai, 2018). Going back to Figure 9, this graphical summary is369

the perfect example to deliver how powerful is an ExAI, to the point where one can as-370

sess whether the susceptibility makes sense for single mapping units. However, gener-371

ating these plots for each mapping unit may be too complex. For this reason, it is pos-372

sible to simplify the graph while reporting the same information.373
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Figure 9. Panel (a) shows an example of a slope unit that started with a 0.42 probability

value and whose final susceptibility reached 0.23. This value was reached due to the contribution

of the other predictors, whose sign is graphically summarized through the horizontal arrows’ di-

rection and the magnitude is depicted through the horizontal arrows’ length. The same is shown

in panel (b) for a slope unit that started with a base probability of 0.42 and reached a final

susceptibility estimate of 0.9.

This simpler yet effective overview is provided in Figure 10. There, in panel (a) we374

propose once more the same information provided in Figure 9 for two slope units. The375

way this plot can be read is to start from the bottom, where again the base susceptibil-376

ity is 0.42 and then monitor the variations brought by each predictor listed on the y-axis.377

As for panel (b), we plotted it to demonstrate that this type of plotting makes it pos-378

sible to compare as many slope unit as one desires.379

The ExAI proposed by Lundberg and Lee (2017) suggests even more tools to vi-380

sualize the model output. However, we consider the last illustration to be the most ef-381

fective among all the available ones. For this reason, we have equipped our web appli-382

cation precisely with this type of visualization. The app can be accessed at the follow-383

ing link: https://arcg.is/0unziD. There, we have placed the final susceptibility map pro-384

duced by our ExAI (see Figure 11).385

Each mapping unit that constitutes the map can then be interactively queried. Specif-386

ically, by clinking on any slope unit, the system plots the ExAI according to the style387

explained above.388

Below we present to examples captured from two adjacent SUs. Figures 12 and 13389

provide two examples of how to visualize the ExAI decision within our web application,390

for two SUs estimated to be unstable and stable, respectively.391

6 Discussion392

The model we present relied on a relative small number of predictors. We opted393

for this structure to offer a simple and efficient visualization of the ExAI decisions. This394

characteristics has led our ExAI to highlight minimal contributions of terrain character-395

istics other that the slope steepness, in addition to which the ground motion determines396

most of the final probability. Nevertheless, this already provides a good idea of what ExAI397

can do and how its decisions can be queried in depth to understand the extent to which398
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Figure 10. Panel (a) summarizes all the information presented in Figure 9 in a much more

straightforward way. The variation of the probability estimates for the two slope units is com-

pressed in a single line plot. Panel (b) makes it possible to present the whole information for all

slope units partitioning the study area.

Figure 11. General overview of the web application. The susceptibility map we obtained by

using our ExAI is depicted here into five equal spaced classes.
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Figure 12. Example of an ExAI query for an unstable SU.

Figure 13. Example of an ExAI query for a stable SU.
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one can trust the maps it produces. The traditional variable importance plot in fact, is399

unsuitable to provide the whole picture. Figure 6 simply illustrates the extent to which400

each variable dominates the outcome. However, it does not tell the user whether this makes401

sense from an interpretative standpoint. For instance, it indeed makes sense that Slpm402

and PGVUsgs does control most of the probability of landslide occurrence for the co-seismic403

example we considered in this work. However, the artificial intelligence behind could in-404

crease the probability at decreasing values of slope steepness and/or ground motion; some-405

thing that would violate our basic understanding of the physics behind the genesis of a406

the failure mechanism. For this reason, response plots like Figure 7 add another level407

of understanding for they allow to monitor variations in SHAP with respect to each pre-408

dictors’ domain. This is a capability which is typical of statistical models (Lima et al.,409

2021; Tanyaş et al., 2022) and has found very few applications in machine learning (Park,410

2015; Vorpahl et al., 2012). However, even in this case, the level of information provided411

is very generic and corresponds to the overall behaviour of each predictor with respect412

to the entire map it contributes to define. An analogous graphical representation of the413

model output is shown in Figure 8(a). And even if panel (b) adds some additional in-414

formation through the embedded colorcoding, the model could still be locally mistak-415

ing the effect of certain predictors. In fact, at the local level, no traditional statistical416

models nor machine/deep learning ones have so far provided a transparent understand-417

ing of predictors contributions and how the specifically interact with each other. This418

aspect is now achievable through ExAI and Figures such as 9 and 10 provides a clear rep-419

resentation of how this can be translated into meaningful scientific illustrations. These420

types of graphical summaries have they have been created with the idea in mind of mak-421

ing black boxes into white ones. At this local level, here expressed through SUs, one can422

examine how reliable the probabilistic estimates are. For instance, to continue the Slpm423

and PGVUsgs example mentioned above, one can query a given SU, check the SHAP value424

and then easily cross-reference it with respect to the actual steepness and ground mo-425

tion values. As a result, one can interactively realize whether steeper slopes have been426

assigned with a higher susceptibility or not. And, whether slopes that have undergone427

a greater shaking have also been estimated with a higher likelihood to host a landslide.428

The same is valid in the opposite situation an in any other level in between. In short,429

ExAI provides a window into the core calculations that the given model has gone through,430

helping the user to understand the extent to which the AI can be relied on. All this is431

essentially possible in near-real-time and our web-application is meant to highlight this432

specific characteristic. There, any user can query our model in a transparent manner that433

has not yet been reached so far within the geoscientific community. And, which we hope434

can become a standard as the use of ExAI becomes more common in the future.435

We conclude by stressing that artificially intelligent models are usually acclaimed436

due to their predictive capacity, which here we tested via a suite of validation routines.437

The results shown in Figure 4 highlight predictive performance in line with other ma-438

chine/deep learning studies, especially considering the limited number of predictors we439

opted for in this work. An important element the same figure highlights is the fact that440

despite Brenning (2012) clearly advocated for spatial cross-validations to become a stan-441

dard in susceptibility modeling, this is something which is rarely done. And yet, a spa-442

tial cross-validation constitutes an important element to really assess the extent to which443

a given data-driven model can be used to predict natural hazard occurrences in areas444

outside the training set. This is an important characteristic that goes beyond the explain-445

ability or not of a given model, but it allows to estimate the minimum (worst-case sce-446

nario) one could expect when transferring the prediction elsewhere.447

7 Conclusions448

Explainable artificially intelligence represents the future of data-driven models in449

any scientific area. The prediction capacity of complex modeling architectures can be450

–16–



manuscript submitted to Earth’s Future

dissected into its simpler elements, allowing one to understand the reason behind a model451

result, leaving behind the negative connotation of the black box label and finally open-452

ing up towards white box characteristics even in the context of machine/deep learning.453

Our work here introduces ExAI for landslide prediction and it is meant to offer an454

overview of the potential that this new generation of models can offer and will certainly455

offer in the future. We see ExAI as a milestone in the history of data-driven models and456

the extent to which these models may change the way we perceive artificially intelligent457

decisions is yet to be unraveled. However, we also see an opening for improvements. Cur-458

rently, and this is also valid in this manuscript, ExAI is mainly integrated as part of bi-459

nary classifiers. However, the information of where landslides may occur is not the only460

important element in the chain of hazard assessment. Another important notion would461

be estimating how large landslides may be once they trigger on a slope labeled as un-462

stable. Few data-driven models have already been proposed to address this issue and we463

see the next step to do the same in the context of ExAI, where the expected dimension464

of a landslide can be precisely predicted while contextually providing information on why465

it may reach that extent.466

Similar considerations can be extended to estimate potential losses and open up467

this framework towards societal risk modeling. And again, similar considerations can be468

extended to beyond the pure spatial context and towards spatio-temporal modeling.469

In summary, ExAI applications are at an infancy stage and much is to be explored470

on what can be improved and how their use can be directed to address other research471

questions. In this work, we hoped to highlight its strength and stimulate the spread of472

ExAI even further. For this specific reason, we have build an interactive demonstration473

accessible at https://arcg.is/0unziD. Moreover, to promote reproducibility and repeata-474

bility, data and codes have also been shared in a FAIR complying repository (https://475

doi.org/10.5281/zenodo.6976122) (Dahal & Lombardo, 2022).476
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