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Abstract

A new database of the Entomological Inoculation Rate (EIR) is used to directly link the risk of infectious mosquito bites to

climate in Sub-Saharan Africa. Applying a statistical mixed model framework to high-quality monthly EIR measurements

collected from field campaigns in Sub-Saharan Africa, we analyzed the impact of rainfall and temperature seasonality on EIR

seasonality and determined important climate drivers of malaria seasonality across varied climate settings in the region. We

observed that seasonal malaria transmission requires a temperature window of 15-40 degrees Celsius and is sustained if average

temperature is well above the minimum or below the maximum temperature threshold. Our study also observed that monthly

maximum rainfall for seasonal malaria transmission should not exceed 600 mm in west Central Africa, and 400 mm in the

Sahel, Guinea Savannah and East Africa. Based on a multi-regression model approach, rainfall and temperature seasonality

were significantly associated with malaria seasonality in most parts of Sub-Saharan Africa except in west Central Africa.

However, areas characterized by significant elevations such as East Africa, topography has a significant influence on which

climate variable is an important determinant of malaria seasonality. Malaria seasonality lags behind rainfall seasonality only

at markedly seasonal rainfall areas such as Sahel and East Africa; elsewhere, malaria transmission is year-round. The study’s

outcome is important for the improvement and validation of weather-driven dynamical malaria models that directly simulate

EIR. It can contribute to the development of malaria models fit-for-purpose to support health decision-making towards malaria

control or elimination in Sub-Saharan Africa.
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Key Points:13

• Seasonal malaria transmission in Sub-Saharan Africa is sustained at temperatures14

well above 15◦C or below 40◦C.15

• Monthly maximum rainfall for seasonal malaria transmission should not exceed 600 mm.16

• Rainfall and temperature are significant drivers of malaria seasonality in all parts of17

Sub-Saharan Africa except in west Central Africa.18

• Topography has significant influence on which climate variable is an important driver19

of malaria seasonality in East Africa.20

• Malaria transmission onset lags behind rainfall only at markedly seasonal rainfall21

areas, otherwise, malaria transmission is year-round.22

Corresponding author: Edmund I. Yamba, eyilimoan48@gmail.com
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Abstract23

A new database of the Entomological Inoculation Rate (EIR) is used to directly link the risk24

of infectious mosquito bites to climate in Sub-Saharan Africa. Applying a statistical mixed25

model framework to high-quality monthly EIR measurements collected from field campaigns26

in Sub-Saharan Africa, we analyzed the impact of rainfall and temperature seasonality on27

EIR seasonality and determined important climate drivers of malaria seasonality across28

varied climate settings in the region. We observed that seasonal malaria transmission was29

within a temperature window of 15◦C – 40◦C and was sustained if average temperature was30

well above 15◦C or below 40◦C. Monthly maximum rainfall for seasonal malaria transmission31

did not exceed 600 mm in west Central Africa, and 400 mm in the Sahel, Guinea Savannah32

and East Africa. Based on a multi-regression model approach, rainfall and temperature33

seasonality were found to be significantly associated with malaria seasonality in all parts of34

Sub-Saharan Africa except in west Central Africa. Topography was found to have significant35

influence on which climate variable is an important determinant of malaria seasonality in36

East Africa. Seasonal malaria transmission onset lags behind rainfall only at markedly37

seasonal rainfall areas such as Sahel and East Africa; elsewhere, malaria transmission is38

year-round. High-quality EIR measurements can usefully supplement established metrics39

for seasonal malaria. The study’s outcome is important for the improvement and validation40

of weather-driven dynamical mathematical malaria models that directly simulate EIR. Our41

results can contribute to the development of malaria models fit-for-purpose to support health42

decision-making in the fight to control or eliminate malaria in Sub-Saharan Africa.43

1 Introduction44

Sub-Saharan Africa remains the world’s region with the greatest malaria burden despite45

massive efforts over the past decades to lower or eliminate malaria (WHO, 2020). Though46

poor health care systems and low socio-economic status (Degarege et al., 2019; Yadav et al.,47

2014) are contributing factors, the climate suitability of the region for malaria transmis-48

sion has a major influence (Caminade et al., 2014). Generally, climate variables such as49

temperature, rainfall and relative humidity are known to have significant influence on the50

development and survival of both the malaria parasites and their vectors. Malaria para-51

site development is not possible at temperatures below 16◦C and temperatures above 40◦C52

have adverse effect on mosquito population turnover (Parham and Michael, 2010; Mordecai53

et al., 2013; Blanford et al., 2013; Shapiro et al., 2017). Rainfall provides the environment54
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for vector breeding (Ermert et al., 2011; Tompkins and Ermert, 2013; Kar et al., 2014) and55

relative humidity of at least 60% appears necessary for vector survival (Thompson et al.,56

2005). Rainfall therefore affects the availability, persistence and dimensions of Anopheles57

vectors and their larval habitats (Fournet et al., 2010; Afrane et al., 2012a; Boyce et al.,58

2016; Asare et al., 2016a). Previous work studying the relationship between sporozoite59

development and the survival of infectious mosquitoes found optimal temperatures for ef-60

ficient malaria transmission between 25◦C and 27◦C (Bayoh, 2001; Lunde et al., 2013a,b).61

In Sub-Saharan Africa, most countries have annual mean temperatures between 20◦C and62

28◦C (Lunde et al., 2013a). Given Sub-Saharan Africa’s warm tropical climate, a plethora63

of efficient and effective malaria parasite and vectors thrives in this setting (Sinka et al.,64

2010; Murray et al., 2012). Understanding the relative importance of climate drivers of65

malaria seasonality is crucial for describing the geographic patterns of the heterogeneous66

risk and burden of malaria across the sub-region (Gething et al., 2011; Reiner et al., 2015).67

This could translate to substantial public health gains, taking into account the seasonality68

in malaria control and prevention interventions, by helping to determine when, where and69

how to apply vector and parasite control measures.70

To our knowledge, there are insufficient field studies using Entomological Inoculation Rate71

(EIR, defined as the number of infectious mosquito bites person receives per time) data72

to relate climate to malaria seasonality in Sub-Saharan Africa. Mabaso et al. (2007) as-73

sessed the relationship between EIR seasonality and environmental variables in Africa using74

a rainfall seasonality index (Markham, 1970). The index fails to capture seasonality at areas75

with bimodal rainfall regimes, however. Furthermore, the study did not take into consider-76

ation the impact of diverse climatic conditions on seasonality outcomes but aggregated data77

from sites of different climate and environmental settings into a single study, which has the78

potential to skew the results. Other research has examined the link between malaria and79

climate variables but primarily relied on clinical data or malaria suitability indices (Lowe80

et al., 2013; Midekisa et al., 2015; Komen et al., 2015). Both malaria indices and case data81

have drawbacks for studying malaria seasonality.82

Malaria indices are derived using statistical relationships between weather and malaria83

measures and their out-of-sample generalization over space and time for seasonality studies84

is subject to significant uncertainties. Clinical case data are also subject to significant un-85

certainties due to the inaccurate diagnostics (often counts of suspected cases, with temporal86

inconsistency in the use of Rapid Diagnostic Test, RDT or slide analysis) and under-counting87
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due to varying health-seeking behaviour and health policies (Afrane et al., 2012b). Given88

that the biology of the malaria parasite and its vector mosquito are temperature and rain-89

fall dependent (Ermert et al., 2011), and that EIR can directly quantify parasite-infected90

mosquitoes and their propensity to transmit the parasites to humans (MARA, 1998; Shaukat91

et al., 2010) or estimate the seasonality of the exposure of a population to malaria parasite92

inoculations (Beier et al., 1999; Takken and Lindsay, 2003), then EIR should be able to93

usefully relate climate to malaria seasonality better than malaria cases.94

In this study, therefore, we investigated the impact of climate variables on EIR seasonality95

in diverse climate settings across Sub-Saharan Africa with the goal of identifying significant96

climate determinants of malaria seasonality, their relative importance and variability across97

the region. To our knowledge, this is the first study to use EIRm to explore the impact98

of climatic variables on malaria seasonality in Sub-Saharan Africa on this wider scale. We99

applied a mixed model statistiacal framework to a high-quality malaria EIR data (Yamba100

et al., 2018; Yamba et al., 2020) gathered from publicly available field campaigns of suffi-101

cient duration and determined the climate effect that explained significant variations in EIR102

seasonality. Our findings are intended to provide an understanding of geographical heteroge-103

neous malaria risk from climate effect and support future malaria modeling and forecasting104

efforts. It will contribute to the development of malaria models especially weather-driven105

dynamical malaria models fit-for-purpose to support health decision-making in the fight to106

control or eliminate malaria in Sub-Saharan Africa.107

2 Data and Methods108

2.1 Study Area109

The study area includes locations in Sub-Saharan Africa (as shown in Figure 1), where110

mosquitoes have previously been collected for malariometrics such as Human Biting Rate111

(HBR), CircumSporozoite Protein Rates (CSPR), and EIR. The geographical coordinates112

and elevation of each location are detailed in Tables S1 to S4. The study locations are113

grouped into four distinct climate zones namely Sahel, Guinea, WCA, and EA (see Fig-114

ure 1). Each zone has a unique climate conditions from others (see Figure S1) and therefore115

have different climate implications on malaria seasonality (Yamba, 2016). The division into116

zones is, therefore, to ensure that malaria transmission patterns are consistent across ge-117

ographical areas with similar climate characteristics. The seasonal distribution of rainfall118
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Figure 1: The map of the Sub-Saharan Africa showing field survey sites for EIR. The colour

gradient of each site show the maximum EIR available. The blue lines delineate the region

into climate zones of Sahel, Guinea, WCA and EA.

and temperature for each zone is shown in Figure S1. In the Sahel, rainfall is markedly119

seasonal, with a single wet season (usually June to October) and a protracted dry season120

(November to May). Seasonal temperature ranges between a minimum value of 20 oC during121

the harmattan season and to a maximum of about 40 oC during the pre-monsoon season.122

In general, temperatures are higher in the Sahel and colder in EA due to the fact that most123

areas are characterized by higher altitudes.124

2.2 Data125

2.2.1 Monthly EIR data126

Monthly malaria EIR data (hereafter referred to as EIRm) were obtained from a newly127

compiled and published monthly malaria EIR database (Yamba et al., 2018; Yamba et al.,128

2020) for each study location shown in Figure 1. The years and months for which the129

EIRm data were available for each study location is shown in Table S1-S4. Generally, most130

locations had 12 months of data while other locations had data varying between 24 and131

36 months. The data also spanned the period 1983-2013 for all locations. The temporal132
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duration of the data is mostly limited to one year because sampling mosquitoes for EIR133

is extremely capital and labour intensive (Kilama et al., 2014; Tusting et al., 2014; Badu134

et al., 2013). The EIR database from which data were extracted for use in this work is135

a comprehensive one. It was constructed through an all-inclusive literature review using136

google scholar and PubMed search facilities. All data in that database was generated from137

publicly available field campaigns of adequate duration and is freely available for public138

usage in the PANGAEA repository (Yamba et al., 2018). Details of how this database139

was constructed including compilation, sources, recording, spatial coverage and temporal140

resolutions are clearly described in Yamba et al. (2020).141

2.2.2 Meteorological data142

Monthly rainfall (RR) and temperature (minimum (Tmin), mean (Tmean) and maximum143

(Tmax)) data for each study location were gathered. Rainfall data was obtained from the144

Global Precipitation Climatology Centre (GPCC) product, version 2018 (Schneider et al.,145

2018). The GPCC data is a gridded gauge-analysis products and available globally from146

1891-2016 at a spatial resolution of 0.25◦. GPCC was chosen because it is a rain gauge-147

analysis product built from quality-controlled rainfall data from ground-based weather sta-148

tions. Previous validation studies (Manzanas et al., 2014; Atiah et al., 2020) have also149

found it to be reliable and consistent with ground-based weather observations. The temper-150

ature data was obtained from the European Centre for Medium-Range Weather Forecasts151

(ECMWF) Re-Analysis, 5th generation (ERA5) (Hersbach et al., 2020). ERA5 is also a152

gridded re-analysis product and available globally on an hourly time scale from 1979 to153

present at a high spatial resolution of 0.25◦ by 0.25◦. ERA5 was chosen because previous154

evaluation studies of the product (Tarek et al., 2020; Gleixner et al., 2020; Oses et al.,155

2020) have widely recommended it for meteorological research. RR, Tmin and Tmax were156

extracted from the respective database for each study location using the nearest grid point157

of the location’s geographical coordinates. Tmean values were estimated by averaging the158

Tmin and Tmax values for the location. The extracted temperature and rainfall data had159

to also conform with the exact years and months at which EIRm data were available for160

each location. The study relied on GPCC and ERA5 because, ground-based local weather161

stations from which these data could be gathered were mostly not available at the EIR sites162

or, if present, often have sparse data.163
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2.3 Data analysis164

The analysis was conducted for each classified zone as shown in Fig 1. EIR data from loca-165

tions characterized with the presence of permanent water bodies and/or irrigation activities166

were exempted. Irrigation and permanent water bodies (such as damps, rivers, streams,167

swamps etc) have significant influence on the intensity and length of seasonal malaria trans-168

mission (Ermert et al., 2011; Tompkins and Ermert, 2013; Asare et al., 2016b; Asare and169

Amekudzi, 2017). Their exclusion was, therefore, a means to dissociate the influence of170

these hydrological parameters on malaria seasonality and reducing the impact to climate171

factors alone.172

2.3.1 pair-wise comparison173

The study examined the ranges of RR, Tmin, Tmean and Tmax at which EIRm occurred using174

a simple pair-wise comparison approach. This was done by first aggregating the EIRm data175

from all locations within each zone into a single time series of 12 months irrespective of the176

year of availability. Similarly, the corresponding RR, Tmin, Tmean and Tmax data were also177

aggregated. The aggregated monthly timeseries of RR, Tmin, Tmean, Tmax and EIRm were178

then matched head-to-head as shown in Figure 2. The ranges of RR, Tmin, Tmean and Tmax179

at which EIR occurred were then determined for each zone .180

2.3.2 Relative importance of climate predictors181

The relative importance of RR, Tmin, Tmean and Tmax in predicting EIRm for each climate

zone was analysed using a multiple regression model of the form:

EIRm ∼ RR+ Tmax + Tmin + Tmean (1)

where EIRm is the response variable and RR, Tmin, Tmean and Tmax are the predictors.

The contribution of each individual predictor to EIRm outcome was then quantified (see

Table 1 and 2). Each regressor’s contribution was considered as the R2 from univariate

regression, and all univariate R2 values add up to the full model R2 (Grömping, 2007). The

R package "relaimpo" (Grömping, 2007) was utilized for the calculation of the contribution

of the reqressors in the model. It implements six different metrics for assessing relative

importance of regressors namely:first, last, pratt, betasg, lmg and pmvd. Among these,

lmg and pmvd are computer intensive and has advantage over others in the sense that

they decompose R2 into non-negative contributions that automatically sum to the total R2

–7–
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(Grömping, 2007). In this study, lmg was invoked since pmvd is patent protected. The lmg

calculates the relative contribution of each predictor to the R2 with the consideration of

the sequence of predictors appearing in the model. It intuitively decomposes the total R2

by adding the predictors to the regression model sequentially. Then, the increased R2 is

considered as the contribution by the predictor just added. The following are mathematical

descriptions of lmg metric referenced from Grömping (2007):

For a model with regressors in set S, the R2 is given as:

R2(S) =
ModelSS(modelwithregressorsinS)

TotalSS
(2)

To add regressors in set M to a model with the regressors in set S, the additional R2 is given

as:

seqR2(M |S) = R2(MUS)−R2(S) (3)

where the order of the regressors is a permutation of the available regressors x1, ...., xp

denoted by the tuple of indices r = (r1, ...., rp). Let Sk(r) denote the set of regressors

entered into the model before regressor xk in the order r. Then the portion of R2 allocated

to regressor xk in the order r can be written as:

seqR2({xk}|Sk(r)) = R2({xk}USk(r))−R2(Sk(r)) (4)

With eq. 4, the metric lmg (in formulae denoted as LMG) can be written as:

LMG(xk) =
1

P !

∑
rpermutation

seqR2({xk}|r) (5)

Orders with the same Sk(r) = S can be summarized into one summand, which simplifies

the formula into:

LMG(xk) =
1

p!

∑
S⊆{x1,....,xp}\{xk}

seqR2({xk}|S) (6)

The analysis also assessed the relative importance of each regressor (in eqn 1) by looking182

at what each regressor alone is able to explain (i.e., comparing the R2 value of regression183

model with one regressor only without considering the dependence of others as is the case184

of the metric lmg). The metric first in the "relaimpo" package was invoked for this purpose185

because, unlike lmg, it is completely ignorant of the other regressors in the model and186

so no adjustment takes place (Grömping, 2007). Since first does not decompose R2 into187

contributions like lmg), the contribution of the individual regressors alone do not naturally188

add up to the overall R2. The sum of these individual contributions is often far higher than189

the overall R2 of the model with all regressors together.190
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Whether lmg or first, each metric’s outcome were bootstrapped to ensure that the relative191

importance of each regressor was clearly defined (i.e. those different and those that are192

similar in terms of relative importance). Bootstrapping in "relaimpo" was done using the193

function boot in the package. Prior to calculating the lmg and first metrics, all data series194

(i.e. EIRm, RR, Tmin, Tmean and Tmax timeseries) were log transformed. The essence of195

the log transformation was to decrease the variabilities in the data pairs and make them196

conform more closely to normal distribution with similar variance and standard deviation197

(Curran-Everett, 2018).198

2.3.3 EIR lag behind rainfall199

Seasonal malaria transmission onset lags behind rainfall season onset because of the time200

taken for mosquito breeding and vector population growth after rainfall season onset (Tomp-201

kins and Ermert, 2013; Badu et al., 2013; Asare and Amekudzi, 2017). This lag time as202

influenced by climate and whether it varies from one climate zone to another is not known.203

In this analysis, we quantified this lag time for each climate zone using a cross-correlation204

statistics performed between RR and EIRm data pairs. In this statistics, RR was treated205

as the predictor variable and the corresponding EIRm as the response variable. The pairs206

were then cross-correlated at lags of -5 to 0 months and the correlation co-efficient at each207

lag was calculated. The lag with the strongest positive correlation coefficients was identified208

as the optimum period of delay between rainfall onset and the EIR season for the zone.209

3 Results210

3.1 pair-wise comparison211

Figure 2 shows the EIRm response ranges of pairs of rainfall (RR) and temperature (Tmin,212

Tmean and Tmax). In the Sahel, maximum rainfall (RR) ranges were about 400 mm per213

month. Temperature ranges generally varied between 20◦C – 40◦C in this zone. Tmax214

ranges were clustered between 25◦C – 40◦C, Tmin within 20◦C – 30◦C and Tmean observed215

within 25◦C – 35◦C. In Guinea, RR ranges were also centered around 400 mm per month.216

Temperature response ranges were mostly observed within 25◦C – 35◦C for Tmax, 20◦C –217

25◦C for Tmin and 24◦C – 30◦C for Tmean. In WCA, maximum RR ranges were centered at218

about 600 mm per month, which is higher compared to ranges observed in the Sahel, Guinea219

and EA. Temperature response ranges in this zone were slightly lower than observed in the220
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Figure 2: A pair-wise comparison showing the ranges of RR, Tmin, Tmean and Tmax at

which EIRm occurs. The coloured circles shows log transformed EIRm values.

Sahel and Guinea. These include 24◦C – 32◦C for Tmax, 20◦C – 25◦C for Tmin and 22◦C221

– 27◦C for Tmean. The EA maximum RR ranges were also about 400mm. Temperature222

ranges of 20◦C – 30◦C for Tmax, 15◦C – 27◦C for Tmin and 18◦C – 29◦C for Tmean were223

observed.224

3.2 Relative importance of climate predictors225

In Table 1 and 2, the relative importance of climate variables in predicting EIRm is presented226

for locations with elevations ≤ 500 m and > 1000 m respectively. The predictors with p-227

value ≤ 0.05 were considered significant and interpreted that the respective climate variable228

significantly predicted the EIR seasonality in that zone. At lower elevations (≤ 500 m ) in229

Sahel, rainfall and temperature were all significant drivers of EIR seasonality cumulatively230

contributing about 30.72% of the variations in EIR seasonality. At these lower elevation231

areas, important predictors of EIRm seasonality were RR and Tmax. At higher elevations232

(> 1000 m), rainfall and temperature are together responsible for about 40% of the variations233

in EIRm with insignificant contribution from Tmin. Like the Sahel, temperature and rainfall234

–10–
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Table 1: The relative contribution of RR, Tmin, Tmean and Tmax in predicting

EIRm bootstrapped at confidence interval of 95% for locations with elevations ≤ 500 m.

Variables with significant p-values contributions are boldfaced. R2 represents the total

proportion of variance in EIR explained by all the climate predictors. lmg values show the

individual contribution of each predictor to R2 relative to others. First is the contribution

of each predictor alone to R2 with complete ignorance of the others.

Zone R2 [%] Variable lmg [%] First [%] Coefficient (R) P-value

Sahel 30.72

RR 7.73 15.76 0.3497 0.0000

Tmax 12.03 17.54 -15.7276 0.0000

Tmin 4.89 1.79 3.6380 0.0138

Tmean 6.07 3.20 -6.8674 0.0033

Guinea 13.59

RR 5.85 10.22 0.4848 0.0000

Tmax 4.09 9.65 -13.3808 0.0000

Tmin 0.64 0.19 2.7410 0.3760

Tmean 3.01 6.38 -15.7753 0.0000

WCA 1.69

RR 0.34 0.23 0.0974 0.5550

Tmax 0.60 0.95 5.4640 0.3770

Tmin 0.42 0.49 -4.5700 0.5810

Tmean 0.33 0.35 6.8450 0.5280

EA 31.83

RR 0.62 0.00 -0.0141 0.9360

Tmax 10.23 26.50 -23.2210 0.0000

Tmin 8.84 20.10 -12.1120 0.0000

Tmean 12.14 26.04 -18.2160 0.0000

were also significant determinants of EIRm at lower elevations (≤ 500 m) in Guinea just235

that their contribution to EIRm variations is small (about 13.59%) compared to that of236

Sahel (about 30.72%). In Guinea, also, EIRm data were unavailable for locations > 1000 m237

for further analysis in this regard. In WCA, rainfall and temperature were insignificantly238

associated with EIRm seasonality whether a lower or higher elevations. Their percentage239

explanation of the variation in EIRm were also low (extremely low at lower elevation areas240

and slighly higher for higher elevation areas) compared to other climate zones. In EA,241
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Table 2: Same as Table 1 but for locations with elevations > 1000 m. In Guinea,

EIR data were unavailable for locations at this elevation hence represented as dashed lines.

Zone R2 [%] Variable lmg [%] First [%] Coefficient (R) P-value

Sahel 40.47

RR 7.43 14.83 0.3745 0.0780

Tmax 17.66 35.91 -10.8070 0.0036

Tmin 3.69 4.17 -1.4543 0.5950

Tmean 11.69 23.40 -7.7660 0.0513

Guinea -

RR - - - -

Tmax - - - -

Tmin - - - -

Tmean - - - -

WCA 16.55

RR 1.41 1.25 -0.0844 0.7653

Tmax 6.70 0.23 6.1700 0.6620

Tmin 1.53 0.39 14.1000 0.5970

Tmean 6.91 1.32 12.2800 0.5300

EA 18.22

RR 10.44 13.37 0.5510 0.0000

Tmax 1.82 3.94 8.1570 0.0289

Tmin 2.88 7.77 10.2080 0.0011

Tmean 3.08 6.95 11.0460 0.0026

temperature variables (Tmin, Tmean and Tmax) were the significant drivers of EIR seasonality242

at locations ≤ 500 m. It explained about 31% of the seasonality in EIRm in these areas with243

extremely insignificant contribution from rainfall. But at areas > 1000 m, all the climate244

variables were significant contributors with rainfall showing higher contribution to EIRm245

variation than temperature.246

3.3 EIR lag behind rainfall247

Figure 3 shows the seasonal relationship between rainfall and EIRm (see Figure 3a) and the248

lag between rainfall onset and EIR onset (see Figure 3b). It is observed in Figure 3a that249

EIRm is positively correlated with rainfall. A lag period of 1 month is observed in Sahel250
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(b) The box-and-whisker plot of cross-correlation coefficient between Rainfall and EIRm at

different lag period

Figure 3: The correlation between rainfall and EIRm. The numbers 39, 36, 13 and 29

shows the number of location observations contributing to the average timeseries (a) and

the box-and-whisker plots (b).
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and EA but zero month in Guinea and WCA. Similarly, the cross-correlation statistics251

determining the lag between the onset of rainy season and the start of the EIR season are252

shown in Figure 3b. Again, it is observed that the lag at which EIRm seasonality strongly253

and positively correlated with rainfall was 1 month in the Sahel and EA but zero month in254

Guinea and WCA.255

4 Discussion256

Our study first examined the seasonal ranges of rainfall and temperature at which EIRm257

occurred in a pair-wise comparison study. In general, temperature ranges of EIRm response258

were mostly clustered between a minimum of 15◦C and a maximum of 40◦C. This outcome259

suggests that seasonal malaria transmission is barely impossible below 15◦C or above 40◦C.260

Previous studies (Shapiro et al., 2017; Parham and Michael, 2010; Lunde et al., 2013a;261

Mordecai et al., 2013) have indicated that malaria parasite development is not possible at262

temperatures below 16◦C and that temperatures above 40◦C have adverse effect on mosquito263

population turnover. The outcome of our study using EIRm corroborates these previous264

findings. It provides an additional justification that the number of infectious mosquito bites265

a person receives per time are associated with changes in temperature. While Tmin may266

be below 16◦C as observed in the Sahel and EA (see Figure 2), the daily Tmean must be267

greater than 16◦C particularly for the anopheles mosquitoes for transmission to occur. It268

should also be significantly less than 40◦C for anopheles mosquitoes to survive thermal stress269

and possible death if seasonal transmission has to take place. Similarly, maximum monthly270

rainfall values for EIRm occurrence was 600 mm in WCA but 400 m in the Sahel, Guinea271

and EA. The higher monthly maximum rainfall in WCA is due to the fact that annual total272

rainfall is mostly higher in this region than others (Nicholson, 2013; Froidurot and Diedhiou,273

2017). Previous works (Craig et al., 1999; Ermert et al., 2011) have demonstrated that the274

least monthly amount of rainfall required for malaria transmission is about 80 mm. Our275

findings suggest that the monthly maximum limit required for seasonal malaria transmission276

should be about 600 mm in WCA but 400 mm in Sahel, Guinea and EA. Excess of these277

thresholds could result in flooding of breeding grounds and flushing out and killing the278

water-bound stage vectors (Paaijmans et al., 2010; Ermert et al., 2011).279

The evaluation of the relative importance of RR, Tmin, Tmean and Tmax in predicting EIR280

seasonality (see details in Table 1 and 2) revealed climate variables that were significantly281

associated with EIR seasonality in Sub-Saharan Africa. These climate variables are ob-282
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served as the drivers of malaria seasonality in those zones of the sub-region. The climate283

variables with highest contribution to EIR variance in each zone are attributed as the most284

significant drivers. This means that any changes in these significant drivers can result in a285

substantial changes in malaria seasonality in those areas. Elevation or topography was also286

observed to play a significant role in determining the important climate drivers of seasonal287

malaria transmission. In EA for instance, temperature was the important determinant of288

EIR seasonality at lower elevated areas (≤ 500 m). On the contrary, both rainfall and289

temperature significantly influenced EIRm seasonality at higher elevated areas (>1000 m).290

Though temperature and rainfall are important factors in malaria transmission, our study291

does not find them to have any significant association with EIR seasonality in WCA. This292

suggest that malaria seasonality in this zone is importantly driven by other factors other293

than climate. This require additional studies to unravel these factors driving malaria season-294

ality in this zone. Mabaso et al. (2007) predicted EIR seasonality from environmental data295

and found that seasonality in rainfall, minimum temperature, and irrigation were important296

determinants of seasonality in EIR in Sub-Saharan Africa. Though this study outcome is297

important, it is not climate specific as it does not justify the implications of diverse climate298

conditions on EIR seasonality as demonstrated in this study. Other studies (Mabaso et al.,299

2006; Simple et al., 2018) have used malaria case records from hospitals and found signifi-300

cant correlation between rainfall and temperature. As stated in the introduction, malaria301

case records have drawbacks for studying malaria seasonality as they are subject to sig-302

nificant uncertainties due to the inaccurate diagnostics and under counting due to varying303

health-seeking behaviour and health policies (Afrane et al., 2012b).304

The cross-correlation statistics showed the lag(s) at which rainfall strongly correlated with305

EIRm in each zone. The lag period suggest the time taken for malaria season to start after306

rainfall season has started. The lag of 1 month in Sahel and EA signifies that malaria307

transmission season delays 1 month after the start of rainfall season at these zones. In308

Guinea and WCA, this lag period was zero month suggesting that there is no delay between309

rainfall season onset and the start of malaria season. Hence malaria transmission in these310

zones is year-round. In markedly seasonal rainfall zones such as the Sahel and EA, the311

delay between rainfall onset and the start of the malaria season is expected. Rainfall in the312

Sahel is markedly seasonal, lasting from June to October, followed by about six to eight313

months of dry period (Nicholson, 2013; Froidurot and Diedhiou, 2017). Hence, mosquitoes314

are barely present during the dry and long hot season. Even if present, they are inactive315
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due to low humidity and high temperature and only recover within the rainy season when316

rainfall and temperature requirements are suitable. The absence of delay between rainfall317

season onset and the start of malaria season at Guinea and WCA is also expected. These318

zones are highly humid with shorter dry seasons (Nicholson, 2013; Froidurot and Diedhiou,319

2017). For this reason, vectors are able to persist all year round at these zones resulting320

in year-round transmission at these areas. Previous studies (Simple et al., 2018; Tompkins321

and Di Giuseppe, 2015; Reiner et al., 2015; Ikeda et al., 2017) have reported malaria lagging322

behind rainfall at about 1 to 2 months but our study has further demonstrated that malaria323

season onset may lag behind rainfall only at markedly seasonal rainfall areas in Sub-Saharan324

Africa.325

5 Conclusion326

Clinical malaria case data is commonly utilized as a malariometric in examining the rela-327

tionship between climate and seasonal malaria transmission in Sub-Saharan Africa. This328

data, on the other hand, is fraught with uncertainty due to out-of-sample generalization329

over geography and time, erroneous diagnosis, and under-counting due to varying health-330

seeking behavior and policy. As a result, in this work, we explored the applicability of331

high-quality EIR measurements to link rainfall and temperature seasonality to seasonal332

malaria outcomes in Sub-Saharan Africa. The main goal was to determine the climate333

variables that significantly drives malaria seasonality and their relative importance in the334

sub-region. Sub-Saharan Africa was first divided into four distinct climate zones namely335

Sahel, Guinea, WCA, and EA. The division was necessary because each zone has a unique336

climate conditions and therefore will have different climate implications on malaria sea-337

sonality. Applying a multi-regression statistics, pair-wise comparison and cross-correlation338

approaches to a EIRm database gathered from publicly available field campaigns for each339

zone, the climate variables that explained significant variations in EIR seasonality were340

determined.341

Findings in this study affirmed previous understanding that seasonal malaria transmission342

is barely impossible below 16◦C or above 40◦C temperature threshold (Shapiro et al., 2017;343

Mordecai et al., 2013). Hence, for seasonal malaria transmission to be sustained, average344

temperature should be well above the minimum or well below maximum threshold. While345

previous studies (Craig et al., 1999; Ermert et al., 2011) suggest that the monthly minimum346

rainfall requirement for seasonal transmission is about 80 mm, our study observed monthly347
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maximum rainfall limit should be about 600 mm in WCA, and 400 mm in the Sahel, Guinea348

and EA. While rainfall and temperature were found to be significantly associated with349

EIRm seasonality in the Sahel, Guinea and EA, they were not important drivers of malaria350

seasonality in WCA. Important drivers of malaria seasonality in WCA may be due to other351

factors other than climate variables. In zones characterized by elevations such as EA,352

topography has a significant influence on which variable is an important determinant of353

malaria seasonality. At markedly seasonal rainfall areas such as Sahel and EA, malaria354

seasonal starts one month later after the rainfall season has started. However, for zones355

where rainfall season is bimodal such as Guinea and WCA, there is no delay between rainfall356

season onset and malaria season onset.357

In this study, therefore, we showed that high quality EIRm measurements can usefully sup-358

plement established metrics for seasonal malaria by demonstrating evidence for the use of359

EIR to directly link the risk of humans to infectious mosquito bites to climate. The study360

informs our understanding of the connection between climate variables and both the malaria361

vector and parasite biology and how that translates into malaria seasonality in Sub-Saharan362

Africa. This information is key for the improvement and validation of weather-driven dy-363

namical mathematical malaria models that directly simulate EIR. Our findings provide an364

understanding of geographical heterogeneous malaria risk from climate effect and support365

future malaria modeling and forecasting efforts. The study also supplements previous works366

describing clinical patterns of malaria infection and morbidity. Taking into account the367

seasonality of malaria management, findings in this study could lead to significant public368

health advantages by assisting in determining when, where, and how to use vector and par-369

asite control strategies. It can, therefore, help stakeholders establish a robust framework for370

monitoring, forecasting and control of malaria.371

This study does not claim to have identified all the EIRm data available across sub-Saharan372

Africa. It relied on EIRm data available in repository (Yamba et al., 2018) with details373

explained in (Yamba et al., 2020). The study also acknowledges that the observed EIRm374

data were both spatially and temporally limited and thus unavailable for many settings (as375

shown if Figure 1). This limitation was unavoidable because sampling mosquitoes for the376

determination of EIR is both labour and cost intensive. Hence, it is very difficult to have377

EIRm data available for many locations and for a long period of time. Future mosquito378

sampling should, therefore, focus on areas of unavailable data in order to consolidate the379

spatial homogeneity of available EIRm data distribution. However, an important strength380
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of this study is its restricted geographic and climate relevance. To our knowledge, this381

study is the first of its kind and also that EIRm data has not been explored on such a wider382

scale in Sub-Saharan Africa. With the amount of EIRm utilized for each climate zone, it is383

not anticipated that the inherent limitations may have any major adverse influence on the384

outcome of the study.385
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1. Introduction

The tables provide detailed information on the study locations where mosquitoes have

been collected and estimated for EIR. Geographical information for each location include:

country and village where the survey took place; the longitude (lon), latitude (lat) and

the elevation of the place; whether the location is rural (R) or periurban (PU) and had

no permanent water body or irrigation activities. Other important information include:

the year the data collection started (SY) and ended (EY), the month the data collection

started (SM) and end (EM).
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Figure S1 shows the climate characteristics Sahel, Guinea, WCA and EA. It depicts the

distinct seasonal profile of rainfall, minimum and maximum temperature for each zone.
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Table S1. Malaria EIR database locations for Sahel. Pd=population density type, SY=start

year of data, EY=End year of data, SM=start month of data, EM= end month of data.
Country site lon lat elevation Pd Hydrology SY SM EY EM
Burkina Faso Dande -4.557 11.582 275 R N 1983 01 1984 12
Burkina Faso Koubri -1.406 12.198 289 R N 1984 03 1985 02
Burkina Faso Lena -3.98 11.28 307 R N 1999 01 2001 12
Burkina Faso Pabre -1.57 12.505 303 R N 1984 03 1985 02
Burkina Faso Tago -2.643 12.932 308 R N 1983 01 1983 12
Eritrea Adibosqual 38.39 15.42 1482 R N 1999 01 1999 12
Eritrea Anseba Adibosqual 38.39 15.42 894 R N 1999 10 2000 09
Eritrea Anseba Hagaz 37.39 15.42 894 R N 1999 10 2000 09
Eritrea Dasse 37.29 14.55 916 R N 1999 01 1999 12
Eritrea Gash Barka Dasse 37.29 14.55 610 R N 1999 10 2000 09
Eritrea Gash Barka Hiletsidi 36.39 15.07 610 R N 1999 10 2000 09
Eritrea Hagaz 38.17 15.42 883 R N 1999 01 1999 12
Eritrea Hiletsidi 36.39 15.07 586 R N 1999 01 1999 12
Eritrea Maiaini 39.09 14.49 1554 R N 1999 01 1999 12
Ghana KND Lowland -1.33 10.84 212 R N 2001 06 2002 05
Ghana KND Rocky Highland -1.33 10.84 212 R N 2001 06 2002 05
Mali Ndebougou Sector -5.96 14.327 280 R N 1999 04 2000 03
Mali Molodo Sector -6.03 14.257 280 R N 1999 04 2000 03
Mali Sotuba -7.91 12.66 323 R N 1998 01 1998 12
Senegal Aere Lao -14.32 16.4 13 R N 1982 05 1983 04
Senegal Affiniam Diagobel Tendimane -16.24 14.28 12 R N 1985 01 1986 12
Senegal Barkedji -14.88 15.28 349 R N 1994 06 1996 05
Senegal Boke Dialllobe -14 16.07 28 R N 1982 05 1983 04
Senegal Ndiop -16.36 15.95 6 R N 1993 01 1996 12
Senegal Ngayokheme -16.43 14.53 11 R N 1995 01 1995 12
Senegal Takeme and Ousseuk -16.24 14.28 21 R N 1985 01 1986 12
Senegal Toulde Galle -14.48 16.53 11 R N 1990 06 1992 05
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Table S2. Malaria EIR database locations for Guinea. Pd=population density type, SY=start

year of data, EY=End year of data, SM=start month of data, EM= end month of data.
Country site lon lat elevation Pd Hydrology SY SM EY EM
Ghana Abotanso -0.26 6.09 374 R N 2004 09 2005 08
Ghana Gyidim -1.11 6.81 408 R N 2003 11 2005 10
Ghana Hwidiem -2.35 6.93 186 R N 2003 11 2005 10
Ghana Kintampo -1.73 8.05 354 R N 2003 11 2006 10
Ghana LowCost -1.33 6.38 250 R N 2003 11 2005 10
Ivory Coast Beoue -7.87 6.55 268 R N 1998 04 1999 03
Ivory Coast Bouake Dar es Salam -5.04 7.69 325 PU N 1991 01 1992 12
Ivory Coast Bouake Kennedy -5.01 7.69 351 PU N 1991 01 1992 12
Ivory Coast Bouake Sokoura -5.01 7.90 361 PU N 1991 01 1992 12
Ivory Coast Danta -8.16 7.02 272 R N 1998 04 1999 03
Ivory Coast Douandrou -7.92 6.54 237 R N 1998 04 1999 03
Ivory Coast Douedy-Guezon -7.75 6.57 266 R N 1998 04 2000 03
Ivory Coast Folofonkaha -5.21 8.58 328 R N 1996 12 1997 11
Ivory Coast Ganse 3.9 8.617 392 R N 2000 07 2002 06
Ivory Coast Glopaoudy -7.63 6.55 234 R N 1998 04 1999 03
Ivory Coast Kabolo -4.99 8.19 268 R N 1996 12 1997 11
Ivory Coast Kafine -5.67 9.27 322 R N 1995 01 1995 12
Ivory Coast Kaforo -5.67 9.29 329 R N 1996 12 1997 11
Ivory Coast Kombolokoura -5.88 9.33 366 R N 1996 12 1997 11
Ivory Coast Petionara -5.12 8.43 277 R N 1996 12 1997 11
Ivory Coast Pohan -7.93 6.54 249 R N 1998 04 2000 03
Ivory Coast Seileu -8.17 7.10 337 R N 1998 04 1999 03
Ivory Coast Tai -7.12 5.75 218 R N 1995 07 1996 06
Ivory Coast Tiemelekro -4.617 6.5 91 R N 2002 01 2003 12
Ivory Coast Tioroniaradougou -5.70 9.36 361 R N 1996 12 1997 11
Ivory Coast Zaïpobly and Gahably -7.0 5.5 180 R N 1995 07 1997 06
Ivory Coast Ziglo -7.80 6.57 256 R N 1998 04 2000 03
Sierra Leone Mendewa -11.48 8.17 325 R N 1990 01 1990 12
Sierra Leone Nyandeyama -11.62 8.12 118 R N 1990 01 1990 12

Table S3. Malaria EIR database locations for WCA. Pd=population density type, SY=start

year of data, EY=End year of data, SM=start month of data, EM= end month of data.
Country site lon lat elevation Pd Hydrology SY SM EY EM
Cameroon Koundou 12.12 3.90 705 R N 1997 06 1998 05
Cameroon Ebogo 11.47 3.40 659 R N 1991 04 1992 03
Cameroon Ebolakounou 12.44 3.91 701 R N 1997 06 1998 05
Cameroon Esuke camp 9.31 4.10 279 R N 2004 10 2005 09
Cameroon Idenau 9.05 4.21 359 R N 2001 08 2002 07
Cameroon Likoko 9.31 4.39 1933 R N 2002 10 2003 09
Cameroon Limbe 9.18 4.03 185 R N 2001 08 2002 07
Cameroon Nkoteng 12.05 4.5 587 R N 1999 02 2001 01
Cameroon Ndogpassi 10.13 3.08 72 R N 2011 01 2011 12
Cameroon Tiko 9.36 4.08 182 R N 2001 08 2002 07
Gabon Benguia 13.52 -1.63 37 R N 2003 05 2004 04
Gabon Dienga 12.68 -1.87 772 R N 2003 05 2004 04
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Table S4. Malaria EIR database locations for EA. Pd=population density type, SY=start

year of data, EY=End year of data, SM=start month of data, EM= end month of data.
Country site lon lat elevation Pd Hydrology SY SM EY EM
Burundi Katumba 29.237 -3.317 776 R N 1982 01 1982 12
Kenya Asembo 34.40 -0.18 1148 PU N 1988 03 1989 02
Kenya Kameichiri 37.62 -0.82 1188 PU N 2004 04 2005 03
Kenya Kilifi 39.85 -3.62 18 PU N 1990 12 1991 11
Kenya Mumias 34.49 0.34 1311 PU N 1995 05 1996 04
Kenya Murinduko 37.45 -0.57 1311 PU N 2004 04 2005 03
Kenya Sokoke 39.88 -3.33 125 R N 1990 12 1991 11
Mozambique CdSLCMPC 32.57 -25.92 35 PU N 1985 01 1985 12
Tanzania Bagamoyo 38.26 -5.04 1093 R N 1995 10 1996 09
Tanzania Balangai 38.28 -4.56 1230 R N 1995 10 1996 09
Tanzania Chasimba 38.82 -6.58 36 R N 1992 01 1992 12
Tanzania Kisangasangeni 37.39 -3.39 759 PU N 1994 07 1995 06
Tanzania Kwameta 38.29 -5.08 671 R N 1995 10 1996 09
Tanzania Kwamhanya 38.28 -5.04 596 R N 1995 10 1996 09
Tanzania Magundi 38.28 -5.04 671 R N 1995 10 1996 09
Tanzania Mapinga 39.07 -6.60 59 R N 1992 01 1992 12
Tanzania Milungui 38.23 -4.45 1636 R N 1995 10 1996 09
Tanzania Mvuleni 37.33 -3.39 786 PU N 1994 07 1995 06
Tanzania Yombo 38.85 -6.59 36 R N 1992 01 1992 12
Tanzania Zinga 38.99 -6.52 22 R N 1992 01 1992 12
Uganda Apac-Olami 32.56 1.89 1053 R N 2001 06 2002 05
Uganda Arua-Cilio 31.02 3.11 976 PU N 2001 06 2002 05
Uganda Kabale villages 29.98 -1.22 1888 PU N 1997 10 1998 09
Uganda Kanungu Kihihi 29.70 0.59 758 R N 2001 06 2002 05
Uganda Kyenjojo Kasiina 30.65 0.62 1361 R N 2001 06 2002 05
Uganda Tororo-Namwaya 34.18 0.68 1143 PU N 2001 06 2002 05
Zambia Chidakwa 26.791 -16.393 1000 R N 2005 11 2006 10
Zambia Lupata 26.791 -16.393 1000 R N 2005 11 2006 10
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Table S5. Results of the relative importance of the meteorological predictors of

EIRm for locations with elevations between 501–1000 m. Variables with significant contributions

are are boldfaced.
Zone R2 [%] Variable lmg [%] First [%] Coefficient (R) P-value

Sahel 10.08

RR 3.20 7.07 0.2070 0.0189
Tmax 2.73 3.60 -4.3460 0.1300
Tmin 2.36 1.22 2.7780 0.2320
Tmean 1.79 0.45 -0.9683 0.7490

Guinea -

RR - - - -
Tmax - - - -
Tmin - - - -
Tmean - - - -

WCA 8.96

RR 0.77 1.79 0.2630 0.1350
Tmax 4.89 3.71 -9.5780 0.1060
Tmin 0.91 0.18 -5.0120 0.6650
Tmean 2.39 1.63 -9.5740 0.2330

EA 6.74

+ RR 0.68 0.21 -0.0951 0.6070
Tmax 3.02 2.34 4.6330 0.0847
Tmin 1.14 0.14 1.1540 0.6340
Tmean 1.90 1.04 3.1700 0.2350
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