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Abstract

The mining industry produces a considerable amount of stone waste and tailings, posing an ecological danger. This industrial

waste is often disposed of via landfill, which leads to soil degradation and water and air pollution while obtaining valuable

land. It can be recycled via a variety of methods, including the promising geopolymerization approach, which converts waste

into value. This research investigates recent advancements in the production of geopolymer composites derived from industrial

waste and mine tailings as a potential sustainable construction material. This research also provides indepth analyses of the

features and behaviours of mine tailings mixtures utilized in geopolymer production, such as their durability, microstructure,

thermal and leaching capabilities. This study also reveals an information gap that must be addressed to progress mine tailings

composites for cementitious materials.
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1. Introduction 

Mine tailings collect in tailings ponds and mine waste dumps, and proper disposal of these wastes is 

becoming more important [1, 2]. This is owing to the rising output volumes of the metallurgical and 

mining sectors, as well as the absence of an acceptable way of disposing of the waste generated by 

these businesses, on the one hand. On the other side, it may be explained by the rising stringency of 

environmental legislation in the majority of affluent nations worldwide. Lead and mercury, radioactive 

elements, and other mining tails-related pollutants are actively released into the environment as a 

consequence of the building of tails, biota, contaminating soils, air, and water, and causing cancer in 

people. Pollutants from food production and feed waste wreak havoc on valuable farms and natural 

habitats. The operation of tailing dams increases the chance of man-made disasters happening [3, 4].  

Furthermore, mine tailings should be seen as a mineral supply that has been removed from the earth's 

subsurface, transported, and misused from the perspective of rational natural resource management. 

The tailings may include trace quantities of target material as well as previously unclaimed components 

that can be reclaimed using more efficient mining processesˑ[5-10], ˑwhich ˑis ˑone ˑreason ˑfor ˑthis 

ˑviewpoint. ˑThe ˑchemical ˑcomposition ˑof ˑmine ˑtailings, ˑon ˑthe ˑother ˑhand, is primarily 

composed ˑof ˑsilicon, ˑaluminum, ˑand ˑcalcium ˑoxides, ˑwith ˑa ˑpercentage ˑranging ˑfrom ˑ60 ˑto 

ˑ90% ˑ[1-4, 11, 12]. As a consequence, tailings have the potential to act as an alternate source for 

addressing a variety of building and industrial needs.[12-14].  

A promising ˑtrend ˑin ˑthe ˑuse ˑof ˑmine ˑtailings ˑseems ˑto ˑbe ˑthe ˑuse ˑof ˑmine ˑtailings ˑas 

ˑgeopolymers ˑand ˑprecursors ˑof ˑalkali-activated ˑmaterials ˑor ˑaggregates.ˑ[15-17]. ˑGeopolymers 

ˑare ˑmaterials ˑthat ˑare ˑlargely ˑmade ˑof ˑamorphous ˑsodium ˑaluminum ˑsilicate ˑhydrate.ˑ[18]. 

ˑThey ˑ are ˑ mostly ˑ solids ˑ that ˑ result ˑ from ˑ the ˑ interaction ˑ of an aluminosilicate powder and an alkali 

solution.ˑ[19]. ˑAccording ˑto ˑvan Deventer, et al. [18], the geopolymer ˑnetwork ˑis ˑcomposed ˑof 

ˑAlO4 ˑand ˑSiO4 ˑtetrahedra ˑconnected ˑby ˑoxygen ˑatoms ˑ[19]; ˑPositively ˑcharged ˑions ˑ(e.g., 

ˑCa2
+, ˑNa+, ˑK+, ˑand ˑLi+) ˑpresent ˑin ˑthe ˑcavity ˑframework ˑbalance the negative charge. It is 

possible that using mine tailings as a geopolymer approach will not only ˑslow ˑdown ˑthe 

ˑaccumulation ˑof ˑmine ˑtailings ˑand ˑreduce ˑthe ˑlevel ˑof ˑecological ˑcontamination, ˑbut ˑit ˑwill 

ˑalso ˑcombine ˑthe ˑbenefits ˑof ˑgeopolymer ˑtechnology ˑassociated ˑwith ˑa ˑreduction ˑin ˑcarbon 

ˑdioxide ˑrelease ˑinto ˑthe ˑenvironment, ˑthe ˑpossibility ˑof ˑutilizing ˑother ˑforms ˑof 

ˑaluminosilicate ˑwaste, ˑ and ˑ the ˑversatility of geopolymer characteristicsˑ[20-24]. There has recently 
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been a significant gain in knowledge ˑacross ˑa ˑvaried ˑset ˑof ˑprofessionals ˑin ˑthe ˑmanagement ˑof 

ˑtails ˑin ˑcommon ˑapproaches. ˑOver ˑa ˑdozen ˑstudies ˑhave ˑbeen ˑpublished ˑdocumenting ˑthe 

ˑefforts ˑdone ˑto ˑimprove ˑour ˑknowledge of the geopolymerization processes of tails in order to 

manage the characteristics of geopolymers for applications such as pollution removal.ˑ[25-27], 

ˑsustainable ˑˑbuilding ˑˑ[28-32], ˑˑand ˑˑanother ˑˑparticular ˑˑusage ˑˑ[13-17]. 

The ˑmine ˑtailings ˑare ˑinhomogeneous ˑand ˑhave ˑa ˑcomplex ˑˑmineral, ˑˑaggregate, ˑˑand ˑˑchemical 

ˑˑcomposition ˑˑ[11, ˑ33-39]. ˑˑFurthermore, ˑˑalthough ˑˑhaving ˑˑrelatively ˑlow ˑquantities ˑof 

ˑvaluable ˑcomponents, ˑmine ˑtailings ˑcontain ˑhazardous ˑand ˑtoxic ˑcompounds ˑconnected ˑwith 

ˑwaste ˑ products ˑor ˑmining ˑactivities ˑ [40-44]. All of these aspects make it more ˑdifficult ˑto ˑ directly 

ˑmanage ˑmine ˑtailings ˑin ˑorder ˑto ˑcreate ˑgeopolymers ˑthat ˑfulfill ˑenvironmental ˑsafety 

ˑregulations ˑin ˑterms ˑof ˑimpurity ˑcontent ˑwhile ˑalso ˑobtaining ˑthe ˑneeded ˑcomplicated 

ˑfunctional ˑqualities for the manufactured product. [45, 46]. 

As a consequence, addressing ˑthe ˑchallenges ˑconnected ˑwith ˑthe ˑusage ˑof ˑmine ˑtailings-

geopolymer ˑcomposites ˑis ˑparticularly ˑbeneficial, ˑboth in terms of reducing the negative 

environmental effect and the promise of expanding the resource base of manufactured ˑmineral ˑraw 

ˑmaterials. ˑIt ˑis ˑvery ˑadvantageous ˑto ˑtackle ˑthe ˑchallenges ˑassociated ˑwith ˑthe ˑusage ˑof ˑmine 

ˑtailings-geopolymer ˑcomposites. ˑThis ˑreview ˑstarts ˑwith ˑa ˑdiscussion ˑof ˑsome ˑof ˑthe 

ˑphysicochemical ˑand ˑenvironmental ˑchallenges ˑsurrounding ˑthe ˑuse ˑof ˑmine ˑtailings-

geopolymer ˑcomposites. This study discusses mine tailings-geopolymer composites in depth, which 

is both a generalization and a detailed research of the relationship between their structural, mechanical, 

and thermal capacities, ˑas ˑwell ˑas ˑtheir ˑdurability ˑand ˑother ˑsignificant ˑelements. ˑAside ˑfrom 

ˑthe ˑhelpful ˑproperties ˑof ˑthe ˑdevelopment ˑof ˑthe ˑcharacteristics ˑof ˑmine ˑtailings-geopolymer 

ˑcomposites, ˑwe ˑthoroughly ˑaddress the well-known examples of their exploitation in prospective 

applications. 

 

2. Durability properties 

Only a few researchers have ˑexamined ˑthe ˑlong-term ˑdurability ˑof ˑmine ˑtailings-geopolymer 

ˑcomposites. ˑ With ˑ the ˑ help ˑof ˑ Caballero, et al. [47], the gold mine tailings-geopolymer was exposed 
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to sulfate and acid ˑsolutions ˑas ˑwell ˑas ˑhigh ˑtemperatures. ˑAccording ˑto ˑits ˑfindings, ˑas 

ˑcompared ˑto ˑa ˑreference ˑcementitious ˑcomposite, ˑthe ˑrate ˑof ˑloss ˑin ˑcompressive ˑstrength ˑwith 

ˑimmersion ˑtime ˑin ˑsulfuric ˑand ˑnitric ˑacid ˑsolutions ˑis ˑpretty ˑequal ˑin ˑgold ˑmine ˑtailings-

geopolymer ˑcomposites. ˑSimilar ˑresults ˑhave ˑbeen ˑseen ˑin ˑmagnesium ˑand ˑsodium ˑsulfate 

ˑsolutions, ˑas ˑwell ˑas ˑwhen ˑthe ˑsolutions ˑare ˑexposed ˑto ˑhigh ˑtemperatures. ˑAhmari ˑand ˑZhang 

ˑ[48] ˑdiscovered ˑthat ˑcopper ˑmine ˑtailings-geopolymer ˑcomposites ˑsubmerged ˑfor ˑ120 ˑdays ˑin 

ˑaqueous ˑsolutions ˑ with ˑpH ˑvalues ˑranging ˑbetween ˑ4 ˑand ˑ7 ˑhad ˑa ˑsubstantial ˑ drop ˑ(by ˑ58–79% 

ˑcompared ˑto ˑreference ˑspecimens) ˑin ˑtheir ˑplain ˑcompressive ˑstrength. ˑThe ˑhigh ˑinitial ˑSi/Al 

ˑproportion ˑand ˑpartial ˑgeopolymerization ˑof ˑthe ˑmine ˑtailings, ˑaccording ˑto ˑthe scientists, were 

responsible for this result. Water absorption and weight loss, ˑon ˑthe ˑother ˑhand, ˑwere ˑquite ˑminor 

ˑand ˑhad ˑlower ˑvalues ˑin ˑcomparison ˑto ˑthe ˑOPC-based ˑbinding ˑagent. ˑAnother ˑstudy ˑby 

ˑAhmari ˑand ˑZhang ˑ[49] ˑshowed ˑthat ˑintroducing ˑcement ˑkiln ˑdust ˑcan ˑimprove ˑdurability ˑand 

ˑunconfined ˑcompressive ˑstrength. ˑThe ˑbeneficial ˑimpact ˑof ˑcement ˑkiln ˑdust ˑwas ˑconnected ˑto 

ˑimproved ˑaluminosilicate ˑdissolving, ˑproduction ˑof ˑcalcium ˑcarbonate, ˑand ˑcalcium 

ˑincorporation ˑinto ˑthe ˑgeopolymer ˑsystem. ˑFalayi ˑ[50] ˑdemonstrated ˑthat ˑactivating ˑwith 

ˑpotassium ˑaluminate ˑresults ˑin ˑa ˑbetter ˑresistance ˑof ˑgeopolymers ˑto ˑalternate ˑwetting ˑand 

ˑdrying ˑthan ˑpotassium ˑsilicate. ˑIn ˑevery ˑcase, ˑthe ˑUCS ˑvalues ˑdropped ˑmore ˑthan ˑthreefold 

ˑafter ˑ10 ˑwet ˑand ˑdry ˑcycles ˑ[51-56]. ˑThis ˑmakes ˑit ˑdifficult ˑto ˑuse ˑthese ˑcomposites ˑin ˑplaces 

ˑwhere ˑthere ˑis ˑa ˑlot ˑof ˑwet ˑand ˑdry ˑtime, ˑand ˑit ˑalso ˑmakes ˑit ˑimportant ˑto ˑlook ˑinto ˑways ˑto 

ˑmitigate ˑthis. 

The ˑutilization ˑof ˑtailings ˑto ˑsubstitute ˑnatural ˑaggregates ˑ(gravel ˑor ˑsand) ˑin ˑgeopolymer 

ˑconcretes, ˑeither ˑpartially ˑor ˑcompletely, ˑmight ˑlead ˑto ˑan ˑupsurge ˑin ˑthe ˑwater ˑabsorption ˑand 

ˑporosity ˑof ˑthe ˑlatter ˑ[45, ˑ46, ˑ57-60]. ˑIn ˑturn, ˑthis ˑcan ˑmake ˑthese ˑsubstances ˑmore ˑvulnerable 

ˑto ˑchemical ˑassault, ˑwhich ˑcan ˑhave ˑa ˑdetrimental ˑimpact ˑon ˑtheir ˑoverall ˑdurability. ˑFurther 

ˑinvestigation ˑin ˑthis ˑfield ˑis ˑneeded ˑbecause ˑof ˑa ˑlack ˑof ˑunderstanding ˑabout ˑthese ˑand ˑother 

ˑcharacteristics ˑof ˑthe ˑdurability ˑof ˑ mine ˑ tailings-geopolymer ˑcomposites, ˑwhich ˑ suggests ˑa ˑneed 

ˑfor ˑfuture ˑresearch ˑin ˑthis ˑarea. 

3. Microstructure properties 

The microstructure of geopolymerization ˑproducts; ˑthe ˑcontent, ˑstructure, ˑand ˑproportion ˑof ˑthe 

ˑproduced ˑamorphous ˑand ˑcrystalline ˑphases; ˑas well as the existence, distribution, ˑand ˑsize ˑof 
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ˑpores, ˑare ˑall ˑuseful ˑfactors ˑin ˑdetermining ˑthe ˑattributes ˑof ˑmine ˑtailings-geopolymer 

composites. 

Falah, et al. [61] ˑfound ˑthat ˑrising ˑthe ˑsodium ˑsilicate ˑcontent ˑof ˑa ˑcopper ˑmine ˑtailings-

geopolymer ˑcomposite ˑby ˑup ˑto ˑ30% ˑdensifies ˑthe ˑmicrostructure ˑof ˑthe ˑmaterial. ˑIt ˑwas ˑalso 

ˑdiscovered ˑthat, ˑat ˑsuch ˑa concentration of sodium ˑsilicate, ˑalmost ˑthe ˑwhole ˑgeopolymer ˑis 

ˑchanged ˑinto ˑfused ˑrectangular ˑprisms, ˑwhich ˑindicates ˑa ˑfull ˑtransition to high alkaline 

conditions. Manjarrez, et al. [62] ˑhave ˑdiscovered ˑthat ˑwhen ˑcopper ˑslag ˑis ˑput ˑinto ˑits 

ˑgeopolymer, ˑthe ˑdensity ˑof ˑthe ˑgeopolymer rises as assessed by SEM image ˑanalysis. ˑIts ˑresults 

ˑshow ˑthat ˑcopper ˑslag ˑincreased ˑthe ˑbreadth ˑof ˑthe ˑamorphous ˑpeak ˑin ˑthe ˑXRD of copper 

mine tailings-geopolymer ˑcomposites, whereas the crystalline ˑpeak ˑin ˑthe ˑcopper ˑmine ˑtailings 

ˑremained ˑ the ˑ same ˑ after ˑ geopolymerization, ˑ which ˑ is ˑ compatible ˑ with the SEM findings [63-67]. 

The XRD examination ˑfindings ˑof ˑits ˑ28-day-cured ˑgeopolymer ˑalso ˑreveal ˑa ˑlowering ˑin ˑthe 

ˑferocity ˑof ˑcrystalline ˑpeaks, ˑsuggesting ˑthat ˑthe ˑdissolution ˑof ˑthe ˑAl ˑand ˑSi ˑcomponents ˑin 

ˑthe ˑgeopolymerization ˑprocess ˑhas ˑprogressed ˑfarther ˑthan ˑpreviously ˑthought. ˑSEM ˑpictures ˑof 

ˑcopper ˑmine ˑtailings-geopolymer ˑcomposites ˑobtained ˑin ˑthe ˑwork ˑby ˑRen, ˑet ˑal. ˑ[68] ˑshow 

ˑthat ˑraised ˑaluminum ˑsludge ˑlevels ˑlead ˑto ˑthe ˑdevelopment ˑof ˑmore ˑgeopolymer ˑgels. ˑIn 

ˑaddition, ˑthey ˑverified ˑthat ˑthere ˑwere ˑno ˑunreacted ˑparticles ˑat ˑan ˑaluminum ˑsludge 

ˑconcentration ˑof ˑ21% ˑin ˑtheir ˑexperiment. ˑAccording ˑto ˑAhmari ˑand ˑZhang ˑ[49] ˑinvestigation, 

ˑas ˑshown ˑin ˑFig. ˑ1, ˑthe ˑenhanced ˑmicrostructure ˑof ˑcopper ˑmine ˑtailings-geopolymer 

ˑcomposites ˑis ˑdue ˑto ˑthe ˑincorporation ˑof ˑcement ˑkiln ˑdust, ˑwhich ˑleads ˑto ˑthe ˑcreation ˑof 

ˑmore ˑgeopolymer ˑgels, ˑas ˑseen ˑby ˑan ˑincreased ˑ ˑSi/Al ˑratio ˑ[69-74]. 

Due to the incorporation ˑof ˑiron ˑmine tailings into ˑfly ˑash-geopolymer ˑcomposites, ˑDuan ˑet ˑal. 

ˑdemonstrated ˑthat ˑthe ˑgeopolymer ˑbecame ˑdenser ˑby ˑproducing ˑmore ˑC–S–H ˑ[75, 76]. ˑThey 

ˑalso ˑanalyzed ˑthe ˑmicrostructure ˑof ˑtheir ˑgeopolymer ˑafter ˑit ˑhad ˑbeen ˑsubjected ˑto ˑelevated 

ˑtemperatures ˑand ˑdiscovered ˑ that ˑit ˑhad ˑsuffered ˑ no ˑconsiderable ˑdamage ˑto ˑits ˑmicrostructure 

ˑafter ˑseven ˑheating ˑcycles ˑat ˑ200 ˑºC. ˑIncreased ˑnumbers ˑof ˑpores ˑand ˑfractures ˑwere found 

after 800 ºC exposure ˑin ˑfly ˑash-geopolymer ˑcomposites ˑthat ˑdid ˑnot ˑinclude ˑiron ˑmine ˑtailings, 

ˑbut ˑthis ˑwas ˑnot ˑthe ˑcase in fly ash-geopolymer composites ˑthat ˑincluded ˑiron ˑmine ˑtailings 

ˑafter ˑthe same exposure. 
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Fig. 1. SEM image of geopolymer ˑbrick ˑsamples made at 15 molarity NaOH, 16% water content, 

and cured for 7 days at 90 ºC: (a) ˑ0% ˑcement ˑkiln ˑdust, ˑ(b) ˑ5% ˑcement ˑkiln ˑdust, ˑ(c) ˑ10% 

ˑcement ˑkiln ˑdust, ˑand ˑ(d) ˑ10% ˑcement ˑkiln ˑdust ˑand ˑafter ˑimmersion ˑin ˑwater ˑfor ˑ7 ˑdays. 

ˑ(a ˑand ˑc ˑindicate ˑthe ˑbinder ˑstage, ˑwhile ˑb ˑindicates ˑthe unreacted stage ) [49]. 

4. Thermal properties 

As previously ˑstated, ˑgeopolymers, ˑin ˑcontrast ˑto ˑOPC ˑbinders, ˑare ˑrecognized ˑfor ˑtheir ˑhigh 

ˑthermal ˑstability ˑand ˑthe ˑability ˑto ˑretain ˑstrength ˑeven ˑafter ˑbeing ˑsubjected ˑto ˑhigh 

ˑtemperatures ˑ[77, ˑ78]. ˑThis ˑis ˑbecause ˑof ˑthe ˑunique ˑcharacteristics ˑof ˑits ˑstructure, ˑwhich ˑis 

ˑformed ˑby ˑbranched ˑAlO4 ˑand ˑSiO4 ˑtetrahedral ˑframeworks ˑ[77, ˑ78]. ˑThe ˑtype ˑof ˑaggregate 

ˑused ˑto ˑmake ˑgeopolymers ˑalso ˑplays ˑa ˑkey ˑrole ˑin ˑthe ˑadvancement ˑof ˑtheir ˑthermal 

ˑproperties. ˑThis ˑis ˑbecause ˑgeopolymers ˑcan ˑbe ˑmade ˑwith ˑseveral ˑtypes ˑof ˑaggregates, ˑsuch 

ˑas ˑaluminum-silicate ˑaggregates. ˑIt ˑshould ˑbe ˑnoted ˑthat, ˑwhen ˑgeopolymers ˑhave ˑtails, a careful 
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study of how these materials ˑchange ˑand ˑhow ˑwell ˑthey ˑwork ˑlike ˑinsulation ˑand ˑfire-resistant 

ˑmaterials ˑis ˑneeded ˑto ˑfigure ˑout ˑif they can be used [79-84]. 

Ye, ˑet ˑal. ˑ[85] ˑinvestigated ˑthe ˑimpact ˑof ˑraised ˑtemperatures ˑon ˑthe ˑcharacteristics ˑof ˑa 

ˑgeopolymer ˑmade ˑfrom ˑbauxite ˑtailings ˑand ˑslag. ˑThey ˑdiscovered ˑthat ˑthe ˑcompressive 

ˑstrength ˑof ˑgeopolymer ˑis ˑsomewhat ˑboosted ˑafter ˑexposure ˑto ˑ200 ˑºC ˑbut ˑthat ˑit ˑrapidly 

ˑreduces ˑafter ˑexposure ˑto ˑ600 ˑºC. ˑHowever, ˑthe ˑdrop ˑin ˑcompressive ˑstrength ˑwas ˑsubstantial 

ˑbetween ˑ600 ˑand ˑ1000 ˑºC, ˑwith ˑa ˑlittle ˑgain ˑin ˑcompressive ˑstrength ˑat ˑ1200 ˑºC. ˑAnorthite 

ˑ(CaAl2(SiO4 ˑ)2), ˑa ˑtype ˑof ˑceramic, ˑwas ˑdiscovered ˑto ˑbe ˑassociated ˑwith ˑan ˑincrease ˑin 

ˑstrength, ˑwhich ˑcould ˑbe ˑattributed ˑto ˑself-healing ˑand ˑdensification ˑcaused ˑby ˑsintering. ˑThe 

ˑnoticed ˑdrop ˑin ˑcompressive ˑstrength ˑat ˑtemperatures ˑreaching ˑ800 ˑºC ˑis ˑbecause ˑof ˑthe 

ˑdissolution ˑof ˑthe ˑamorphous ˑstage ˑas ˑwell ˑas ˑan ˑextra ˑthermal ˑmismatch ˑbetween ˑthe 

ˑcontracting ˑgels ˑthroughout ˑ the ˑcontracting ˑprocess. ˑThere ˑis ˑalso ˑphysical ˑ harm ˑin ˑthe ˑform ˑof 

ˑcracking ˑon ˑthe ˑsurface ˑof ˑsamples. ˑThis ˑis ˑalso ˑin ˑline ˑwith ˑthe ˑfindings ˑof ˑthe ˑcompression 

ˑexperiment, ˑwhich ˑshowed ˑthat ˑthere ˑis ˑno ˑsevere ˑcracking ˑon ˑthe ˑsample ˑwhen ˑit ˑreaches ˑ400 

ˑºC. ˑIt ˑgets ˑmore ˑviolent ˑas ˑthe ˑtemperature ˑrises, ˑso ˑit ˑstarts ˑat ˑ600 ˑºC ˑand ˑgoes ˑup ˑto ˑ1200 

ˑºC. ˑAlso, ˑthe ˑwidth ˑof ˑmicro-pores ˑin ˑits ˑgeopolymer ˑgets ˑbigger ˑas ˑthe ˑtemperature ˑof ˑthe 

ˑmaterial gets higher. 

According to Jiao, et al. [86], the ˑstrength ˑgain ˑof ˑmine ˑtailings-geopolymer ˑcomposites ˑwhen 

ˑsubjected ˑto ˑhigh ˑtemperatures ˑhas ˑalso ˑbeen ˑreported. ˑAs ˑa ˑresult ˑof ˑsintering, ˑthe 

ˑgeopolymers ˑproduced ˑby ˑthe ˑalkali-activated ˑof ˑvanadium ˑtailings ˑwith high silica content 

demonstrated an improvement in compressive strength at temperatures above ˑ900 ˑºC. ˑThis ˑwas 

ˑaccompanied ˑ by ˑ a ˑ lowering ˑ in ˑ the ˑ content ˑ of ˑ unreacted ˑ aluminosilicate ˑ precursor ˑ particles ˑ and 

ˑthe ˑdevelopment ˑof ˑa ˑdenser ˑmicrostructure ˑby ˑmeans ˑof ˑsintering, ˑas ˑshown ˑin ˑFig. 2. ˑAs 

ˑillustrated ˑin ˑFig. 3, ˑheating ˑto ˑ1000 ˑºC ˑreduces ˑbulk ˑdensity ˑand ˑstrength ˑwhile ˑincreasing 

ˑfracture ˑ and ˑ porosity. ˑThis ˑeffect ˑwas ˑ revealed ˑ to ˑ be ˑ caused ˑby ˑvolume ˑexpansion ˑand ˑsevere 

ˑ ˑthermal ˑincompatibility. 
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Fig. 2. SEM microanalysis of the geopolymer ˑspecimen: ˑ(a) ˑambient ˑtemperature; ˑ(b) ˑat ˑ900 ˑºC; 

ˑand ˑ(c) ˑat ˑ1050 ˑºC ˑ[86]. 

 

Fig. 3. Compressive strength, residual mass, and ˑbulk ˑdensity ˑof ˑthe ˑgeopolymer ˑspecimen ˑat 

ˑhigh ˑtemperatures ˑ[86]. 
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5. Leaching behavior 

The presence ˑof ˑvarious ˑheavy ˑmetals ˑin ˑmine ˑtailings ˑis ˑa ˑmajor ˑenvironmental ˑconcern. ˑTo 

ˑprevent ˑtheir ˑspread ˑin ˑsoils ˑand ˑgroundwater ˑdue ˑto ˑleaching, ˑsolidification ˑ(stabilization) 

ˑthrough ˑgeopolymerization ˑcan ˑbe ˑconsidered ˑas ˑone ˑof ˑthe ˑsustainable ˑmethods ˑfor 

ˑneutralizing ˑtailings ˑcontaining ˑtoxic ˑelements. ˑIn ˑthis ˑregard, ˑleaching ˑcharacteristics ˑare 

ˑimportant ˑindicators ˑdescribing ˑthe ˑeffectiveness ˑof ˑheavy ˑmetal ˑimmobilization ˑin 

ˑgeopolymers. ˑAs ˑa ˑresult, ˑmaking ˑmine ˑtailings-based ˑgeopolymers ˑrequires ˑextra ˑcare ˑwhen 

ˑchoosing ˑthe ˑbest ˑways ˑand ˑparts ˑto ˑmake ˑthem ˑ[87-92]. 

The ˑability ˑto ˑsuccessfully ˑimmobilize ˑthe ˑheavy ˑmetals ˑcontained ˑin ˑlead-zinc ˑtailings ˑvia 

ˑphysical ˑand ˑchemical ˑways ˑwas ˑdemonstrated ˑby ˑZhao, ˑet ˑal. ˑ[93] ˑin ˑgeopolymer ˑbased ˑon 

ˑcoal ˑgangue ˑand ˑblast ˑfurnace ˑslag. ˑAlthough ˑan ˑincrease ˑin ˑtailings ˑin ˑprepared ˑsamples ˑled 

ˑto ˑan ˑincrease ˑin ˑthe ˑconcentration ˑof ˑZn2+, ˑPb2+, ˑand ˑCd2+
 ˑin ˑthe ˑleaching ˑsolution, ˑthese 

ˑvalues ˑremained ˑwithin ˑacceptable ˑlimits ˑ[93]. ˑThe ˑobtained ˑgeopolymer ˑsamples ˑwere 

ˑcharacterized ˑby ˑa ˑcompact ˑstructure, ˑwherein ˑthe ˑcrystalline ˑphase ˑZn2+
 ˑwas ˑfound; ˑthe 

ˑamorphous ˑphases ˑwere ˑcharacterized ˑby ˑthe ˑcontent ˑ ˑof ˑPb2+
 ˑand ˑCd2+. 

Heavy ˑmetal ˑcations ˑcan ˑform ˑchemical ˑbonds ˑwith ˑreactive ˑcomponents ˑduring 

ˑpolycondensation, ˑwhich ˑcan ˑlead ˑto ˑthe ˑformation ˑof ˑnew ˑphases. ˑThe ˑformation ˑof ˑthe 

ˑPbO/BaSiO3 ˑphase ˑwas ˑobserved ˑby ˑHu, ˑet ˑal. ˑ[94] ˑin ˑrare ˑearth ˑtailing-based ˑgeopolymers. 

ˑThis ˑis ˑbecause ˑPb2+
 ˑand ˑBa2+

 ˑinteract ˑwith ˑunbridged ˑoxygen ˑor ˑthe ˑSi/Al ˑchain, ˑwhich 

ˑmakes ˑsure ˑthat ˑthe ˑheavy ˑmetals ˑstay ˑin ˑplace ˑinside ˑthe ˑ ˑframework. 

Ahmari ˑand ˑZhang ˑ[49] ˑreported ˑno ˑeffective ˑimmobilization ˑof ˑarsenic ˑand ˑmolybdenum ˑdue 

ˑto ˑgeopolymerization ˑin ˑcopper ˑmine ˑtailings-based ˑgeopolymers ˑ[48]. ˑThe ˑauthors ˑalso 

ˑsuggested ˑa ˑmethodology ˑto ˑpredict ˑtrace ˑelements ˑin ˑgeopolymers ˑ(Fig. ˑ4). ˑThe ˑexperimental 

ˑleaching ˑdata ˑin ˑtheir ˑinvestigation ˑcorrelates ˑwell ˑwith ˑthe ˑproposed ˑparadigm. ˑMany ˑstudies 

ˑhave ˑexamined ˑthe ˑefficiency ˑof ˑgold ˑmine ˑtailings-based ˑgeopolymers ˑin ˑimmobilizing ˑheavy 

ˑmetals ˑ[50, ˑ95]. ˑIt ˑis ˑobserved ˑthat ˑthe ˑimmobilization ˑefficiency ˑof ˑCr, ˑCu, ˑZn, ˑNi, ˑand ˑMn 

ˑin ˑgold ˑmine ˑtailings, ˑmetakaolin, ˑand ˑslag ˑblended ˑgeopolymer ˑis ˑhigher ˑthan ˑ98% ˑwith ˑthe 

ˑonly ˑexception ˑof ˑarsenic ˑand ˑvanadium ˑ(Va), ˑwhose ˑleaching ˑis ˑhigher ˑin ˑthat ˑ ˑgeopolymer 

ˑ[95]. 
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In ˑgold ˑmine ˑtailings-based ˑgeopolymers, ˑthe ˑimmobilization ˑefficiency ˑof ˑheavy ˑmetals ˑis 

ˑhigher ˑin ˑPA ˑand ˑKOH ˑactivated ˑgold ˑmine ˑtailings ˑgeopolymers ˑthan ˑin those synthesized by 

PS and KOH [50]. Kiventerä, et al. [96], Kiventerä, et al. [97] ˑalso ˑreported ˑeffective ˑ immobilization 

ˑof ˑsulfate ˑand ˑarsenic ˑin ˑgold ˑmine ˑtailings-based ˑgeopolymer ˑusing calcium hydroxide and 

ˑslag. ˑAfter ˑ7 ˑdays ˑof ˑcuring, ˑtheir ˑgeopolymer ˑcontains ˑover ˑ90% ˑsulfate ˑand ˑover ˑ95% 

ˑarsenic, ˑ with ˑ other ˑ heavy ˑ elements ˑ immobilized ˑ as ˑ well. ˑ Wan, et al. [98], Wan, et al. [99]reported 

that lead (Pb) can be ˑeffectively ˑimmobilized ˑin ˑthe ˑmine ˑtailings-geopolymer. ˑThey ˑfound ˑthat 

ˑthe ˑformation ˑof ˑgeopolymer ˑgel ˑin ˑthe binders is very important to the immobilization of Pb. 

 

Fig. 4. Measured and predicted concentrations ˑof ˑheavy ˑmetals ˑat ˑpH ˑ= ˑ4 ˑa ˑby ˑfirst-order 

ˑreaction/diffusion ˑmodel ˑ(FRDM) [48]. 
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6. Conclusions 

The key annotations for this paper ˑreview ˑare ˑas follows: 

1. According to the investigation, geopolymers seem to be attractive options for recovering mine 

waste and generating sustainable building ˑand ˑconstruction ˑmaterials, ˑmine ˑpaste ˑbackfills, 

ˑand ˑstabilizing ˑmaterials ˑfor ˑhazardous element ˑimmobilization. ˑThis ˑstrategy ˑnot ˑonly 

ˑprovides ˑfor ˑa ˑreduction ˑin ˑthe ˑcarbon ˑfootprint ˑassociated ˑwith typical cementitious 

materials but also avoids the substantial ecological contamination produced by mine waste 

buildup. 

2. Mine tailings are often ˑcomposed ˑof ˑa ˑhighly ˑcrystalline ˑmatrix, ˑwhich ˑresults ˑin 

ˑminimal ˑinteraction ˑthroughout ˑgeopolymerization ˑand, consequently, a product with low 

ˑmechanical ˑcharacteristics. Incorporating ˑextra ˑelements ˑwith ˑincreased ˑinteraction ˑinto 

ˑmine ˑtailings-geopolymer ˑcomposites ˑmay ˑefficiently ˑtune ˑand ˑenhance ˑthe 

ˑcharacteristics ˑof ˑthe ˑgeopolymers. ˑFurthermore, ˑsince ˑthe ˑmajority ˑof ˑthe ˑadditives 

utilized for this function are industrial by-products, their usage has the additional ˑbenefit ˑof 

ˑreducing ˑthe ˑamount ˑof waste produced.  

3. When compared to ˑlow-Ca-comprising ˑadditions, ˑhigh-Ca-comprising ˑelements ˑhave ˑa 

ˑmore ˑfavorable ˑimpact ˑon ˑthe ˑgeopolymer's ˑoverall ˑstrength ˑand ˑdurability. ˑThis ˑis 

ˑinduced ˑby ˑthe ˑproduction ˑof ˑextra ˑCSH ˑgels, ˑwhich ˑstrengthen ˑthe ˑmatrix ˑas ˑa ˑresult 

ˑof ˑits ˑco-existence ˑwith ˑNASH, ˑwhich ˑimproves ˑthe matrix ˑdensity. 

4. Supplemental ˑmaterials, ˑespecially ˑthose ˑwith ˑa ˑlot ˑof ˑcalcium, ˑtend ˑto ˑbe ˑbetter ˑat 

ˑmaking ˑgeopolymer ˑ ˑcharacteristics. 

5. The ˑminerals ˑthat ˑform ˑmine ˑtailings ˑare ˑidentified ˑby their varying chemical reactivity to 

alkali. The interactions of the precursors' metal components ˑin ˑ alkaline ˑ conditions ˑ affect ˑthe 

ˑstructure ˑand ˑcharacteristics ˑof ˑthe ˑgeopolymer's ˑaluminosilicate ˑframework. ˑMany 

ˑtimes, ˑ the ˑ alkaline ˑ reactivity ˑ of ˑ mine ˑ tailings ˑ is ˑ extremely ˑ low, ˑ which ˑ is ˑ the ˑ best ˑ thing 

ˑwhen ˑmine ˑtailings ˑare ˑused ˑto ˑmake ˑ ˑgeopolymers. 

6. No classification strategy for mine ˑtailings ˑis ˑin ˑplace ˑthat ˑis ˑbased ˑon ˑits ˑinteraction. 

ˑRecent ˑresearch ˑfindings, ˑlike ˑemploying ˑthe ˑtopological ˑtechnique ˑto ˑassess ˑglass 

ˑinteraction, ˑcan ˑbe ˑutilized ˑto ˑcategorize ˑand ˑclassify ˑthese ˑmaterials, ˑhence 
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ˑencouraging ˑtheir ˑusage ˑin ˑgeopolymerization ˑapplications. 

7. Recommendations 

The following are the main recommendations ˑfor ˑfuture ˑinvestigations: 

1. The high silica concentration of mine tailings ˑraises ˑthe ˑmolar ˑproportion ˑof ˑSiO2 ˑ/Al2O3 

ˑin ˑmine ˑtailings-geopolymer ˑcomposites, ˑimpairing ˑthe ˑprocess ˑof ˑgeopolymerization. 

ˑA ˑsolution ˑto ˑthis ˑdifficulty ˑcan ˑbe ˑfound ˑby ˑincluding ˑadditional ˑprecursors, ˑlike 

ˑmetakaolin ˑor ˑscattered ˑaluminum ˑoxide, ˑinto ˑthe ˑmix. ˑA ˑpreliminary ˑclassification of 

tailings-based ˑ on ˑthe ˑ characteristics ˑ of ˑ their ˑ mineralogical ˑand ˑchemical ˑcompositions ˑ is 

recommended. 

2. Because of the low interaction of native ˑmetal ˑtrichlorides, ˑthe ˑpresence ˑof ˑbeneficial 

ˑcomponents ˑingrained ˑin ˑthe ˑminerals ˑinitially ˑprocessed, ˑand ˑthe ˑrisk ˑof ˑtoxic 

ˑcontamination ˑby ˑleaching ˑcomponents, ˑutilizing ˑtailings ˑfor geopolymer preparation is 

prohibitively expensive ˑand ˑtime-consuming ˑfrom ˑan ˑeconomic ˑand ˑproduction 

ˑstandpoint. Aspects ˑlike the geographic closeness of the mining and processing ˑenterprises 

ˑto ˑthe ˑmine ˑtailings ˑcustomers ˑas ˑwell ˑas ˑthe ˑregions ˑwhere ˑfinished ˑgeopolymer 

ˑproducts ˑare ˑconsumed ˑshould ˑbe ˑtaken ˑinto ˑconsideration ˑwhen ˑconducting ˑa 

ˑfeasibility ˑstudy for its application in geopolymer composites. 

3. Pre-treatment of mine tailings can be utilized ˑto ˑboost ˑtheir ˑinteraction. ˑTherefore, ˑfurther 

ˑinvestigation ˑis ˑrecommended ˑin ˑthis ˑ ˑregard. 
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