An account for the geomagnetic disturbances due to space weather events during offshore directional drilling. A proper use of the adjacent land-based observatory magnetic field data

Mikhail Kruglyakov^{1,1}, Alexey Kuvshinov^{2,2}, and Manoj C. Nair^{3,3}

¹University of Otago ²Institute of Geophysics ³University of Colorado at Boulder and NOAA/NGDC

November 30, 2022

Abstract

Directional drilling in the oil fields relies particularly on the "on-fly" measurements of the natural magnetic field (measurements while drilling; MWD); the MWD are eventually used to construct the well path. These measurements are the superposition of the signals from the internal, core and crustal, and external, ionospheric and magnetospheric sources and the noise from magnetic elements in the borehole assembly. The internal signals are mostly constant in time and accounted for through the Earth's internal field models. The signals of external origin give rise to diurnal and irregular spatio-temporal magnetic field variations observable in the MWD. One of the common ways to mitigate the effects of these variations in the MWD is to correct readings for the data from an adjacent land-based magnetic observatory/site. This method assumes that the land-based signals are similar to those at the seabed drilling site. In this paper, we show that the sea level and seabed horizontal magnetic fields differ significantly, reaching up to 30\,\% of sea level values in many oceanic regions. We made this inference from the global forward modeling of the magnetic field using realistic models of conducting Earth and time-varying sources. To perform such modeling, we elaborated a numerical approach to efficiently calculate the spatio-temporal evolution of the magnetic field. Finally, we propose and validate a formalism allowing researchers to obtain trustworthy seabed signals using measurements at the adjacent land-based site and exploiting the modelling results, thus without needing additional measurements at the seabed site.

A proper use of the adjacent land-based observatory magnetic field data to account for the geomagnetic disturbances during offshore directional drilling

Mikhail Kruglyakov¹, Alexey Kuvshinov², Manoj Nair³

⁵ ¹University of Otago, Dunedin, New Zealand
 ⁶ ²Institute of Geophysics, ETH Zürich, Switzerland
 ⁷ ³Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA

Key Points:

1

2

3

4

8

• We present an approach to efficiently calculate the spatio-temporal e	evolution of
a magnetic field in a given conductivity model of the Earth	
• We show that sea level and seabed horizontal magnetic field differ sig	gnificantly
• We propose and justify a formalism allowing us to calculate more ac	curately seabed
magnetic field signals using adjacent land-based data	

Corresponding author: Mikhail Kruglyakov, m.kruglyakov@gmail.com

14 Abstract

Directional drilling in the oil fields relies particularly on the "on-fly" measurements of 15 the natural magnetic field (measurements while drilling; MWD); the MWD are eventu-16 ally used to construct the well path. These measurements are the superposition of the 17 signals from the internal, core and crustal, and external, ionospheric and magnetospheric 18 sources and the noise from magnetic elements in the borehole assembly. The internal sig-19 nals are mostly constant in time and accounted for through the Earth's internal field mod-20 els. The signals of external origin give rise to diurnal and irregular spatio-temporal mag-21 netic field variations observable in the MWD. One of the common ways to mitigate the 22 effects of these variations in the MWD is to correct readings for the data from an ad-23 jacent land-based magnetic observatory/site. This method assumes that the land-based 24 signals are similar to those at the seabed drilling site. In this paper, we show that the 25 sea level and seabed horizontal magnetic fields differ significantly, reaching up to $30\,\%$ 26 of sea level values in many oceanic regions. We made this inference from the global for-27 ward modeling of the magnetic field using realistic models of conducting Earth and time-28 varying sources. To perform such modeling, we elaborated a numerical approach to ef-29 ficiently calculate the spatio-temporal evolution of the magnetic field. Finally, we pro-30 pose and validate a formalism allowing researchers to obtain trustworthy seabed signals 31 using measurements at the adjacent land-based site and exploiting the modelling results, 32 thus without needing additional measurements at the seabed site. 33

³⁴ Plain Language Summary

Knowing the position of existing and new oil wells is vital for economic and safe 35 sub-horizontal drilling operations. A lower uncertainty in well positions allows for hit-36 ting smaller targets and avoiding the risk of well collisions. Determining the well posi-37 tion relies particularly on magnetic sensors installed close to the drill bit. For this, the 38 models of spatially variable but constant in time magnetic field in the region of inter-39 est are routinely used. However, spatially and temporally varying space-weather-related 40 geomagnetic field disturbances may affect the accuracy of the well position. One of the 41 common ways to mitigate this problem is to correct magnetic field readings at a drill bit 42 for the magnetic field measurements from an adjacent land-based magnetic observatory. 43 However, this method assumes that the land-based signals are similar to those at the seabed 44 drilling site. In this paper, we show that this is not the case, i.e. the sea level and seabed 45 magnetic fields differ significantly due to the electrical conductivity of the seawater col-46 umn above the seabed site. Moreover, we propose and justify a numerical scheme which 47 allows researchers to obtain trustworthy seabed signals by still using land-based data but 48 exploiting the results of dedicated modeling. 49

50 1 Introduction

Modern directional drillers primarily rely on natural magnetic and gravitational 51 fields to determine the orientation of their borehole assembly (BHA). This is because the 52 GPS signals do not penetrate the underground. Ruggedized versions of vector magne-53 tometers and accelerometers installed in the BHA measure the magnetic and gravity fields 54 at fixed intervals when the drilling is stopped. This process is called "Measurement While 55 Drilling (MWD)". The MWD data are transmitted to the drilling surface via mud pulses 56 through the drilling fluid. By combining the magnetic and accelerometer data, the drilling 57 engineers determine the orientation of the BHA. By combining the distance drilled with 58 the orientation information, they construct the well path of the borehole within an en-59 velope of uncertainty. However, the magnetometers only provide the azimuth of the BHA 60 with respect to the local magnetic field's horizontal direction. Hence, properly convert-61 ing the magnetic measurements to geographic orientation using a geomagnetic field model 62 is imperative. At the site of the borehole, the local magnetic field is the superposition 63

of magnetic fields primarily arising from the following natural sources: Earth's core, crust 64 and space-weather-related electric currents in the magnetosphere and ionosphere. Note 65 that the MWD data might also be influenced by the magnetic signals arising from the 66 BHA. The so-called "drillstring interference" is mitigated by additional processing such 67 as multi-station analysis (e.g. Buchanan et al. (2013)) or by using tools manufactured 68 with nonmagnetic materials. The core and crustal fields (being mostly static) can be ac-69 counted for through high-resolution models of the Earth's internal field, such as the High 70 Definition Geomagnetic Model (Nair et al., 2021) and British Geological Survey Global 71 Geomagnetic Model (Beggan et al., 2021). However, electric currents in the ionosphere 72 and magnetosphere and their counterparts induced in the conducting Earth give rise to 73 diurnal and irregular variations observable in the MWD. One of the common ways for 74 MWD engineers to mitigate the space-weather effects is to correct MWD readings for 75 the magnetic field data from an adjacent land-based observatory or by interpolating the 76 magnetic variations between a group of adjacent, land-based observatories (Reay et al., 77 2005). Poedjono et al. (2015) proposed sea level magnetic measurements using autonomous 78 marine vehicles to support offshore drilling. Both of these methods assume that the sig-79 nals measured at the sea level are similar to those at the seabed drilling site. Based on 80 electromagnetic (EM) modeling, this paper shows that such approximations cannot be 81 used for an offshore site. The EM induction causes the sea level and seabed magnetic 82 fields to differ significantly at the same lateral location (i.e. at the same geographic lat-83 itude and longitude of the sea level and seabed points). Moreover, we propose and ver-84 ify a numerical formalism allowing researchers to obtain trustworthy seabed signals us-85 ing magnetic field measurements at the adjacent land-based site and magnetic fields mod-86 eled at land-based and seabed sites. 87

The paper is organized as follows. Section 2 discusses a methodology allowing us 88 to calculate accurately and efficiently time-varying magnetic field in a given conductiv-89 ity model of the Earth, provided a source of magnetic field variations is also known. The 90 methodology — being general, particularly in terms of the source parameterization 91 is implemented in this paper to model and analyze the spatio-temporal evolution of the 92 magnetic field during geomagnetic storms. Global-scale problem setup advocates the pa-93 rameterization of the magnetospheric source responsible for the storms using spherical 94 harmonics (SH). Estimation of the corresponding expansion coefficients from hourly-mean 95 observatory data is also discussed in Section 2. Note that using a large-scale source model 96 represented by SH and temporally resolved with a relatively low sampling interval (one 97 hour) precludes analysis of the high-latitude signals originating from an auroral iono-98 spheric source, typically much smaller-scale and highly variable in time. Section 3 presents 99 results of time-domain modeling of the magnetic field at sea level and seabed during the 100 storms. Modeling is performed using three-dimensional (3-D) conductivity and (data-101 based) source models built as realistic as feasible. Section 3 demonstrates that the sea 102 level horizontal magnetic fields significantly differ from those at the seabed, especially 103 during the main phase of the geomagnetic storms; recall that conventionally they are as-104 sumed to be the same in MWD applications. Section 4 compares modeling results with 105 observations at land-based and seabed sites. Further, Section 5 introduces and justifies 106 a scheme to obtain the seabed signals using the data from the adjacent land-based ob-107 servatory and the results of comprehensive modeling discussed in Section 3. A scheme 108 exploits a concept of transfer functions that relate — in frequency domain — three com-109 ponents of the magnetic field at the seabed site of interest with those at the adjacent land-110 based site. In an example of the seabed observations in the Philippine Sea, we demon-111 strate the workability of the proposed scheme. Finally, Section 6 summarizes our find-112 ings and outlines the paths for further research. The paper also includes three appen-113 114 dices detailing the theoretical results presented in the main text.

115 2 Methodology

116

2.1 Governing equations for magnetic field in the frequency domain

We start with the discussion of the problem in the frequency domain. Maxwell's equations govern EM field variations and, in the frequency domain, these equations read as

$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \sigma \mathbf{E} + \mathbf{j}^{\text{ext}}, \qquad (1)$$
$$\nabla \times \mathbf{E} = \mathbf{i}\omega \mathbf{B}, \qquad (2)$$

where μ_0 is the magnetic permeability of free space; ω is angular frequency; $\mathbf{j}^{\text{ext}}(\mathbf{r}, \omega)$ is the extraneous (inducing) electric current density; $\mathbf{B}(\mathbf{r}, \omega; \sigma)$ and $\mathbf{E}(\mathbf{r}, \omega; \sigma)$ are magnetic and electric fields, respectively. $\sigma(\mathbf{r})$ is the spatial distribution of electrical conductivity, $\mathbf{r} = (r, \theta, \varphi)$ a position vector, in our case in the spherical geometry. Note that we neglected displacement currents and adopted the following Fourier convention

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\omega) e^{-i\omega t} d\omega.$$
 (3)

We will assume that the current density, $\mathbf{j}^{\text{ext}}(\mathbf{r}, \omega)$, can be represented as a linear combination of spatial modes $\mathbf{j}_i(\mathbf{r})$

$$\mathbf{j}^{\text{ext}}(\mathbf{r},\omega) = \sum_{i=1}^{L} c_i(\omega) \mathbf{j}_i(\mathbf{r}).$$
(4)

The form of spatial modes $\mathbf{j}_i(\mathbf{r})$ (and their number, L) varies with application. For example, $\mathbf{j}^{\text{ext}}(\mathbf{r}, \omega)$ is parameterized via SH in (Püthe & Kuvshinov, 2013; Honkonen et al., 2018; Guzavina et al., 2019; Grayver et al., 2021), current loops in (Sun & Egbert, 2012), eigenmodes from the Principal Component Analysis (PCA) of the physics-based models in (Egbert et al., 2021) and (Zenhausern et al., 2021), and eigenmodes from the PCA of the data-based models in (Kruglyakov et al., 2022). In this paper — because we work on a whole sphere — we will use SH parameterization of the source, namely

$$\mathbf{j}^{\text{ext}}(\mathbf{r},\omega) = \sum_{l,m} \epsilon_l^m(\omega) \mathbf{j}_l^m(\mathbf{r}), \qquad (5)$$

where l and m are degree and order of SH, respectively, expression $\sum_{l,m}$ stands for the following double gum

lowing double sum

$$\sum_{l,m} \equiv \sum_{l=1}^{N_l} \sum_{m=-l}^l,\tag{6}$$

and $\mathbf{j}_l^m(\mathbf{r})$ is the (extraneous) source corresponding to a specific SH, namely (see Kuvshinov et al. (2021))

$$\mathbf{j}_{l}^{m}(\mathbf{r}) = \delta(r-a+)\frac{1}{\mu_{0}}\frac{2l+1}{l+1}\mathbf{e}_{r} \times \nabla_{\perp}Y_{l}^{m}(\theta,\varphi),\tag{7}$$

¹²⁹ where δ is Dirac's delta function, a+ means that \mathbf{j}_{l}^{m} flows above the Earth' surface, \mathbf{e}_{r} ¹³⁰ is radial unit vector of the spherical coordinate system, $\nabla_{\perp} = r \nabla_{H}$, ∇_{H} is tangential ¹³¹ part of gradient, $Y_{l}^{m}(\vartheta, \varphi) = P_{l}^{|m|}(\cos \theta)e^{im\varphi}$ with $P_{l}^{|m|}$ given by the Schmidt quasi-¹³² normalized associated Legendre functions.

By virtue of the linearity of Maxwell's equations with respect to the $\mathbf{j}^{\text{ext}}(\mathbf{r}, \omega)$ term, we can expand the total (i.e., inducing plus induced) magnetic field as a linear combination of individual fields \mathbf{B}_{l}^{m} ,

$$\mathbf{B}(\mathbf{r},\omega;\sigma) = \sum_{l,m} \epsilon_l^m(\omega) \mathbf{B}_l^m(\mathbf{r},\omega;\sigma),\tag{8}$$

where the $\mathbf{B}_{l}^{m}(\mathbf{r},\omega;\sigma)$ field is the "magnetic" solution of corresponding Maxwell's equations; see Equations (1)-(2) with the extraneous source in the form of $\mathbf{j}_{l}^{m}(\mathbf{r})$.

2.2 Governing equations for magnetic field in the time domain

The transformation of the Equation (8) into the time domain leads to the representation of the magnetic field as

$$\mathbf{B}(\mathbf{r},t;\sigma) = \sum_{l,m} \int_{0}^{\infty} \epsilon_{l}^{m}(t-\tau) \mathbf{B}_{l}^{m}(\mathbf{r},\tau;\sigma) \mathrm{d}\tau.$$
(9)

The reader is referred to Appendix A in (Kruglyakov et al., 2022) for more details on the convolution integrals in the latter equation. We note that we use the same notation for the fields in the time and frequency domain. Equation (9) shows how magnetic field can be calculated provided ϵ_l^m and conductivity model σ are given. To make the formula ready for implementation, one also needs to estimate an upper limit of integrals in Equation (9), or, in other words, to evaluate a time interval, T, above which $\mathbf{B}_l^m(\mathbf{r}, \tau; \sigma)$ becomes negligibly small. The latter will allow us to rewrite Equation (9) as

$$\mathbf{B}(\mathbf{r},t;\sigma) \approx \sum_{l,m} \int_{0}^{T} \epsilon_{l}^{m}(t-\tau) \mathbf{B}_{l}^{m}(\mathbf{r},\tau;\sigma) \mathrm{d}\tau.$$
(10)

Note that the upper limit in the integrals could be different for different \mathbf{j}_l^m , different components of the field, and different locations. However, we choose a conservative approach, taking a single T as a maximum from all individual upper limit estimates. Our model experiments (not shown in the paper) advocate that T should be taken as half a year.

The details of numerical calculation of the integrals in (10) are presented in Appendix A. In short, assuming that $\epsilon_l^m(t)$ are given time series with the sampling interval Δt and $T = N_t \Delta t$, one calculates $\mathbf{B}(\mathbf{r}, t_k; \sigma)$ at $t_k = k \Delta t$ as

$$\mathbf{B}(\mathbf{r}, t_k; \sigma) \approx \sum_{l,m} \sum_{n=0}^{N_t} \epsilon_l^m (t_k - n\Delta t) \mathcal{M}_{\mathbf{B}_l^m}^n(\mathbf{r}, T; \sigma).$$
(11)

¹⁴⁰ A few comments are relevant at this point.

- Quantities $\mathcal{M}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r},T;\sigma)$ are time-invariant, and for the predefined set of \mathbf{j}_{l}^{m} and a given conductivity model — are calculated only once, then stored and used, when the calculation of $\mathbf{B}(\mathbf{r},t_{k};\sigma)$ is required. Actual form and estimation of $\mathcal{M}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r},T;\sigma)$ are discussed in Appendix A.
 - **r** stands for any location, thus allowing us to calculate magnetic field at satellite altitude, ground or/and seabed.
 - Calculation of $\mathbf{B}(\mathbf{r}, t_k; \sigma)$ requires knowledge ϵ_l^m . We discuss a numerical scheme to estimate of ϵ_l^m in Section 2.3 and their actual estimation in Section 3.2.

149

152

145

146

147

148

135

2.3 A numerical scheme to estimate ϵ_l^m from observatory data

A numerical scheme for estimating ϵ_l^m from observatory data relies on the following assumptions:

- The conductivity model as realistic as possible is known to us;
- We work with time series of three components of the magnetic field **B** at J geomagnetic observatories with coordinates $\mathbf{r}_j = (a, \theta_j, \varphi_j), \ j = 1, 2, ..., J$, where ais the mean radius of the Earth. The time series are given with a sampling interval, Δt , which we take as one hour, meaning that we will work with hourly-mean observatory data.

• The above-mentioned time series are available for several years of observations, thus at time instants $t_1, t_1 + \Delta t, t_1 + 2\Delta t, \dots$

With these assumptions in mind, the calculation of ϵ_l^m at a given time instant $t_k = k\Delta t, k = 1, 2, \ldots \infty$ is performed as follows. Substituting coordinates of observatories into Equation (11) and rearranging the terms, we obtain a system of equations to determine $\epsilon_l^m(t_k)$

$$\sum_{l,m} \epsilon_l^m(t_k) \mathcal{M}^0_{\mathbf{B}_l^m}(\mathbf{r}_j, T; \sigma) = \mathbf{B}(\mathbf{r}_j, t_k; \sigma) - \sum_{l,m} \sum_{n=1}^{N_t} \epsilon_l^m(t_k - n\Delta t) \mathcal{M}^n_{\mathbf{B}_l^m}(\mathbf{r}_j, T; \sigma), \ j = 1, 2, \dots, J.$$
(12)

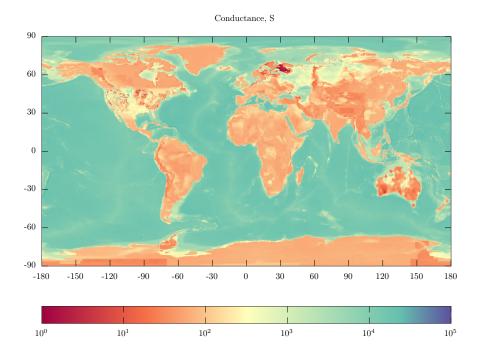
As we discussed earlier, with T as long as a half of a year, $N_t \approx 24 \times 30 = 4320$ provided sampling rate Δt is one hour. If we start with the first time instant, i.e. with $t_k = t_1$ we do not have ϵ_l^m in the past; thus actual implementation of Equation (12) requires modification of it's right-hand side as

$$\sum_{l,m} \epsilon_l^m(t_k) \mathcal{M}^0_{\mathbf{B}_l^m}(\mathbf{r}_j, T; \sigma) = \mathbf{B}(\mathbf{r}_j, t_k; \sigma) - \sum_{l,m} \sum_{n=1}^{\min(k-1, N_t)} \epsilon_l^m(t_k - n\Delta t) \mathcal{M}^n_{\mathbf{B}_l^m}(\mathbf{r}_j, T; \sigma).$$
(13)

Our model experiments (not shown in the paper) suggest that after a half of year (i.e. for $t'_{k} = (N_{t} + k)\Delta t, k = 1, 2, ...$) one obtains correct ϵ_{l}^{m} .

The expression (13) represents a system of linear equations (SLE) which is overde-162 termined when the number of unknowns (coefficients), $N_c = N_l \times (N_l + 2)$, is smaller 163 than the number of equations, $N_o = N_b \times J$, where N_b stands for number of magnetic 164 field components. In practice N_c (with $N_l = 4$ giving $N_c = 24$) is always much smaller 165 than N_o (with J near 70 and $N_b = 2$ giving $N_o = 140$). $N_b = 2$ means we use two 166 horizontal magnetic field components (assuming a prior Earth's conductivity model) to 167 estimate ϵ_l^m . We only use the horizontal components since 3-D conductivity effects in-168 fluence these components much less than the radial component (Kuvshinov, 2008). Note 169 that the choice $N_l = 4$ allows us to represent both magnetospheric and a major part 170 of the mid-latitude quasi-periodic (with period of 24 hours) ionospheric source. 171

¹⁷² Once $\epsilon_l^m(t'_k)$ are estimated for $t'_k = (N_t + k)\Delta t$, k = 1, 2, ..., one can calculate ¹⁷³ $\mathbf{B}(\mathbf{r}, t_k; \sigma), k \geq 2N_t$ using Equation (11) at any location \mathbf{r} . In our modeling studies to ¹⁷⁴ be discussed in the following sections, \mathbf{r} is either a laterally-uniform grid at the surface ¹⁷⁵ of the Earth (i.e. sea level) and at the seabed or coordinates of the land-based and seabed ¹⁷⁶ sites at which we analyze modeled and experimental results.


3 Modeling results

178

3.1 Building the conductivity model

We build the 3-D conductivity model of the Earth, which includes nonuniform oceans 179 and continents (generally with 3-D conductivity distribution) and a laterally uniform (1-D) 180 mantle underneath. In this paper, we work with hourly-mean observatory data, which, 181 in particular, means that we are forced to analyze magnetic field variations with peri-182 ods of two hours and longer due to the Nyquist-Shannon theorem. For typical values of 183 the Earth's conductivity, the penetration depth of the EM field exceeds a hundred kilo-184 metres (even at a period of two hours), much larger than the maximum ocean depths 185 and sediment thicknesses (23 km). This fact allows us to shrink the nonuniform layer 186 comprising oceans and continents into a thin shell of laterally-variable conductance (depth-187 integrated conductivity, with the depth taken as 23 km as mentioned earlier); discussion 188 on the adequacy of the thin shell model can be found in (Ivannikova et al., 2018). 189

For the conductance distribution in oceanic regions, we used $0.1^{\circ} \times 0.1^{\circ}$ marine map of conductance built by Grayver (2021). The inland conductances are obtained from

Figure 1. Global conductance distribution in the surface thin shell (in Siemens). See details in the text.

the global conductivity model of Alekseev et al. (2015) which has a lateral resolution of 0.25°×0.25°; to make it compatible with oceanic conductances, the resulting inland conductances were interpolated to $0.1^{\circ} \times 0.1^{\circ}$ grid. The inland conductance distribution was updated in North America using the recently published contiguous 3-D conductivity model of US (Kelbert et al., 2019). Figure 1 shows the global distribution of the compiled conductance. As for the 1-D structure underneath, it is taken from (Kuvshinov et al., 2021).

3.2 Estimating ϵ_l^m

199

As discussed in Section 2.3, the estimation of ϵ_l^m requires the data from a global network of geomagnetic observatories. We work with 1997–2019 collection of hourly mean time series of the geomagnetic field from equatorward of $\pm 55^{\circ}$ observatories. These data were retrieved from the British Geological Survey database (Macmillan & Olsen, 2013). The locations of observatories from which the data were used are shown in Figure 2. We then removed from the data the main field and its secular variations using the CHAOS model (Finlay et al., 2020).

Further, we solved overdetermined system of linear equations (13) to obtain coefficients ϵ_l^m at each time instant t_k (t_1 stands for 1st of January 1997 00:30:00 UTC) we take $N_l = 4$ in Equation (6), which gives us $N_c = N_l \times (N_l + 2) = 24$ coefficients per time instant. As mentioned in the previous section, we use only horizontal components of the magnetic field to estimate the coefficients.

We also note that since we consider the long (1997–2019) time series of the magnetic field, we adopt a geographic coordinate system — instead of the usually used geomagnetic coordinates — to avoid possible complications associated with the change of location of the geomagnetic pole during the considered (long) period of time.

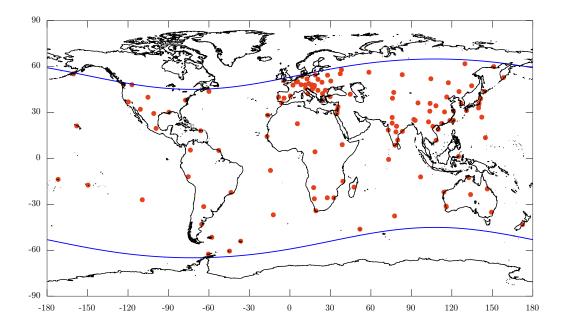


Figure 2. Locations of the observatories (red circles) from which data were used to estimate ϵ_l^m . Blue lines stand for $\pm 55^\circ$ geomagnetic latitudes.

During the observational period of 1997–2019, the number of observatories J in (13) available at any time varied in the range from 38 to 112 due to the data gaps at specific observatories.

Final comment of this section refers to computation of $\mathcal{M}_{\mathbf{B}_{l}^{m}}^{\mathbf{n}}(\mathbf{r}_{j}, T; \sigma)$. As shown in Appendix A it requires calculation of $\mathbf{B}_{l}^{m}(\mathbf{r}_{j}, \omega; \sigma)$ at a number of frequencies. Such calculations are performed by novel, accurate and efficient solver GEMMIE (Kruglyakov & Kuvshinov, 2022) which is based on an integral equation approach with contracting kernel (Pankratov & Kuvshinov, 2016). Constructively, $\mathbf{B}_{l}^{m}(\mathbf{r}, \omega; \sigma)$ are calculated on a lateral grid $0.1^{\circ} \times 0.1^{\circ}$ (in 3-D model discussed in Section 3.1) and then the results are interpolated to the observatory locations \mathbf{r}_{j} .

As an example, Figure 3 shows the time series of the dominant coefficient ϵ_1^0 estimated for 1998–2019. As expected, the time series is most disturbed in 1999–2003 (Solar Cycle No 23), the years of maximum solar activity in its 11-year cycle.

229

3.3 Sea level versus seabed modeled results

After estimating the time series of coefficients ϵ_l^m with one hour cadence for the 230 1998–2019 period, we calculate for the same period and with the same cadence the time 231 series of the magnetic field at $0.1^{\circ} \times 0.1^{\circ}$ grid — both at sea level and seabed — using 232 Equation (11). Note that 1997 year is not included into further analysis due to the rea-233 son, discussed in the Section 2.3 (see explanation after Equation 13). Having modeling 234 results for the 1998–2019 years on the $0.1^{\circ} \times 0.1^{\circ}$ grid allows us to compare sea level 235 and seabed magnetic fields globally or at specific locations for any time instant of the 236 1998–2019 period. 237

This section presents the global scale results during the main phase of three major geomagnetic storms. The main phase (centred around the peak of the geomagnetic storm) is chosen because the magnitude of the magnetic field reaches its maximum. More-

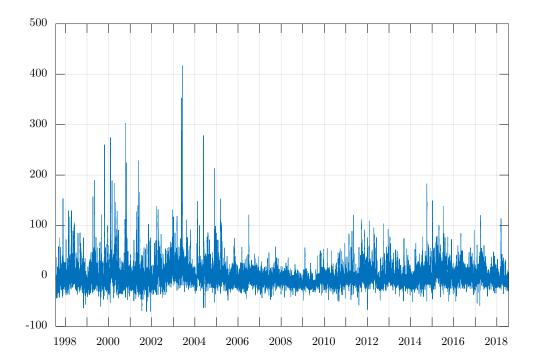


Figure 3. Time series of ϵ_1^0 estimated for 1998–2019 years. Ticks for the years stand for June 15 of the corresponding year.

over, during the main phase, the field has the most complex spatial structure due to the 241 enhanced asymmetry of the magnetospheric ring current, which is the primary source 242 of geomagnetic storm signals. The Figures 4-9 present horizontal magnetic field, $\mathbf{B}_{H} =$ 243 $(B_{\theta}, B_{\varphi})$, at sea level and corresponding differences between seabed and sea level results, 244 $d\mathbf{B}_{H} = \mathbf{B}_{H}^{\text{seabed}} - \mathbf{B}_{H}^{\text{sea} \text{ level}}$, during main phase of three storms: 7 April 2000, 30 Oc-245 tober 2003 (Halloween storm) and 17 March 2015 (St. Patrick storm). The first storm 246 is chosen because we have seabed data for it (see Section 4). Note also that we do not 247 show the radial component since it remains continuous across the ocean column for the 248 considered variations (with periods of two hours and longer). One can see that the dif-249 ference reaches 25-30% of sea level values in many oceanic regions, both in B_{θ} and B_{φ} 250 components. Their difference generally depends on the ocean's depth, but this can be 251 complicated by the spatial structure of the current sources. It is also seen that the spa-252 tial patterns of \mathbf{B}_{H} and $d\mathbf{B}_{H}$ differ from storm to storm; however, with visible dominance 253 of spatial structure responsible for the symmetric part of the magnetospheric ring cur-254 rent. 255

²⁵⁶ 4 Modeled versus observed results

Now we compare storm-time time series of the modeled and observed magnetic fields in the region where we have both sea level (land-based) and seabed magnetic field measurements. From November 1999 to July 2000, the seabed magnetotelluric (MT) survey was conducted in the Philippine Sea (Seama et al., 2007) at six locations along a line at water depths between 3250 m and 5430 m, depicted as OBEM 1, OBEM 2, ..., OBEM 6 in Figure 10. Note that OBEM 3, which was installed on the seabed between sites OBEM 2 and OBEM 4, is not shown because it did not provide reliable data.

As for the land-based site, we have chosen the Kanoya (Intermagnet code: KNY) 264 observatory, the nearest observatory to the seabed MT survey region. Figure 11 presents 265 modeled and observed \mathbf{B}_{H} at KNY and OBEM 1, OBEM 4, and OBEM 6 sites; OBEM 2 266 and OBEM 5 sites are excluded from the analysis not to overwhelm the exposition. Note 267 that the baseline and a linear trend were subtracted from the data to remove main field 268 contributions and possible instrument drift. We show the results for four days of the April 269 2000 storm, which appeared to be the only significant event during the deployment of 270 the seabed MT instruments. We can make several observations from the figure: a) mod-271 eled and observed results agree remarkably well for all (land-based and seabed) sites and 272 both components; b) an agreement is slightly better in B_{θ} which is three times larger 273 than B_{φ} ; c) seabed signals at times 20 % smaller than land-based signals which is in agree-274 ment with the global results presented in the previous section. 275

However, during offshore drilling, no seabed magnetic field measurements are per-276 formed near the site with the borehole. Therefore, to correct magnetic field measurements 277 while drilling for the disturbing effects from space-weather events (storms and substorms), 278 one usually uses the magnetic field measurements from the adjacent land-based site/observatory, 279 assuming that these signals are close to those one could observe at the seabed in the vicin-280 ity of the drilling site. But — as demonstrated in this and previous sections — land-based 281 and seabed time-varying magnetic fields differ significantly. Considering this fact and 282 encouraged by an agreement between modeled and observed results, we, in the next sec-283 tion, introduce a numerical scheme that allows researchers to obtain offshore seabed sig-284 nals from the adjacent land-based observations. 285

5 Introducing a numerical scheme to estimate offshore seabed signals from the adjacent land-based observations

Let us imagine that the drilling is performed at an offshore (seabed) site \mathbf{r}_{sb} , and one has to estimate (and then account for) magnetic variations at \mathbf{r}_{sb} . A standard way to estimate these variations is to take magnetic field variations from the nearby landbased site \mathbf{r}_{lb} , assuming that variations at \mathbf{r}_{sb} do not significantly differ from those at \mathbf{r}_{lb} . However, as we showed in Sections 3 and 4, horizontal components of the magnetic field are substantially different at sea level and seabed.

Below we propose and justify a scheme to more correctly estimate magnetic field variations at an offshore, i.e. seabed, drilling point \mathbf{r}_{sb} . A scheme exploits an assumption that frequency-domain magnetic fields at locations \mathbf{r}_{sb} and \mathbf{r}_{lb} are related through inter-site 3×3 matrix transfer function (TF) T

$$\mathbf{B}(\mathbf{r}_{sb},\omega;\sigma) \approx T(\mathbf{r}_{sb},\mathbf{r}_{lb},\omega;\sigma)\mathbf{B}(\mathbf{r}_{lb},\omega;\sigma),\tag{14}$$

where

$$T(\mathbf{r}_{sb}, \mathbf{r}_{lb}, \omega; \sigma) = \begin{pmatrix} T_{rr} & T_{r\theta} & T_{r\varphi} \\ T_{\theta r} & T_{\theta \theta} & T_{\theta \varphi} \\ T_{\varphi r} & T_{\varphi \theta} & T_{\varphi \varphi} \end{pmatrix}.$$
 (15)

It is important to stress that Equation (14) holds approximately, but as we will see later in this section, this approximation works well, especially when the lateral separation between land-based and seabed sites is not too large. Estimating the elements of T at a given frequency ω and conductivity model σ is performed as follows. First, one calculates the fields $\mathbf{B}_{l}^{m}(\mathbf{r}_{lb},\omega;\sigma)$ and $\mathbf{B}_{l}^{m}(\mathbf{r}_{sb},\omega;\sigma)$. Then, applying principal component analysis to $\epsilon_{l}^{m}(t)$ one determines three dominant combinations of the \mathbf{B}_{l}^{m} which we will denote as $\mathbf{B}^{(i)}$, i = 1, 2, 3 (see details in Appendix C). Finally, the elements of T are estimated row-wise using the $\mathbf{B}^{(i)}$ fields. For example, the elements of the first row of Tare determined as the solution of the following system of linear equations

$$T_{rr}B_{r}^{(i)}(\mathbf{r}_{lb}) + T_{r\theta}B_{\theta}^{(i)}(\mathbf{r}_{lb}) + T_{r\varphi}B_{\varphi}^{(i)}(\mathbf{r}_{lb}) = B_{r}^{(i)}(\mathbf{r}_{sb}), \ i = 1, 2, 3.$$
(16)

 Table 1. Coordinates of seabed sites, their depths, and distances to Kanoya (KNY) observatory.

Site name	Latitude	Longitude	${\rm Depth}, {\rm m}$	Distance to KNY, km
OBEM 1 OBEM 4 OBEM 6	$\begin{array}{c} 16.573 \\ 22.560 \\ 27.190 \end{array}$	$144.695 \\138.120 \\132.417$	$3259 \\ 5102 \\ 5431$	$2146 \\ 1201 \\ 478$

Note, that in Equation (16) the dependency of all quantities on ω , $\mathbf{B}^{(i)}$ on σ , and elements of T on σ , \mathbf{r}_{sb} and \mathbf{r}_{lb} are omitted but implied. Once elements of T are estimated at a predefined number of frequencies, \mathbf{B} at seabed site \mathbf{r}_{sb} at a given time instant $t_k = k\Delta t$ is calculated similarly as it was done in Equation (11), i.e.

$$\mathbf{B}(\mathbf{r}_{sb}, t_k; \sigma) \approx \sum_{n=0}^{N_t} \mathcal{T}^n(\mathbf{r}_{sb}, \mathbf{r}_{lb}, T; \sigma) \mathbf{B}(\mathbf{r}_{lb}, t_k - n\Delta t; \sigma).$$
(17)

Before showing results justifying the proposed scheme, one critical comment is rel-294 evant here. In Section 3 we stated that the radial component (for the considered vari-295 ations) is the same on the sea level and the seabed. Thus the question may arise why 296 in Equation (14) we also invoke the radial components? To address this question, we re-297 mind the reader that the statement about the similarity of the radial component at sea 298 level and the seabed is indeed valid, provided both signals refer to the exact lateral lo-299 cation. However, in the problem setup we consider, the land-based (sea level) site is usu-300 ally located at the coast (and as in our example) at a distance from the drilling point. 301 Moreover — and in contrast to horizontal components — the coastal radial field is dra-302 matically distorted by the so-called ocean induction effect originating from large lateral 303 conductivity contrasts between the ocean and land (Parkinson & Jones, 1979; Olsen & 304 Kuvshinov, 2004). Figures 12–14 illustrates this fact by presenting a radial field at a global 305 scale during the main phase of three storms mentioned above. One can see that, indeed, the magnitude of the radial component enhances substantially in coastal regions. 307

We calculated seabed fields using TF-based formalism discussed above and com-308 pared them with observations. As in Figure 11, Figure 15 shows results for four days of 309 the April 2000 storm. It is seen that TF-based and observed results are in agreement with 310 the observations at all three seabed sites and for both components. As expected, the agree-311 ment (generally very good) worsens with the distance from the land-based (KNY) site, 312 which varies from $478 \,\mathrm{km}$ to $2146 \,\mathrm{km}$ (see Table 1). KNY results which are used in (17) 313 are also shown in the figure. Once again, one may notice that land-based results differ 314 much from seabed results. 315

As a whole, Figure 15 demonstrates that, indeed, one can obtain trustworthy seabed signals by exploiting TF-based formalism as applied to adjacent land-based measurements.

318 6 Conclusions

In this paper, we presented an approach to efficiently calculating spatio-temporal evolution of magnetic field at any location (at satellite altitude, ground or seabed) in a given conductivity model of the Earth, provided the source of magnetic field variations is also known. The approach relies on the factorization of the source by spatial modes and time series of respective expansion coefficients and exploits precomputed magnetic field kernels generated by corresponding spatial modes. The methodology — being general — is implemented in this paper to model and analyze the spatio-temporal evolution of the magnetic field during geomagnetic storms. Global-scale problem setup advocates the parameterization of the magnetospheric source responsible for the storms using spherical harmonics. We also presented a numerical scheme to estimate the time series of corresponding expansion coefficients using the data from the global network of geomagnetic observatories and exploiting precomputed magnetic field kernels.

We implemented the developed approach to model magnetic field behaviour during three geomagnetic storms and demonstrated that the sea level horizontal magnetic fields significantly differ from those at the seabed, especially during the main phase of the geomagnetic storms. We then compared modeling results with observations at landbased and seabed sites and detected remarkable agreement between modeled and observed fields for all (land-based and seabed) sites and in both components.

Finally, we introduced and justified a scheme to obtain the seabed signals using the data from the adjacent land-based observatory and the results of comprehensive modeling. A method exploits a concept of transfer functions that relate – in frequency domain – three components of the magnetic field at the seabed site of interest with those at the land-based site. In an example of the seabed observations in the Philippine Sea, we demonstrate the workability of the proposed scheme.

This paper discussed magnetic fields induced by a large-scale magnetospheric source 344 that dominates in mid- and low-latitudes. However, it is well known that one can ex-345 pect much larger signals in polar regions due to substorm geomagnetic disturbances (Pirjola, 346 2002). The recovery of the spatio-temporal structure of the auroral ionospheric source, 347 which is responsible for this activity, is more challenging due to the large variability of 348 the auroral source both in time and space. One of the ways to determine realistic au-349 roral currents on a regional scale consists of collecting the data from high-latitude ge-350 omagnetic observatories and polar magnetometer arrays, e.g. IMAGE array in Scandi-351 navia (Tanskanen, 2009), CARISMA (Mann et al., 2008) and AUTUMNX (Connors et 352 al., 2016) arrays in Canada, and then reconstructing the auroral current, for example, 353 by exploiting an approach based on spherical elementary current systems, SECS (Vanhamäki 354 & Juusola, 2020). Note that this approach was used by Kruglyakov et al. (2022), who 355 discussed real-time 3-D modeling of the ground electric field due to space weather events. 356

Once the auroral source is quantified, a similar numerical scheme described in the 357 paper can be implemented with three modifications. One modification concerns the de-358 scription of the substorm source — instead of using a spherical harmonics representa-359 tion, one can approximate the spatio-temporal evolution of the auroral ionospheric cur-360 rent via spatial modes obtained by principal component analysis of SECS (Kruglyakov 361 et al., 2022). Another modification applies to the 3-D conductivity model. Since sub-362 storm magnetic variations are characterized by periods between seconds and hours, one 363 cannot exploit a model in which the surface layer is approximated by a thin shell, as this 364 paper did. The variable thickness of this layer is essential in this period range; thus, a 365 full 3-D model (including bathymetry) should be considered. The final modification in-366 vokes Cartesian geometry instead of the spherical geometry used in this paper. An ap-367 plication of the proposed scheme to a regional problem setup will be the subject of a sub-368 sequent publication. 369

370 Acknowledgments

MK was supported by the New Zealand Ministry of Business, Innovation & Employment through Endeavour Fund Research Programme contract UOOX2002. AK was supported in the framework of Swarm DISC activities, funded by ESA contract no. 4000109587,

³⁷⁴ with the support from EO Science for Society. The authors acknowledge British Geo-

- logical Survey, World Data Center Geomagnetism (Edinburgh), INTERMAGNET and 375 the many institutes around the world that operate magnetic observatories. 376
- Availability Statement 377

378

379

380

381

382

383

384

385

386

387

388

389

391

406

- The global map of ocean and sediments conductance by Grayver (2021) is available at https://github.com/agrayver/seasigma.
 - The global conductivity model by Alekseev et al. (2015) is available at https:// globalconductivity.ocean.ru/downloads.html.
- The conductivity model for North America by Kelbert et al. (2019) is available at http://ds.iris.edu/ds/products/emc-conus-mt-2021/.
 - 1-D global conductivity model is published in a form of Table 1 in (Kuvshinov et al., 2021).
 - Solver GEMMIE (Kruglyakov & Kuvshinov, 2022) is available at https://gitlab .com/m.kruglyakov/gemmie under GPL v2 license.
 - The data of the ocean bottom survey is available at http://ohpdmc.eri.u-tokyo .ac.jp/dataset/campaign/obem/phs99-00/data/index.html.
- The cleaned magnetic field data based on measurements from the global (INTER-390 MAGNET) network of observatories are available by following the instructions at https://notebooks.vires.services/notebooks/04c2geomag-ground-data-vires. 392

References 393

- Alekseev, D., Kuvshinov, A., & Palshin, N. (2015). Compilation of 3-D global con-394 ductivity model of the Earth for space weather applications. Earth, Planets 395 and Space, 67, 108-118. 396
- Beggan, C. D., Macmillan, S., Brown, W. J., & Grindrod, S. J. (2021, 09). Quantify-397 ing Global and Random Uncertainties in High Resolution Global Geomagnetic 398 Field Models Used for Directional Drilling. SPE Drilling & Completion, 399 *36*(03), 603-612. doi: 10.2118/204038-PA 400
- Buchanan, A., Finn, C., Love, J. J., Worthington, E. W., Lawson, F., Maus, S., ... 401 (2013).Geomagnetic referencing-the real-time compass for Poedjono, B. 402 directional drillers. Oilfield Review, 25(3), 32-47. 403
- Connors, M., Schofield, I., Reiter, K., Chi, P. J., Rowe, K. M., & Russell, C. T. 404 The AUTUMNX magnetometer meridian chain in Québec, Canada. (2016).405
 - Earth, Planets and Space, 68, 2. doi: 10.1186/s40623-015-0354-4
- Egbert, G. D., Alken, P., Maute, A., Zhang, H., & Richmond, A. D. (2021). Model-407 ing diurnal variation magnetic fields for mantle induction studies. 408 Geophysical Journal International. doi: 10.1093/gji/ggaa533 409
- Finlay, C., Kloss, C., Olsen, N., Hammer, M., Toffner-Clausen, L., Grayver, A., & 410 Kuvshinov, A. (2020). The CHAOS-7 geomagnetic field model and observed 411 changes in the South Atlantic Anomaly. Earth, Planets and Space, 72:156. 412 doi: 10.1186/s40623-020-01252-9 413
- Grayver, A. (2021). Global 3-D electrical conductivity model of the world ocean and 414 marine sediments. Geochemistry, Geophysics, Geosystems, 22. doi: 10.1029/ 415 2021GC009950 416
- Grayver, A., Kuvshinov, A., & Werthmüller, D. (2021).Time-domain model-417 ing of 3-D Earth's and planetary electromagnetic induction effect in ground 418 and satellite observations. Journal of Geophysical Research: Space Physics, 419 e2020JA028672. doi: 10.1029/2020JA028672 420
- Guzavina, M., Grayver, A., & Kuvshinov, A. (2019). Probing upper mantle elec-421 trical conductivity with daily magnetic variations using global to local trans-422 fer functions. Geophysical Journal International, 219(3), 2125–2147. doi: 423 10.1093/gji/ggz412 424

425	Honkonen, I., Kuvshinov, A., Rastätter, L., & Pulkkinen, A. (2018). Predicting
426	global ground geoelectric field with coupled geospace and three-dimensional
427	geomagnetic induction models. Space Weather, 16(8), 1028–1041. doi:
428	10.1029/2018SW001859
429	Ivannikova, E., Kruglyakov, M., Kuvshinov, A., Rastätter, L., & Pulkkinen, A.
430	(2018). Regional 3-D modeling of ground electromagnetic field due to re-
431	alistic geomagnetic disturbances. Space Weather, 16(5), 476–500. doi:
432	10.1002/2017SW001793
433	Kelbert, A., Bedrosian, P., & Murphy, B. (2019). The first 3D conductivity model
434	of the contiguous US: reflections on geologic structure and application to in-
435	duction hazards. In J. Gannon, Z. Xu, & A. Swidinski (Eds.), Geomagnetically
436	Induced Currents from the Sun to the Power Grid. American Geophysical
437	Union. doi: 10.1102/9781119434412
438	Kruglyakov, M., & Kuvshinov, A. (2022). Modelling tippers on a sphere. <i>Geophysi-</i>
439	cal Journal International, 231(2), 737-748. doi: 10.1093/gji/ggac199
440	Kruglyakov, M., Kuvshinov, A., & Marshalko, E. (2022). Real-time 3-D modeling
441	of the ground electric field due to space weather events. A concept and its
442	validation. Space Weather. doi: 10.1029/2021SW002906
443	Kuvshinov, A. (2008). 3-D global induction in the oceans and solid Earth:
444	Recent progress in modeling magnetic and electric fields from sources of
445	magnetospheric, ionospheric and oceanic origin. Surv. Geophys., 29,
446	doi:10.1007/s10712-008-9045-z.
447	Kuvshinov, A., Grayver, A., Toffner-Clausen, L., & Olsen, N. (2021). Probing 3-D
447	electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and
440	observatory magnetic data and exploiting matrix Q-responses approach. Earth,
450	Planets and Space, 73. doi: 10.1186/s40623-020-01341-9
	Macmillan, S., & Olsen, N. (2013). Observatory data and the Swarm mission. <i>Earth</i> ,
451	
452	Planets and Space, 65, 1355-1362. Mann, I. B. Milling, D. K. Bae, I. I. Ozeke, I. C. Kale, Z. C. Murphy, K. B.
453	Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R.,
453 454	Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar-
453 454 455	Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. <i>Space Science Reviews</i> , 141(1), 413–451. doi:
453 454 455 456	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6
453 454 455 456 457	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan-
453 454 455 456 457 458	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for
453 454 455 456 457 458 459	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4)
453 454 455 456 457 458 459 460	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS
453 454 455 456 457 458 459 460	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic
453 454 455 456 457 458 459 460 461	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530.
453 454 455 456 457 458 459 460 461 462	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud-
453 454 455 456 457 458 459 460 461 462 463	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D inte-
453 454 455 456 457 458 459 460 461 462 463 464	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi:
453 454 455 456 457 458 459 460 461 462 463 464 465	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4
453 454 455 456 457 458 459 460 461 462 463 464 465 466	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo-
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo- phys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999
453 454 455 456 457 458 460 461 462 463 464 465 466 466 468	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo- phys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic
453 454 455 456 457 458 460 461 462 463 464 465 466 466 469 469	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological
453 454 455 456 457 458 460 461 462 463 464 465 466 465 466 465 466 469 470	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109–147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo- phys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90.
453 454 455 456 457 458 460 461 462 463 464 465 466 465 466 465 466 467 468 469 470 471	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo- phys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Au-
453 454 455 456 457 458 460 461 462 463 464 465 466 466 467 468 469 470 471	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer ar- ray in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernan- dez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM stud- ies with special emphasis on an uncertainty quantification and 3-D inte- gral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geo- phys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Au- tonomous Marine Vehicles to Enable Accurate Wellbore Placement in the
 453 454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413-451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109-147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Autonomous Marine Vehicles to Enable Accurate Wellbore Placement in the Arctic (Vol. All Days). Retrieved from https://doi.org/10.4043/25545-MS
 453 454 455 456 457 458 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109–147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Autonomous Marine Vehicles to Enable Accurate Wellbore Placement in the Arctic (Vol. All Days). Retrieved from https://doi.org/10.4043/25545-MS
 453 455 456 457 458 460 461 462 463 466 467 468 469 470 471 472 473 474 475 476 	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109–147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Autonomous Marine Vehicles to Enable Accurate Wellbore Placement in the Arctic (Vol. All Days). Retrieved from https://doi.org/10.4043/25545-MS doi: 10.4043/25545-MS Püthe, C., & Kuvshinov, A. (2013). Towards quantitative assessment of the hazard
 453 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109–147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Autonomous Marine Vehicles to Enable Accurate Wellbore Placement in the Arctic (Vol. All Days). Retrieved from https://doi.org/10.4043/25545-MS doi: 10.4043/25545-MS Püthe, C., & Kuvshinov, A. (2013). Towards quantitative assessment of the hazard from space weather. Global 3-D modellings of the electric field induced by a
 453 455 456 457 458 460 461 462 463 466 467 468 469 470 471 472 473 474 475 476 	 Mann, I. R., Milling, D. K., Rae, I. J., Ozeke, L. G., Kale, Z. C., Murphy, K. R., Singer, H. J. (2008). The upgraded CARISMA magnetometer array in the THEMIS era. Space Science Reviews, 141(1), 413–451. doi: 10.1007/s11214-008-9457-6 Nair, M., Chulliat, A., Woods, A., Alken, P., Meyer, B., Poedjono, B., Hernandez, J. (2021, 08). Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data (Vols. Day 4 Thu, August 19, 2021). doi: 10.4043/31044-MS Olsen, N., & Kuvshinov, A. (2004). Modelling the ocean effect of geomagnetic storms. Earth, Planets and Space, 56, 525-530. Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with special emphasis on an uncertainty quantification and 3-D integral equation modelling. Surveys in Geophysics, 37(1), 109–147. doi: 10.1007/s10712-015-9340-4 Parkinson, W. D., & Jones, F. W. (1979). The geomagnetic coast effect. Rev. Geophys., 17(8), 1999-2015. doi: 10.1029/rg017i008p01999 Pirjola, R. (2002). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems. Surv. Geophys., 23, 71-90. Poedjono, B., Pai, S., Maus, S., Manoj, C., & Paynter, R. (2015, 03). Using Autonomous Marine Vehicles to Enable Accurate Wellbore Placement in the Arctic (Vol. All Days). Retrieved from https://doi.org/10.4043/25545-MS doi: 10.4043/25545-MS Püthe, C., & Kuvshinov, A. (2013). Towards quantitative assessment of the hazard

Reay, S., Allen, W., Baillie, O., Bowe, J., Clarke, E., Lesur, V., & Macmillan, S. 480 (2005). Space weather effects on drilling accuracy in the North Sea. Annales 481 Geophysicae, 23, 3081–3088. 482 Seama, N., Baba, K., Utada, H., Toh, H., Tada, N., Ichiki, M., & Matsuno, T. 483 (2007).1-D electrical conductivity structure beneath the Philippine Sea: 484 Results from an ocean bottom magnetotelluric survey. Phys. Earth Planet. 485 Int., 162. doi: 10.1016/j.pepi.2007.02.014 486 Sun, J., & Egbert, G. D. (2012). Spherical decomposition of electromagnetic fields 487 generated by quasi-static currents. GEM - International Journal on Geomathe-488 matics, 3(2), 279-295. doi: 10.1007/s13137-012-0039-0 489 Tanskanen, E. I. (2009).A comprehensive high-throughput analysis of sub-490 storms observed by IMAGE magnetometer network: Years 1993–2003 ex-491 amined. Journal of Geophysical Research: Space Physics, 114(A5). doi: 492 10.1029/2008JA013682 493 Vanhamäki, H., & Juusola, L. (2020). Introduction to Spherical Elementary Current 494 Systems. In M. W. Dunlop & H. Lühr (Eds.), Ionospheric multi-spacecraft 495 analysis tools: Approaches for deriving ionospheric parameters (pp. 5–33). 496 Cham: Springer International Publishing. doi: 10.1007/978-3-030-26732-2_2 497 Werthmüller, D., Key, K., & Slob, E. C. (2019). A tool for designing digital filters 498 for the Hankel and Fourier transforms in potential, diffusive, and wavefield 499 modeling. Geophysics, 84(2), F47–F56. doi: 10.1190/geo2018-0069.1 500 Zenhausern, G., Kuvshinov, A., Guzavina, M., & Maute, A. (2021). Towards prob-501 ing Earth's upper mantle with daily magnetic field variations: exploring a 502 Earth, Planets and Space, 73, physics-based parametrization of the source. 503

136. doi: 10.1186/s40623-021-01455-8

504

Appendix A Details of the numerical computation of magnetic field in time domain

In this section we provide details how equation

$$\mathbf{B}(\mathbf{r}_s, t; \sigma) = \sum_{l,m} \int_0^\infty \epsilon_l^m(t-\tau) \mathbf{B}_l^m(\mathbf{r}_s, \tau; \sigma) \mathrm{d}\tau \approx \sum_{l,m} \int_0^T \epsilon_l^m(t-\tau) \mathbf{B}_l^m(\mathbf{r}_s, \tau; \sigma) \mathrm{d}\tau, \qquad (A1)$$

in an assumption that ϵ_l^m are discrete time series with sampling interval Δt , is deduced to equation

$$\mathbf{B}(\mathbf{r}_s, t_k; \sigma) \approx \sum_{l,m} \sum_{n=0}^{N_t} \epsilon_l^m (t_k - n\Delta t) \mathcal{M}_{\mathbf{B}_l^m}^n (\mathbf{r}_s, T; \sigma),$$
(A2)

where t_k is a current time instant. First we notice that with finite T, one must account for a possibly substantial linear trend in time series $\epsilon_l^m(t)$. By removing the trend, we are forced to work with the following function

$$d_{l}^{m}(t,\tau;T) = \begin{cases} \epsilon_{l}^{m}(t-\tau) - \epsilon_{l}^{m}(t) - \frac{\epsilon_{l}^{m}(t-T) - \epsilon_{l}^{m}(t)}{T}\tau, & \tau \in [0,T] \\ 0, & \tau \notin [0,T]. \end{cases}$$
(A3)

Substituting Equation (A3) into the RHS of Equation (A1), and considering (for simplicity) only one term in the sum, we obtain

$$\int_{0}^{T} \epsilon_{l}^{m}(t-\tau) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau = \epsilon_{l}^{m}(t) \int_{0}^{T} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau + \int_{0}^{T} d_{l}^{m}(t,\tau;T) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau + \frac{\epsilon_{l}^{m}(t-T) - \epsilon_{l}^{m}(t)}{T} \int_{0}^{T} \tau \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau.$$
(A4)

Recall that T should be taken large enough to make approximation (A1) valid; particularly, this means that

$$\int_{0}^{T} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau \approx \int_{0}^{\infty} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau.$$
(A5)

Following Appendix A of Kruglyakov et al. (2022) the integral in the RHS of the latter equation can be expressed as

$$\int_{0}^{\infty} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma)d\tau = \lim_{T \to \infty} \frac{2}{\pi} \int_{0}^{T} \left[\int_{0}^{\infty} \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)\cos(\omega\tau)d\omega \right] d\tau =$$

$$\lim_{T \to \infty} \frac{2}{\pi} \int_{0}^{\infty} \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)\frac{\sin(\omega T)}{\omega}d\omega = \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)|_{\omega=0}$$
(A6)

Then, Equation (A4) can be approximated as

$$\int_{0}^{T} \epsilon_{l}^{m}(t-\tau) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau \approx \epsilon_{l}^{m}(t) \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)|_{\omega=0} + \int_{0}^{T} d_{l}^{m}(t,\tau;T) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau + [\epsilon_{l}^{m}(t-T) - \epsilon_{l}^{m}(t)] \mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma),$$
(A7)

where

$$\mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma) = \frac{1}{T} \int_{0}^{T} \tau \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau.$$
(A8)

The integrals $\mathcal{L}_l^m(\mathbf{r}_s, T; \sigma)$ can be computed using the digital filter technique (see Appendix B), whereas second term in the RHS of Equation (A7) is estimated as follows.

Taking into account that we have $\epsilon_l^m(t)$ at discrete time instants, $t = n\Delta t, n = 0, 1, \ldots$, we approximate $d_l^m(t, \tau; T)$ using the Whittaker-Shannon (sinc) interpolation formula

$$d_l^m(t,\tau;T) \approx \sum_{n=0}^{m\Delta t \ge 1} d_l^m(t,n\Delta t;T) \operatorname{sinc} \frac{\tau - n\Delta t}{\Delta t},$$
(A9)

where

$$\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}.$$
(A10)

Recall that sinc interpolation is a method to construct a continuous band-limited function from a sequence of real numbers, in our case time series d_l^m at time instants $t = n\Delta t, n = 0, 1, \ldots$ Note that in our context, the term "band-limited function" means that non-zero values of a Fourier transform of this function are confined to the frequencies

$$|\omega| \le \frac{\pi}{\Delta t}.\tag{A11}$$

Using the approximation (A9) and taking into account that $\mathbf{B}_l^m(\mathbf{r}_s, \tau; \sigma) = 0, \tau < 0$ (see Appendix A of Kruglyakov et al. (2022)), one obtains

$$\int_{0}^{T} d_{l}^{m}(t,\tau;T) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau \approx \int_{0}^{\infty} d_{l}^{m}(t,\tau;T) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau =$$
(A12)

$$\int_{-\infty}^{\infty} d_l^m(t,\tau;T) \mathbf{B}_l^m(\mathbf{r}_s,\tau;\sigma) d\tau = \sum_{n=0}^{n\Delta t \le T} d_l^m(t,n\Delta t;T) \int_{-\infty}^{\infty} \mathbf{B}_l^m(\mathbf{r}_s,\tau;\sigma) \operatorname{sinc} \frac{\tau - n\Delta t}{\Delta t} d\tau.$$

Thus, we can write

$$\int_{0}^{T} d_{l}^{m}(t,\tau;T) \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) d\tau = \sum_{n=0}^{n\Delta t \leq T} d_{l}^{m}(t,n\Delta t;T) \widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r}_{s};\sigma),$$
(A13)

where

$$\widetilde{\mathcal{M}}^{n}_{\mathbf{B}^{m}_{l}}(\mathbf{r}_{s};\sigma) = \int_{-\infty}^{\infty} \mathbf{B}^{m}_{l}(\mathbf{r}_{s},\tau;\sigma) \operatorname{sinc} \frac{\tau - n\Delta t}{\Delta t} d\tau.$$
(A14)

Further, following the properties of the Fourier transform as applied to sinc function, we obtain that

$$\widetilde{\mathcal{M}}^{n}_{\mathbf{B}^{m}_{l}}(\mathbf{r}_{s};\sigma) = \frac{\Delta t}{2\pi} \int_{-\frac{\pi}{\Delta t}}^{\frac{\pi}{\Delta t}} \mathbf{B}^{m}_{l}(\mathbf{r}_{s},\omega;\sigma) e^{-i\omega n\Delta t} d\omega = \operatorname{Re}\left\{\frac{\Delta t}{\pi} \int_{0}^{\frac{\pi}{\Delta t}} \mathbf{B}^{m}_{l}(\mathbf{r}_{s},\omega;\sigma) e^{-i\omega n\Delta t} d\omega\right\}.$$
(A15)

Finally, substituting Equation (A13) in Equation (A7), and (A7) in the RHS of (A1) we obtain

$$\mathbf{B}(\mathbf{r}_{s},t_{k};\sigma) \approx \sum_{l,m} \left\{ \epsilon_{l}^{m}(t) \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma) \big|_{\omega=0} + \sum_{n=0}^{N_{t}} d_{l}^{m}(t_{k},n\Delta t;T) \widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r}_{s};\sigma) + \left[\epsilon_{l}^{m}(t_{k}-T) - \epsilon_{l}^{m}(t_{k}) \right] \mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma) \right\}.$$

The latter equation can be written in the form of Equation (A2) where

$$\mathcal{M}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r}_{s},T;\sigma) = \begin{cases} \operatorname{Re} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)|_{\omega=0} - \mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma) - \sum_{k=1}^{N_{t}-1} \widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{k}(\mathbf{r}_{s};\sigma) \left(1 - \frac{k}{N_{t}}\right), & n = 0\\ \widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r}_{s};\sigma), & n = 1, 2, \dots, N_{t}-1\\ \mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma) - \sum_{k=1}^{N_{t}-1} \widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{k}(\mathbf{r}_{s};\sigma) \frac{k}{N_{t}}, & n = N_{t} \end{cases}$$
(A16)

and where $\mathcal{L}_{l}^{m}(\mathbf{r}_{s}, T; \sigma)$, and $\widetilde{\mathcal{M}}_{\mathbf{B}_{l}^{m}}^{n}(\mathbf{r}_{s}; \sigma)$ are defined in Equations (A8) and (A15), respectively.

⁵¹³ Computation of the integrals in the RHS of Equation (A15) is performed as fol-⁵¹⁴ lows. First, $\mathbf{B}_l^m(\mathbf{r}_s, \omega; \sigma)$ are computed at zero frequency and at 43 logarithmically spaced ⁵¹⁵ frequencies between $1/\Delta t$ and $1/(10^7 \Delta t)$, where Δ is one hour for our problem setup. ⁵¹⁶ Further, using cubic spline interpolation as applied to calculated $\mathbf{B}_l^m(\mathbf{r}_s, \omega; \sigma)$, one can ⁵¹⁷ analytically compute integrals in the RHS of Equation (A15).

An important note here is that, according to (A15), one does not need to compute $\mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma)$ for $\omega > \frac{\pi}{\Delta t}$ (corresponding to the period $P = 2\Delta t$). This may be obvious, however, this is not the case if one uses piece-wise constant (PWC) approximation of $\epsilon_{l}^{m}(t)$ as it is done, for example, in (Grayver et al., 2021). With PWC approximation, one is forced to compute the fields at very high frequencies irrespective of Δt value; this can pose a problem from the numerical point of view.

$_{^{524}}$ Appendix B Computation of $\mathcal{L}_l^m(\mathbf{r}_s,T;\sigma)$

Since $\mathbf{B}_l^m(\mathbf{r}_s, \tau; \sigma)$ is real-valued and causal, it can be written as (cf. Appendix A of Kruglyakov et al. (2022))

$$\mathbf{B}_{l}^{m}(\mathbf{r}_{s},\tau;\sigma) = \frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma) \sin(\omega\tau) \, d\omega.$$
(B1)

Substituting the latter equation into Equation (A8) and rearranging the order of integration, we write $\mathcal{L}_l^m(\mathbf{r}_s, T; \sigma)$ in the following form

$$\mathcal{L}_{l}^{m}(\mathbf{r}_{s},T;\sigma) = T \int_{0}^{\infty} \Phi(\omega T) \operatorname{Im} \mathbf{B}_{l}^{m}(\mathbf{r}_{s},\omega;\sigma) d\omega,$$
(B2)

where $\Phi(\omega T)$ reads

$$\Phi(\omega T) = \frac{2}{\pi} \frac{1}{T^2} \int_0^T \tau \sin(\omega \tau) d\tau = \frac{2}{\pi} \left[\frac{\sin(\omega T)}{(\omega T)^2} - \frac{\cos(\omega T)}{\omega T} \right].$$
 (B3)

Integrals in (B2) can be efficiently estimated using the digital filter technique. Specifically, one needs to construct a digital filter for the following integral transform

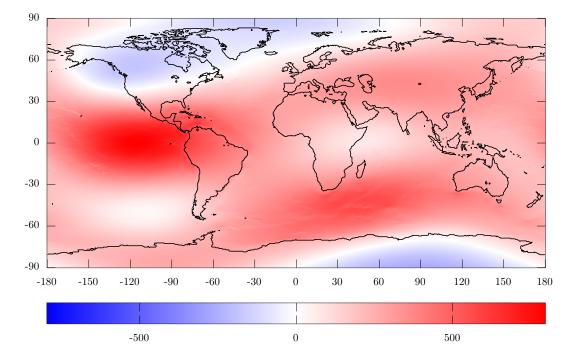
$$F(T) = T \int_{0}^{\infty} \Phi(\omega T) f(\omega) d\omega.$$
 (B4)

To obtain filter's coefficients for this transform, we exploit the same procedure as in Werthmüller et al. (2019) using the following pair of output and input functions

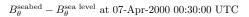
$$F(T) = \frac{(T+1)e^{-T} - 1}{T},$$

$$f(\omega) = \frac{\omega}{1+\omega^2}.$$
(B5)

525 Appendix C Obtaining $B^{(i)}$, i = 1, 2, 3

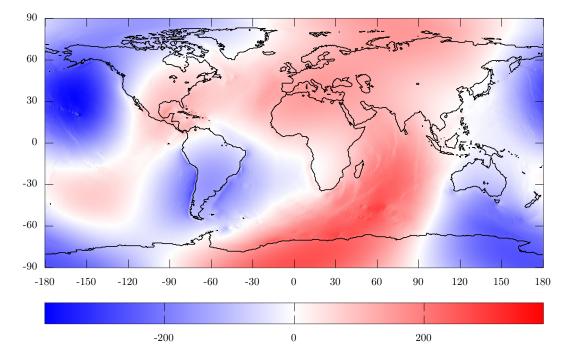

Here we present a scheme to obtain $\mathbf{B}^{(i)}$, i = 1, 2, 3 thus allowing us to calculate the desired inter-site transfer function (cf. Equation 14). Specifically, the scheme includes the following steps:

- ⁵²⁹ 1. We estimate $N_c = 24$ times series $\epsilon_l^m(t)$ as in Section 3.2
 - 2. We perform principal component analysis of these time series to obtain 3 "major modes" with time-series $\nu_i(t)$, i = 1, 2, 3 and 3×24 (time independent) matrix \mathcal{D} to express new series in terms of the old ones


$$\nu_i(t) = \sum_{l,m} \mathcal{D}_i^{l,m} \epsilon_l^m(t), i = 1, 2, 3, \tag{C1}$$


3. We apply matrix \mathcal{D} to \mathbf{B}_{l}^{m} (both in time and frequency domain) to obtain fields $\mathbf{B}^{(i)}$ corresponding to $\nu_{i}(t)$, i = 1, 2, 3 as

$$\mathbf{B}^{(i)}(\mathbf{r},t;\sigma) = \sum_{l,m} \mathcal{D}_{i}^{l,m} \mathbf{B}_{l}^{m}(\mathbf{r},t;\sigma),$$
$$\mathbf{B}^{(i)}(\mathbf{r},\omega;\sigma) = \sum_{l,m} \mathcal{D}_{i}^{l,m} \mathbf{B}_{l}^{m}(\mathbf{r},\omega;\sigma).$$
(C2)


 $B_{\theta}^{\rm sea\ level}$ at 07-Apr-2000 00:30:00 UTC

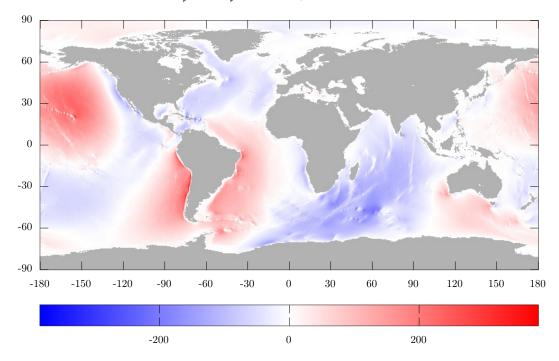
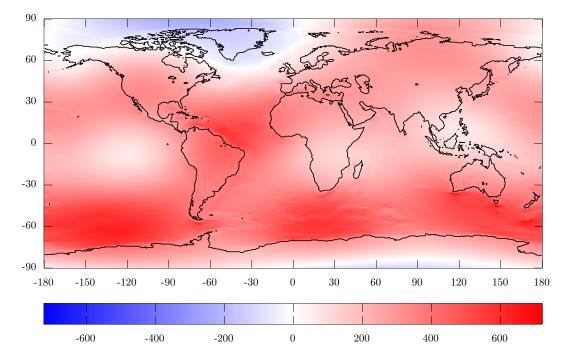


Figure 4. Modeled $B_{\theta}^{\text{sea level}}$ (top) and $B_{\theta}^{\text{seabed}} - B_{\theta}^{\text{sea level}}$ (bottom) at 00:30 07 April 2000 UTC. The results are in nT.

 $B_{\varphi}^{\rm sea\ level}$ at 07-Apr-2000 00:30:00 UTC



 $B_{\varphi}^{\rm seabed}-B_{\varphi}^{\rm sea\ level}$ at 07-Apr-2000 00:30:00 UTC

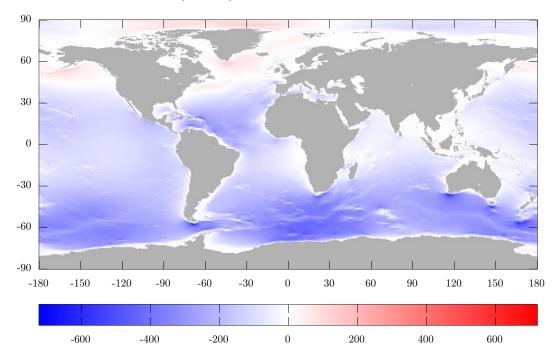
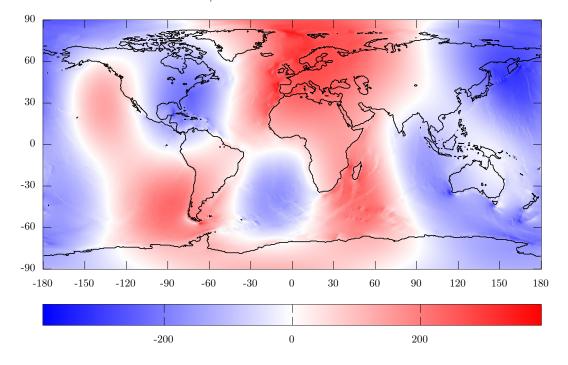


Figure 5. Modeled $B_{\varphi}^{\text{sea level}}$ (top) and $B_{\varphi}^{\text{seabed}} - B_{\varphi}^{\text{sea level}}$ (bottom) at 00:30 07 April 2000 UTC. The results are in nT.

 $B_{\theta}^{\rm sea\ level}$ at 30-Oct-2003 20:30:00 UTC



 $B_{\theta}^{\rm seabed} - B_{\theta}^{\rm sea\ level}$ at 30-Oct-2003 20:30:00 UTC

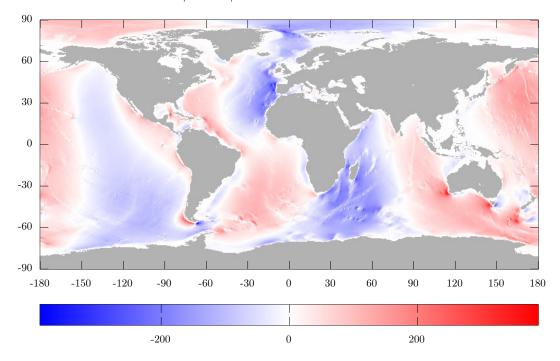
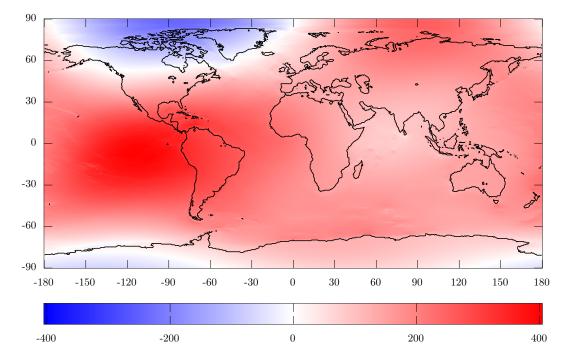


Figure 6. Modeled $B_{\theta}^{\text{sea level}}$ (top) and $B_{\theta}^{\text{seabed}} - B_{\theta}^{\text{sea level}}$ (bottom) at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.

 $B_{\varphi}^{\rm sea~level}$ at 30-Oct-2003 20:30:00 UTC



 $B_{\varphi}^{\rm seabed}-B_{\varphi}^{\rm sea}$ level at 30-Oct-2003 20:30:00 UTC

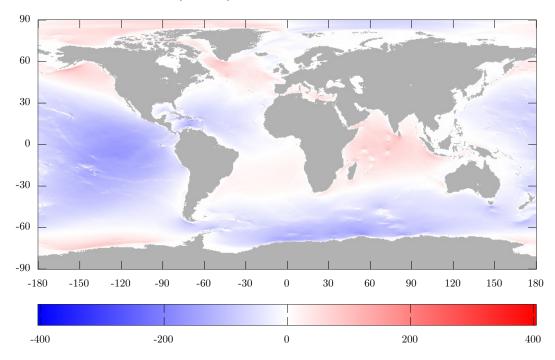


Figure 7. Modeled $B_{\varphi}^{\text{sea level}}$ (top) and $B_{\varphi}^{\text{seabed}} - B_{\varphi}^{\text{sea level}}$ (bottom) at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.

 $B_{\theta}^{\rm sea\ level}$ at 17-Mar-2015 23:30:00 UTC

 $B_{\theta}^{\rm seabed} - B_{\theta}^{\rm sea\ level}$ at 17-Mar-2015 23:30:00 UTC

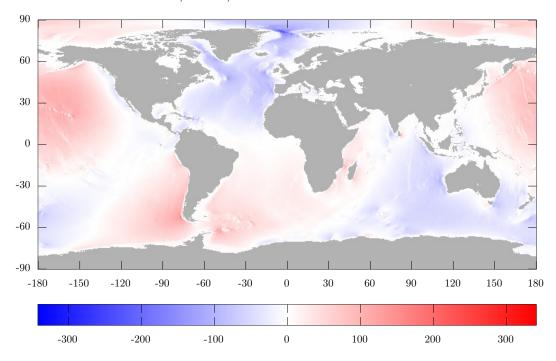


Figure 8. Modeled $B_{\theta}^{\text{sea level}}$ (top) and $B_{\theta}^{\text{seabed}} - B_{\theta}^{\text{sea level}}$ (bottom) at 23:30 17 March 2015 UTC (St. Patrick storm). The results are in nT.

 $B_{\varphi}^{\rm sea\ level}$ at 17-Mar-2015 23:30:00 UTC

 $B_{\varphi}^{\rm seabed}-B_{\varphi}^{\rm sea\ level}$ at 17-Mar-2015 23:30:00 UTC

Figure 9. Modeled $B_{\varphi}^{\text{sea level}}$ (top) and $B_{\varphi}^{\text{seabed}} - B_{\varphi}^{\text{sea level}}$ (bottom) at 23:30 17 March 2015 UTC (St. Patrick storm). The results are in nT.

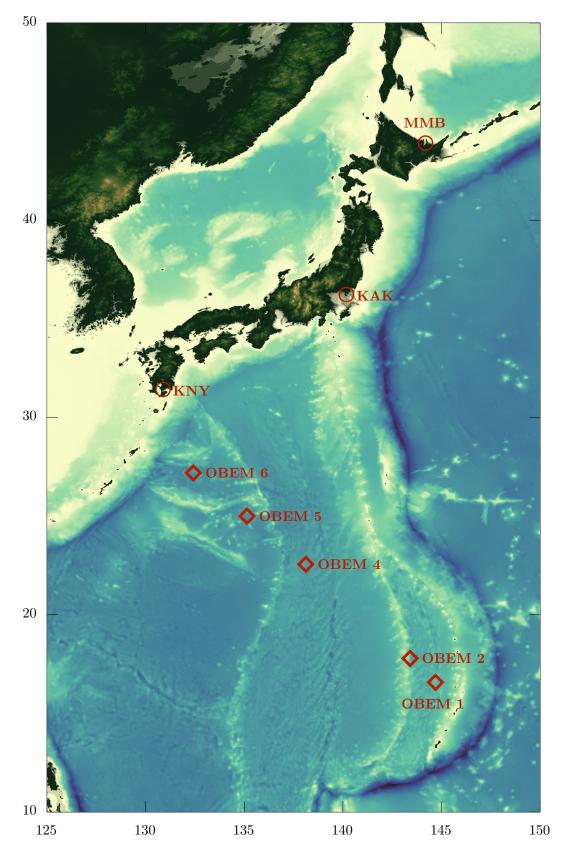
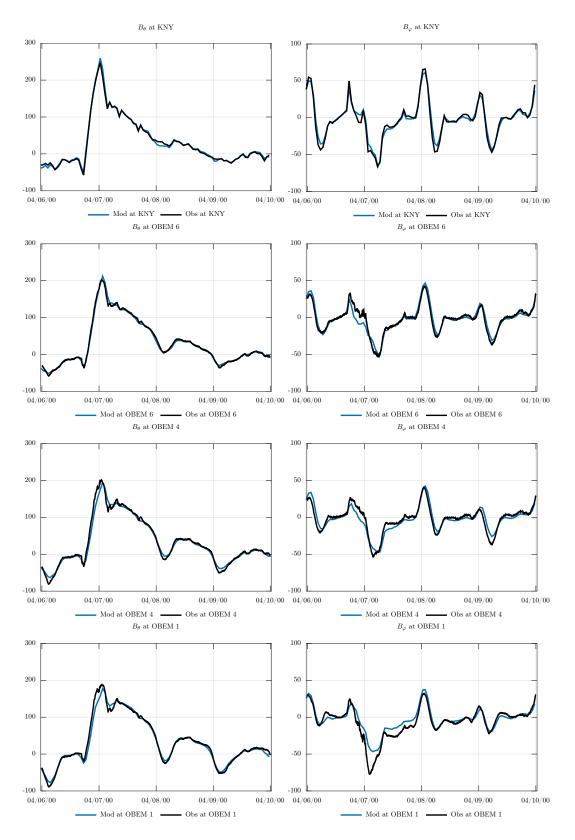
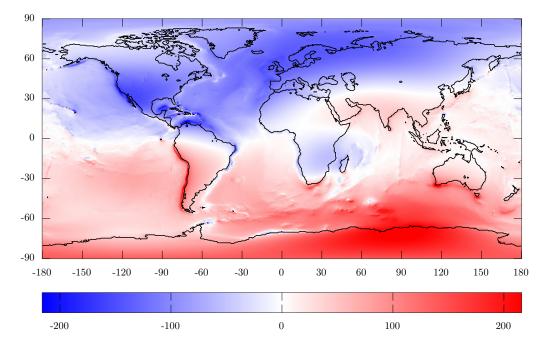
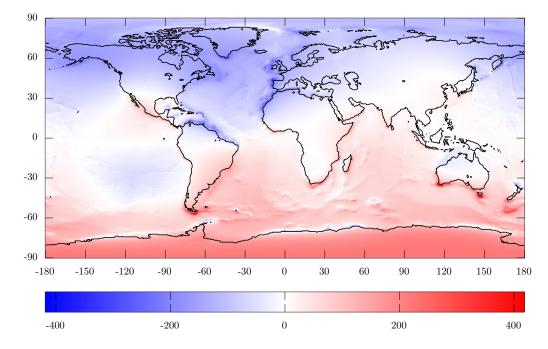
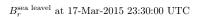
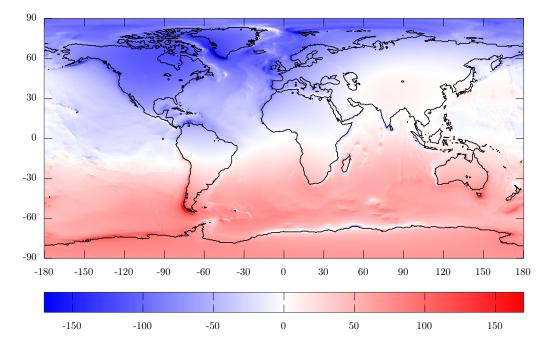



Figure 10. Locations of the land-based sites (Japanese geomagnetic observatories) and seabed sites. Note that OBEM 3, which was installed on the seabed between OBEM 2 and OBEM 4, did not provide useful data. Colours indicate topography/bathymetry.

Figure 11. Modeled (blue) and observed (black) B_{θ} (left) and B_{φ} (right) at KNY and OBEM 1, OBEM 4, and OBEM 6 sites during 4–9 April 2000 storm. The results are in nT. Time is in UTC.

 $B_r^{\rm sea\ leavel}$ at 07-Apr-2000 00:30:00 UTC


Figure 12. Modeled $B_r^{\text{sea level}}$ at 00:30 07 April 2000 UTC. The results are in nT.

 $B_r^{\rm sea\ leavel}$ at 30-Oct-2003 20:30:00 UTC

Figure 13. Modeled $B_r^{\text{sea level}}$ at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.

Figure 14. Modeled $B_r^{\text{sea level}}$ at 23:30 17 March 2015 UTC (St. Patrick storm). The results are in nT.

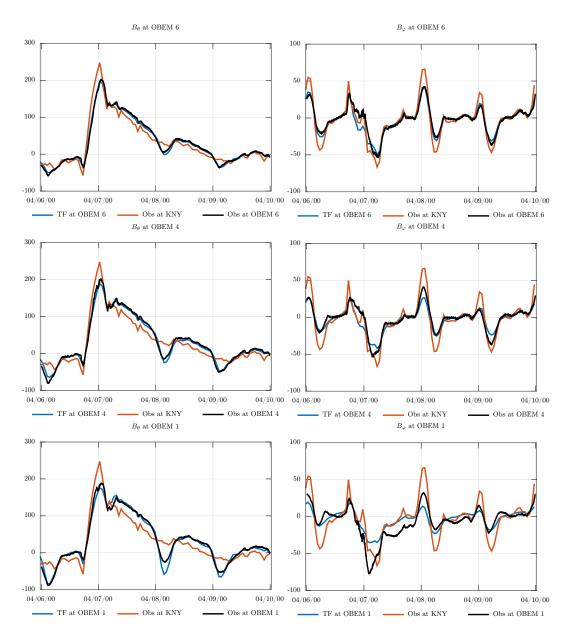


Figure 15. Modeled by transfer functions approach (blue) and observed (black) B_{θ} (left) and B_{φ} (right) at OBEM stations during 4-9 April 2000. Dark red stands for observed field components at KNY. The results are in nT. Time is in UTC.