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Abstract

1. Freshwater phytoplankton communities are currently experiencing multiple global change stressors, including increasing

frequency and intensity of storms. An important mechanism by which storms affect lake and reservoir phytoplankton is by

altering the water column’s thermal structure (e.g., changes to thermocline depth). However, little is known about the effects

of intermittent thermocline deepening on phytoplankton community vertical distribution and composition or the consistency

of phytoplankton responses to varying frequency of these disturbances over multiple years. 2. We conducted whole-ecosystem

thermocline deepening manipulations in a small reservoir. We used an epilimnetic mixing system to experimentally deepen

the thermocline in two summers, simulating potential responses to storms, and did not manipulate thermocline depth in two

succeeding summers. We collected weekly depth profiles of water temperature, light, nutrients, and phytoplankton biomass

as well as discrete samples to assess phytoplankton community composition. We then used time-series analysis and multi-

variate ordination to assess the effects of intermittent thermocline deepening due to both our experimental manipulations and

naturally-occurring storms on phytoplankton community structure. 3. We observed inter-annual and intra-annual variability

in phytoplankton community response to thermocline deepening. We found that peak phytoplankton biomass was significantly

deeper in years with a higher frequency of thermocline deepening events (i.e., years with both manipulations and natural

storms) due to weaker thermal stratification and deeper depth distributions of soluble reactive phosphorus. Furthermore, we

found that the depth of peak phytoplankton biomass was linked to phytoplankton community composition, with certain taxa

being associated with deep or shallow biomass peaks, often according to functional traits such as optimal growth temperature,

mixotrophy, and low-light tolerance. 4. Our results demonstrate that abrupt thermocline deepening due to water column mixing

affects both phytoplankton depth distribution and community structure via alteration of physical and chemical gradients. In

addition, our work supports previous research that phytoplankton depth distribution and community composition interact at

inter-annual and intra-annual timescales. 5. Variability in the inter-annual and intra-annual responses of phytoplankton to

abrupt thermocline deepening indicates that antecedent conditions and the seasonal timing of surface water mixing may mediate

these responses. Our findings emphasize that phytoplankton depth distributions are sensitive to global change stressors and

effects on depth distributions should be taken into account when predicting phytoplankton responses to increased storms under

global change.
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 23 

Abstract 24 

1. Freshwater phytoplankton communities are currently experiencing multiple global 25 

change stressors, including increasing frequency and intensity of storms. An important 26 

mechanism by which storms affect lake and reservoir phytoplankton is by altering the 27 

water column’s thermal structure (e.g., changes to thermocline depth). However, little is 28 

known about the effects of intermittent thermocline deepening on phytoplankton 29 

community vertical distribution and composition or the consistency of phytoplankton 30 

responses to varying frequency of these disturbances over multiple years.  31 

2. We conducted whole-ecosystem thermocline deepening manipulations in a small 32 

reservoir. We used an epilimnetic mixing system to experimentally deepen the 33 

thermocline in two summers, simulating potential responses to storms, and did not 34 

manipulate thermocline depth in two succeeding summers. We collected weekly depth 35 

profiles of water temperature, light, nutrients, and phytoplankton biomass as well as 36 

discrete samples to assess phytoplankton community composition. We then used time-37 

series analysis and multivariate ordination to assess the effects of intermittent thermocline 38 

deepening due to both our experimental manipulations and naturally-occurring storms on 39 

phytoplankton community structure.  40 

3. We observed inter-annual and intra-annual variability in phytoplankton community 41 

response to thermocline deepening. We found that peak phytoplankton biomass was 42 

significantly deeper in years with a higher frequency of thermocline deepening events 43 

(i.e., years with both manipulations and natural storms) due to weaker thermal 44 

stratification and deeper depth distributions of soluble reactive phosphorus. Furthermore, 45 
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we found that the depth of peak phytoplankton biomass was linked to phytoplankton 46 

community composition, with certain taxa being associated with deep or shallow biomass 47 

peaks, often according to functional traits such as optimal growth temperature, 48 

mixotrophy, and low-light tolerance.  49 

4. Our results demonstrate that abrupt thermocline deepening due to water column mixing 50 

affects both phytoplankton depth distribution and community structure via alteration of 51 

physical and chemical gradients. In addition, our work supports previous research that 52 

phytoplankton depth distribution and community composition interact at inter-annual and 53 

intra-annual timescales.  54 

5. Variability in the inter-annual and intra-annual responses of phytoplankton to abrupt 55 

thermocline deepening indicates that antecedent conditions and the seasonal timing of 56 

surface water mixing may mediate these responses. Our findings emphasize that 57 

phytoplankton depth distributions are sensitive to global change stressors and effects on 58 

depth distributions should be taken into account when predicting phytoplankton 59 

responses to increased storms under global change. 60 

 61 

 62 

Introduction 63 

Phytoplankton in lakes and reservoirs are ecologically important organisms that are 64 

currently experiencing multiple global change stressors (Winder & Sommer, 2012). These 65 

stressors include nutrient (Smith, 2003) and sediment pollution (Donohue & Garcia Molinos, 66 

2009), increased frequency and intensity of storms (Kirchmeier-Young & Zhang, 2020), and 67 

increased water temperatures (O’Reilly et al., 2015) that result in altered thermal stratification 68 
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(Woolway et al., 2019; Dokulil et al., 2021). Phytoplankton responses to these global change 69 

stressors range from changes in total biomass (Ho, Michalak & Pahlevan, 2019) to altered 70 

phenology and seasonal succession (Henson et al., 2018) and changes in the presence and 71 

relative abundance (Carey et al., 2012; Winder & Sommer, 2012) or spatial distribution 72 

(Stockwell et al., 2020) of phytoplankton taxa. Because of the fundamental role phytoplankton 73 

play in freshwater ecosystem function, changes in the composition and distribution of 74 

phytoplankton communities can alter nutrient cycling (Cottingham et al., 2015), increase or 75 

decrease ecosystem productivity and dissolved oxygen levels (Diaz, 2001), and affect food 76 

quantity and quality for higher trophic levels (Danielsdottir, Brett & Arhonditsis, 2007). Global 77 

change stressors may also increase the prevalence of algal and cyanobacterial blooms (Ho & 78 

Michalak, 2020), which can have a variety of undesirable impacts including release of toxins 79 

(Chorus & Welker, 2021), unsightly surface scums, and taste and odor problems (Watson et al., 80 

2016). 81 

One important mechanism by which global change affects freshwater phytoplankton is 82 

via alteration of thermocline depth (Gray et al., 2019), which can occur either gradually due to 83 

changing air temperatures (Kraemer et al., 2015; Flaim et al., 2016) or abruptly due to storms 84 

(Jennings et al., 2012; Klug et al., 2012; Ren et al., 2020; Stockwell et al., 2020). Alteration of 85 

thermocline depth can affect the vertical distribution and composition of the phytoplankton 86 

community during the summer stratified period (Garneau et al., 2013; Jobin & Beisner, 2014), as 87 

phytoplankton biomass in many stratified lakes and reservoirs is shown to vary across depth, 88 

with peak biomass concentration often occurring well below the surface (Hamilton, Brien & 89 

Mcbride, 2010; Cullen, 2015; Latasa et al., 2017; Leach et al., 2018; Lofton et al., 2020). These 90 

biomass peaks form in response to vertical environmental gradients (e.g., of water temperature 91 
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and light) within the water column (Longhi & Beisner, 2009; Cullen, 2015; Albers et al., 2018; 92 

Lofton et al., 2020; Reinl, Sterner & Austin, 2020), and may be especially sensitive to global-93 

change induced alteration of thermal stratification (Carey et al., 2012; Winder & Sommer, 2012).  94 

Changes in thermocline depth may affect both the depth and width of phytoplankton 95 

biomass peaks (Fig. 1; Beisner & Longhi, 2013; Jobin & Beisner, 2014; Leach et al., 2018; 96 

Lofton et al., 2020), as well as phytoplankton community composition (Lydersen & Andersen, 97 

2007; Jobin & Beisner, 2014; Stockwell et al., 2020). Deepening thermoclines can increase the 98 

proportion of the water column where light availability and water temperature are suitable for 99 

phytoplankton growth (Huisman et al., 2004) or entrain nutrients from below the thermocline 100 

into the photic zone (Stockwell et al., 2020). As a result, thermocline deepening could either lead 101 

to: 1) a deeper phytoplankton biomass peak as phytoplankton shift to access entrained nutrients 102 

(Fig. 1B; e.g., Garneau et al., 2013), or 2) a wider, more diffuse peak as some phytoplankton 103 

shift their depth to maximize entrained nutrient availability while others remain at shallow 104 

depths to maximize light availability (Fig. 1C; e.g., Jobin & Beisner, 2014). Additionally, a 105 

thermocline that is shallower than the photic zone depth might favor taxa that are tolerant of high 106 

ultraviolet radiation and grow well at warm temperatures, while a deeper thermocline might 107 

favor taxa that are low-light tolerant or mixotrophic (Klausmeier & Litchman, 2001; Diehl et al., 108 

2002; Huisman et al., 2004).  109 

Gradual changes in thermocline depth due to air temperature warming and abrupt 110 

changes in thermocline depth due to storms likely evoke different phytoplankton responses at 111 

different time scales. Whole-ecosystem studies examining the response of phytoplankton to 112 

gradual thermocline deepening over multiple years, as might occur due to warming air 113 

temperatures, found that thermocline deepening affected the relative abundance of phytoplankton 114 
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taxa and phytoplankton vertical distributions (Lydersen & Andersen, 2007; Cantin et al., 2011; 115 

Jobin & Beisner, 2014). Specifically, thermocline deepening increased species richness, 116 

decreased the abundance of chlorophytes and diatoms, and increased the abundance of 117 

mixotrophic dinoflagellates in an oligotrophic Norwegian lake over three years, although total 118 

phytoplankton biomass did not change (Lydersen & Andersen, 2007). Conversely, thermocline 119 

deepening led to increased chlorophyte abundance and total biomass (Cantin et al., 2011) and 120 

shallower, wider biomass peaks of phytoplankton (Jobin & Beisner, 2014) in different summers 121 

during a multi-year whole-ecosystem experiment in an oligotrophic lake in Québec, Canada. 122 

These contradictory findings highlight the possibility for multiple mechanisms of thermocline 123 

deepening effects on phytoplankton community structure. 124 

Variability in observed whole-ecosystem effects of a single abrupt thermocline deepening 125 

event on phytoplankton at daily to seasonal timescales (Rinke et al., 2009; Garneau et al., 2013; 126 

Wu et al., 2015; Planas & Paquet, 2016; Kasprzak et al., 2017) underscores the need for 127 

improved understanding of the potential cumulative effects of an increased frequency and 128 

intensity of multiple abrupt thermocline deepening events, especially at the inter-annual scale. 129 

Previous studies looking at single thermocline deepening events have observed conflicting 130 

results. Several studies which examined the effect of a single storm event on phytoplankton 131 

vertical distributions at the whole-ecosystem scale reported homogenization of biomass across 132 

the epilimnion (warm surface waters) after a storm due to internal seiches, upwelling, and 133 

surface water mixing (Rinke et al., 2009; Wu et al., 2015; Planas & Paquet, 2016; Kasprzak et 134 

al., 2017; represented in Fig. 1C). In contrast, another study did not report homogenization but 135 

instead a deepened biomass maximum after a storm (Garneau et al., 2013; represented in Fig. 136 

1B). Finally, abrupt experimental thermocline deepening caused increases in small, silica-137 
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containing flagellates and decreases in colonial, filamentous phytoplankton taxa but inconsistent 138 

total biomass responses during a single summer (Lofton et al., 2019). These varying responses to 139 

single events highlight the pressing need to understand the cumulative response of phytoplankton 140 

to an increased frequency and intensity of intermittent, abrupt thermocline deepening, such as 141 

might occur due to an increasing frequency of storm events, over multiple years due to global 142 

change.  143 

The relationship between the frequency of abrupt thermocline disturbance and 144 

phytoplankton community structure over multiple summers has important implications for the 145 

predictability of phytoplankton community response to increased storms. Some research suggests 146 

that an increased frequency and intensity of thermocline deepening disturbance could result in 147 

greater rates of change in the presence and relative abundance of phytoplankton taxa (Pannard, 148 

Bormans & Lagadeuc, 2008). Alternatively, as the frequency of thermocline deepening events 149 

increases, the phytoplankton community could shift to include more taxa that are well-adapted to 150 

mixed conditions (Winder & Sommer, 2012; Stockwell et al., 2020). Examining the effects of 151 

thermocline deepening events at varying frequencies over multiple years will enhance our ability 152 

to predict phytoplankton community responses to future increases in storm frequency. 153 

We conducted a whole-ecosystem manipulation in which we experimentally deepened 154 

the thermocline of a small, eutrophic reservoir and examined the responses of phytoplankton 155 

depth distribution and community structure over four years. Our study addressed two research 156 

questions: 1) How do phytoplankton depth distribution and community structure change in 157 

response to an increased frequency of thermocline deepening events? and 2) What are the 158 

duration and consistency of these responses at intra-annual and inter-annual scales? We 159 

performed five thermocline deepening manipulations over two summers, and then did not 160 
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manipulate the thermocline in two reference summers. We monitored phytoplankton depth 161 

distribution and community structure weekly. We also measured a suite of physicochemical 162 

variables to assess responses to changes in gradients of light, temperature, and nutrients 163 

associated with thermocline deepening on weekly to inter-annual timescales.  164 

 165 

 166 

Methods 167 

Study site 168 

We conducted two summers of thermocline deepening manipulations (2016–2017), 169 

followed by two summers with no manipulations (2018–2019) in Falling Creek Reservoir (FCR), 170 

a small drinking water supply reservoir located in Vinton, VA, USA (37°18′12″ N, 79°50′14″ W; 171 

Fig. 2). FCR is owned and operated by the Western Virginia Water Authority (WVWA), has a 172 

maximum depth of 9.3 m (Fig. 2), and is thermally stratified from approximately April to 173 

October each year (Carey et al., 2021c), with ice cover and inverse stratification occurring 174 

intermittently during the winter months in most years (Carey, 2021). From May to September in 175 

2016–2019, FCR's trophic state indicated mesotrophic to eutrophic conditions (following 176 

Carlson & Simpson, 1996): mean total phosphorus (TP) across the water column was 19 ± 11 μg 177 

L-1 (1 S.D.), mean total nitrogen was 343 ± 242 μg L-1 (Carey et al., 2020a), and mean Secchi 178 

depth was 2.0 ± 0.7 m (Carey et al., 2020b). Over the course of the study, water residence time 179 

in FCR had a median of 174 days (Carey et al., 2021b; see Text S1), and the reservoir was 180 

managed to have a constant water level. 181 

 182 

 183 
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 184 

Thermocline deepening manipulations 185 

An engineered bubble-plume epilimnetic mixing (EM) system was deployed in FCR for 186 

water quality management (Visser et al., 2016). The EM is installed at a depth of 5 m and 187 

extends throughout the lacustrine region of the reservoir (Fig. 2). The system comprises an 188 

onshore air compressor coupled to a diffusor line of porous hose which can inject bubbles of 189 

atmospheric air into the water column at rates up to 25 standard cubic feet per minute (SCFM; 190 

see Lofton et al. 2019 for an in-depth description of the EM system). 191 

In 2016 and 2017, we conducted a total of five discrete, short (24–72-hour) 192 

manipulations in FCR to test operation of the EM in collaboration with the WVWA. 193 

Manipulations occurred in late May, late June, and late July of 2016 and in late May and early 194 

July of 2017 and had varied timing, intensity, and duration (Table 1) to provide the WVWA with 195 

information on the effects of EM operation under a range of conditions. These short, intense 196 

thermocline deepening manipulations are well-suited to simulate the abrupt changes in 197 

thermocline depth that can accompany storms (e.g., Kasprzak et al., 2017) and contrast with 198 

previous empirical work examining phytoplankton response to thermocline deepening via 199 

gradual mixing (Lydersen & Andersen, 2007; Cantin et al., 2011; Jobin & Beisner, 2014). EM 200 

system testing was halted after two years and so the thermocline formed in the absence of 201 

manipulations during the summers of 2018 and 2019.  202 

 203 

Field sampling 204 

To identify naturally-occurring storm events that might result in thermocline deepening, 205 

we measured wind speed (05103-L Wind Monitor, R.M. Young, Traverse City, MI, USA) and 206 



  

10 
 

precipitation (TE525WS-L Rain Gauge, Texas Electronics, Dallas, TX, USA) at one-minute 207 

temporal resolution throughout the study period with a meteorological station (CR3000 208 

Micrologger, Campbell Scientific, Logan, UT, USA) deployed on the dam of FCR (Fig. 2; Carey 209 

et al., 2021a). 210 

To assess the effect of thermocline deepening on phytoplankton, we collected weekly 211 

depth profiles of phytoplankton biomass and grab samples for microscope identification of 212 

phytoplankton taxa from May to September in 2016–2019. All sampling was conducted at the 213 

deepest site of the reservoir (Fig. 2). Biomass depth profiles (~10 cm resolution) were collected 214 

using a FluoroProbe (bbe Moldaenke, Schwentinental, Germany; Catherine et al., 2012; Carey et 215 

al., 2021c). FluoroProbes report total biomass as the summation of biomass across four spectral 216 

groups (green algae, brown algae, cyanobacteria, and cryptophytes; Beutler et al., 2002). For this 217 

study, we focused on total biomass profiles (vs. individual spectral groups) to represent the entire 218 

community's depth distribution patterns. We chose to sample phytoplankton community 219 

composition at the depth of peak phytoplankton biomass according to total biomass profiles. 220 

Depth samples were collected using a 4-L van Dorn sampler (Wildco, Yulee, FL, USA) at the 221 

depth of peak biomass estimated from FluoroProbe depth profiles. Samples were immediately 222 

preserved in opaque 250 mL high-density polyethylene (HDPE) bottles by adding ~1% Lugol’s 223 

iodine by volume for subsequent microscope analysis. 224 

We also collected a suite of physicochemical variables each week to assess the effect of 225 

thermocline deepening over the four-year study. We obtained ~0.1 m-resolution depth profiles of 226 

water temperature (Carey et al., 2020b, 2021c e) and photosynthetically active radiation (Carey 227 

et al., 2020b, 2021c) and measured Secchi depth (Carey et al., 2020b). We also collected 1-2 m-228 

resolution depth profiles of water chemistry, including dissolved organic carbon (DOC), nitrate 229 
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(NO3), ammonium (NH4), and soluble reactive phosphorus (SRP; Carey et al., 2020a). Detailed 230 

field sampling methods for physicochemical variables can be found in Text S2.  231 

 232 

Laboratory analyses 233 

Phytoplankton grab samples were enumerated on a Nikon Eclipse Ci microscope (Nikon, 234 

Minato City, Tokyo, Japan). Before counting, samples were permanently mounted on slides 235 

following Crumpton (1987). Samples were then enumerated at 400× until at least 300 natural 236 

units (either single cells or colonies) had been counted (Acker, 2002; Brierley et al., 2007). 237 

Phytoplankton were identified to genus and the first ten natural units of each genus were 238 

measured and used to calculate biovolume following Hillebrand et al. (1999). All phytoplankton 239 

microscopy was conducted by M.E.L. 240 

All chemistry samples were analyzed following standard methods within six months of 241 

collection (Carey et al., 2020a; Text S3). All data associated with this study are published in the 242 

Environmental Data Initiative repository (Carey et al., 2020a b, 2021a, b, c, d e; Carey, 2021; 243 

Lofton et al., 2021). 244 

 245 

Calculation of phytoplankton community and distribution metrics 246 

We calculated multiple metrics to describe both phytoplankton biomass depth 247 

distributions and community composition at the depth of maximum biomass. First, we used the 248 

fluorescence-based depth profiles to calculate the depth of maximum phytoplankton biomass, the 249 

magnitude of biomass at that depth, and width of the biomass peak (peak width) across depth 250 

(following Leach et al., 2018; Lofton et al., 2020). We determined the closest depth above and 251 

below the depth of maximum biomass where phytoplankton biomass concentration was less than 252 



  

12 
 

or equal to the median concentration across the water column. The difference between these two 253 

depths was assigned as the peak width (see Fig. S1 for a visual explanation of peak width 254 

calculation). 255 

Second, we used phytoplankton count data to assess community composition at the depth 256 

of peak biomass. We determined genus richness and calculated the relative abundance and 257 

Shannon diversity of phytoplankton groups (diatoms, chlorophytes, chrysophytes, cryptophytes, 258 

cyanobacteria, desmids, dinoflagellates, euglenoids, raphids) at the depth of maximum biomass 259 

on each sampling day. To assess potential changes in both the relative abundance and the 260 

presence/absence of genera over time, we also calculated Bray-Curtis and Jaccard dissimilarity 261 

between samples each week within each year using the vegdist function of the vegan package 262 

(Oksanen et al., 2020).  263 

 264 

Calculation of physicochemical metrics 265 

We analyzed field data to calculate metrics describing the temperature, light, nutrient, 266 

and carbon conditions in the reservoir following previous studies (Jobin & Beisner, 2014; 267 

Cullen, 2015; Leach et al., 2018; Lofton et al., 2020). Thermocline depth, Schmidt stability, and 268 

buoyancy frequency were calculated using the R package rLakeAnalyzer (Winslow et al., 2019). 269 

In addition, we determined the water temperature at the depth of peak phytoplankton biomass 270 

and phytoplankton depth sample on each sampling day. Photic zone depth was determined from 271 

PAR depth profiles as the depth where 1% of incident surface light was available, and the 272 

coefficient of light attenuation (Kd) was calculated as the slope of the best fit line of the natural 273 

logarithm of percent surface light plotted against depth (Wetzel & Likens, 1991). We also 274 

determined the percent of surface light that was available at the depth of peak biomass and 275 



  

13 
 

phytoplankton depth sample on each sampling day. To characterize carbon and nutrient 276 

conditions, we determined the concentration of DOC, dissolved inorganic nitrogen (DIN, 277 

calculated as the sum of NO3 and NH4), and SRP at the sampling depth closest to the biomass 278 

peak and phytoplankton depth sample on each sampling day, as well as the coefficient of 279 

variation of carbon and nutrients across the photic zone. We also determined the magnitude of 280 

maximum observed carbon and nutrient concentrations across the photic zone on each sampling 281 

day, as well as the depth at which each concentration's maximum occurred.  282 

 283 

Assessing effects of naturally-occurring intense storms 284 

To determine whether our thermocline deepening manipulations approximated naturally-285 

occurring storms, we calculated daily sums of precipitation and daily mean wind speed during 286 

the four-year study period to identify intense storms. Intense storms were defined as when both 287 

daily mean wind and summed precipitation were in the top 5% of all observation days (total n = 288 

572) across the study period (following Doubek et al., 2021). Following this, we identified two 289 

intense storm events during our four-year study period: one on 5 May 2016 and one on 8 June 290 

2019. We then examined thermocline depths immediately before and after these naturally-291 

occurring intense storm events (within ± 1 week) and compared them to changes in thermocline 292 

depth due to our manipulations. 293 

Across the four years, manipulation summers experienced four (2016) or two (2017) 294 

thermocline deepening events (natural + experimental summed), whereas the reference summers 295 

experienced zero (2018) or one (2019) thermocline deepening events, representing a substantial 296 

difference in thermocline deepening frequency between manipulation and reference summers 297 

(Table 1). 298 
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Assessing effects of increased thermocline deepening frequency  299 

We used Anderson-Darling tests (Razali & Wah, 2011) to assess the effects of increased 300 

thermocline deepening frequency, including both natural and experimental thermocline 301 

deepening events, on physicochemical and phytoplankton community structure metrics at the 302 

inter-annual scale. Anderson-Darling tests can be used to assess significant differences between 303 

distributions of a variable and give more weight to distribution tails or extreme values, 304 

permitting assessment of whether manipulations shifted both the mean and range of ecosystem 305 

variables (Razali & Wah, 2011). We considered a variable to be responsive to an increased 306 

frequency of thermocline deepening if variable distributions between summers with 307 

manipulations and reference summers were significantly different. All Anderson-Darling test p-308 

values were Holm-Bonferroni corrected for multiple comparisons (Holm, 1979). 309 

 310 

Analysis of phytoplankton depth distributions 311 

We used autoregressive integrated moving average (ARIMA) models to assess how an 312 

increased frequency of thermocline deepening events affected phytoplankton depth distributions. 313 

ARIMA models are a well-established method for identifying the most important predictors of a 314 

response variable over time while accounting for autocorrelation (Hyndman & Athanasopoulos, 315 

2018). We developed best-fit ARIMA models using physicochemical metrics to predict 316 

phytoplankton peak depth, peak width, and the magnitude of biomass at the peak depth over 317 

time. We fit models to the full time-series of depth distribution profiles (2016–2019) as well as 318 

to manipulation summers (2016-2017) and reference summers (2018-2019) separately, and then 319 

compared predictors of phytoplankton depth distributions between manipulation and reference 320 

summers and the full time-series. We did not fit ARIMA models to phytoplankton vertical 321 
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distribution time series for each individual summer or before and after thermocline deepening 322 

events or intense storms within a year because each summer's time series had <20 observations.  323 

We developed a model selection algorithm based on the auto.arima function in the 324 

forecast package in R (Hyndman & Khandakar, 2008; Hyndman et al., 2021). Our algorithm 325 

compared models fit by auto.arima using all possible combinations of predictors to a global 326 

model using all predictors and a null model using no predictors. The algorithm then selected the 327 

model with the lowest corrected Akaike Information Criterion (AICc) as well as all models 328 

within 2 units of the lowest AICc value (Burnham & Anderson, 2002). The models had a 329 

maximum of one autoregressive term (AR(1)), following results of partial autocorrelation 330 

functions (Hyndman & Athanasopoulos, 2018) calculated for each depth distribution metric (Fig. 331 

S2).  332 

We considered the water temperature, light, and carbon and nutrient concentration 333 

metrics described above as potential predictors of phytoplankton peak depth, peak width, and the 334 

magnitude of biomass at the peak depth. We conducted pairwise Spearman correlations among 335 

all potential predictors; if two potential predictors had a pairwise Spearman’s ρ ≥ 0.7, we 336 

selected the predictor that was most strongly correlated with the corresponding response variable 337 

(Table S1). The distributions of all predictors and response variables were checked for skewness, 338 

log-transformed if appropriate, and standardized to Z-scores before fitting ARIMA models.  339 

 340 

Analysis of phytoplankton community data 341 

To relate phytoplankton community structure to physicochemical and phytoplankton 342 

depth distribution metrics, we conducted a non-metric multidimensional scaling analysis 343 

(NMDS) and post-hoc tests on ordination output. We used NMDS because this ordination 344 
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technique does not assume a multivariate normal distribution of community data and does not 345 

constrain ordination results based on environmental gradients (McCune & Grace, 2002), which 346 

was appropriate given the non-normal distribution of our data and our goal of assessing 347 

community responses to thermocline deepening. We used the metaMDS function in the vegan 348 

package to perform NMDS analyses across all summers (2016–2019) as well as for each summer 349 

individually. This function provides the benefit of including several random starts of the NMDS 350 

ordination process to ensure a stable result (Oksanen et al., 2020). We assessed the stress of each 351 

ordination result to determine the minimum number of axes needed to adequately explain 352 

variability in community composition data (McCune & Grace, 2002). 353 

We subsequently conducted several post-hoc analyses of our phytoplankton community 354 

data and ordination output. We used analysis of similarities (ANOSIM) on NMDS ordination 355 

output to assess phytoplankton community differences among summers and months, between 356 

manipulation and reference summers, and before and after thermocline deepening events and 357 

intense natural storm events within a summer. ANOSIM is an appropriate post-hoc test for 358 

NMDS ordinations because both operate using ranked dissimilarities (McCune & Grace, 2002) 359 

ANOSIM tests report an R statistic, where values approaching 0 indicate similar groups, values 360 

approaching 1 indicate dissimilar groups, and values less than 0 indicate greater dissimilarity 361 

within a group than among groups (McCune & Grace, 2002). We considered month of year to be 362 

a proxy for change in the phytoplankton community due to seasonal succession, and so 363 

conducting ANOSIM tests on both month of year and the periods before and after thermocline 364 

deepening events within a summer allowed us to compare the relative importance of seasonal 365 

succession and thermocline deepening manipulations at the intra-annual scale. Although an 366 

intense storm occurred on 5 May 2016, no ANOSIM test was conducted for phytoplankton 367 
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communities before and after this storm event due to insufficient pre-storm data (n = 1 pre-storm 368 

sampling point).  369 

We also examined associations between phytoplankton genera and manipulation vs. 370 

reference summers, periods before and after thermocline deepening events or intense storms 371 

within a summer, and each summer and month using indicator species analysis (multipatt 372 

function in the indicspecies package; De Cáceres, Jansen & Dell, 2020). We selected the 373 

multipatt method for indicator species analysis because it permits species to be significantly 374 

associated with more than one group (e.g., a genus can be associated with both July and August 375 

communities; see De Cáceres, Legendre & Moretti, 2010).  376 

Finally, we evaluated associations between physicochemical variables, depth distribution 377 

metrics, and phytoplankton community structure ordination output using the envfit and ordisurf 378 

functions in the vegan package. Briefly, the envfit function fits linear models between vectors of 379 

environmental variables and ordination scores and determines which fits are significant, and the 380 

ordisurf function fits a smoothed surface of an environmental variable to ordination scores using 381 

a generalized additive model (GAM; Oksanen et al., 2020). 382 

All analyses were conducted in the R statistical environment (v. 4.0.3; R Core Team 383 

2020). All analysis code is available on GitHub (https://github.com/melofton/FCR-phytos) and 384 

published via Zenodo (DOI: 10.5281/zenodo.5146268). 385 

 386 

 387 

 388 

 389 

 390 

https://github.com/melofton/FCR-phytos
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Results 391 

Thermocline deepening manipulations were representative of intense storms 392 

Comparison of our thermocline deepening manipulations with two naturally-occurring 393 

intense storms during the study period revealed that our manipulations reasonably approximated 394 

storm-induced thermocline deepening. A storm on 5 May 2016 deepened the thermocline from 395 

3.1 to 4.2 m (change of 1.1 m), and a storm on 8 June 2019 led to a 0.3 m deepening of the 396 

thermocline (Table S2; Fig. S3; Fig. S4), while changes in thermocline depth due to our 397 

manipulations ranged from 0.5 to 3.1 m (Table S2; Fig. S3). 398 

 399 

Increased frequency of thermocline deepening altered physicochemical variables  400 

Multiple thermocline deepening manipulations in 2016 and 2017 significantly altered the 401 

summer thermal structure of FCR compared to reference summers, despite the occurrence of an 402 

intense storm in 2019 (Table 2; Fig. 3). The manipulations deepened the thermocline by over a 403 

meter on average (Fig. 3A, B; Fig. 4), as mean thermocline depth in manipulation summers was 404 

3.9 ± 1.1 m (1 S.D.), vs. 2.8 ± 0.4 m in reference summers (adj. Anderson-Darling p = 0.0004). 405 

In addition to being deeper, thermocline depth was also more variable in manipulation summers 406 

(Fig. 3A, B).  407 

Thermocline deepening decreased thermal stratification (Table 2; Fig. 3), with a mean 408 

Schmidt stability of 25.1 ± 8.4 J m-2 in manipulation summers vs. 36.9 ± 6.7 J m-2 in reference 409 

summers (adj. Anderson-Darling p <0.0001; Fig. 3C, D). Buoyancy frequency was also 410 

significantly lower in manipulation summers (6.1 × 10-3 ± 1.8×10-3 s-1) vs. reference summers 411 

(9.3×10-3 ± 2.0 × 10-3 s-1; adj. Anderson-Darling p < 0.0001; Fig. 3E, F).  412 
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SRP depth distributions across the photic zone were different in manipulation and 413 

reference summers (Table 2; Fig. 3). Thermocline deepening manipulations increased the depth 414 

of maximum SRP concentration in the photic zone by over a meter, and the depth of maximum 415 

SRP was also more variable in manipulation summers (Fig. 3G, H; Fig. 4). The mean summer 416 

depth of maximum SRP concentration within the photic zone was 1.2 ± 0.7 m during reference 417 

summers and 2.4 ± 1.7 m in manipulation summers (adj. Anderson-Darling p = 0.0008). The 418 

magnitude of maximum summer SRP concentration in the photic zone ranged from 7 to 20       419 

μg L-1 across all summers (Fig. 4), but was not different between manipulation and reference 420 

summers (Table S3). 421 

Several metrics of DOC in the photic zone were also different between manipulation and 422 

reference years (Table 2). However, this was primarily due to lower DOC concentrations in 2016 423 

compared to all other years. As such, we considered evidence of a manipulation effect on DOC 424 

to be inconclusive. No other metrics of water temperature, light, nutrients, or carbon were 425 

significantly different between manipulation and reference years (Table S3). 426 

 427 

Deeper maximum phytoplankton biomass in manipulation years  428 

Phytoplankton depth distributions were altered by an increased frequency of thermocline 429 

deepening (Table 2; Fig. 3I, J) in support of the hypothesis presented in Fig. 1B. Peak biomass 430 

depth ranged from 0.31 – 7.25 m in 2016–2019, and the mean depth of maximum phytoplankton 431 

biomass was significantly deeper in manipulation summers (4.5 ± 1.3 m) than in reference 432 

summers (3.1 ± 1.3 m; adj. Anderson-Darling p = 0.003). Across all years, the median depth of 433 

maximum summer phytoplankton biomass was below the thermocline and above the depth of 434 

1% available surface light (photic zone depth; Fig. 4).  435 
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Increased thermocline deepening frequency did not affect the width of the biomass peak 436 

or the magnitude of biomass at the peak biomass depth (Table S3). High-biomass events (i.e., 437 

blooms, defined as more than two standard deviations greater than the mean biomass for 2016–438 

2019) occurred in 2017 and 2019 (Fig. S5), indicating that manipulations neither consistently 439 

caused nor prevented bloom formation.  440 

 441 

Predictors of depth distributions differed between manipulation and reference summers 442 

Physicochemical predictors of phytoplankton depth distributions differed between 443 

manipulation and reference summers (Table 4; Table S9). Overall, metrics of thermal 444 

stratification tended to be more important in best-fit ARIMA models for manipulation summers, 445 

while metrics characterizing the light environment tended to be more important in models fit for 446 

reference summers. Nutrient conditions were important in all summers. 447 

The best-fit ARIMA model for peak depth across all summers and during manipulation 448 

summers included Schmidt stability, thermocline depth, and the depth of maximum SRP in the 449 

photic zone (Table 4), all of which were significantly different between manipulation and 450 

reference summers (Table 2; Fig. 3). As Schmidt stability and thermocline depth increased, peak 451 

depth decreased, and as the depth of maximum SRP in the photic zone increased, peak depth 452 

increased. In general, manipulation summers were associated with mean lower Schmidt stability, 453 

deeper thermoclines, deeper maximum SRP, and deeper peak biomass (Table 2, Fig. 3), so the 454 

unexpected inverse relationship between thermocline depth and peak depth was likely driven by 455 

a consistent intra-annual pattern of shallower peak depths in the early fall as the thermocline 456 

deepened seasonally (Fig. 3). During reference summers, Kd was the strongest predictor of peak 457 
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depth, with peak depth tending to be shallower when the light attenuation rate was high (Table 458 

4).  459 

Despite no significant response of peak width or maximum biomass at the depth of peak 460 

biomass to thermocline deepening, the predictors of these two variables significantly differed 461 

between manipulation and reference summers. During manipulation years, the strongest 462 

predictor of peak width was buoyancy frequency. Peak width tended to decrease as buoyancy 463 

frequency increased (Table 4), so that peaks were narrowest in strongly stratified conditions. In 464 

reference summers, the strongest predictor of peak width was Kd. Peak width tended to decrease 465 

as Kd increased, so that peaks were narrowest when light attenuation rates were high. During 466 

manipulation summers, the strongest predictor of maximum biomass at the depth of peak 467 

biomass was the AR(1) term, indicating strong autocorrelation. In reference summers, maximum 468 

biomass was most strongly predicted by a positive relationship with water temperature at the 469 

depth of biomass maximum. The relation of biomass to SRP concentration was equivocal, with 470 

biomass exhibiting a positive relation with SRP concentration in manipulation summers and a 471 

negative relation with SRP concentration in reference summers and across the full time series. 472 

We note that estimated coefficients for SRP concentration in maximum biomass models had high 473 

standard errors and did not differ greatly from zero (Table 4). 474 

 475 

Increased thermocline deepening affects inter-annual phytoplankton community composition 476 

Despite no significant change in maximum biomass, phytoplankton community 477 

composition was significantly different between manipulation and reference summers (Table 3; 478 

Fig. 5; Fig. 6). We found that phytoplankton community composition at the inter-annual scale 479 

was sufficiently explained by three NMDS ordination axes. According to post-hoc analysis of 480 
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NMDS ordination output, occurrence of experimental thermocline deepening events (along with 481 

year and month of year) strongly predicted phytoplankton community structure in the first and 482 

second dimensions of the 2016–2019 NMDS ordination (Fig. 6A). Experimental thermocline 483 

deepening within a summer was also a strong predictor (along with month of year and peak 484 

depth) of phytoplankton community structure in the second and third dimensions of the NMDS 485 

output (Fig. 6B). A post-hoc ANOSIM test indicated that phytoplankton communities were 486 

significantly different between manipulation and reference summers (ANOSIM R = 0.15, p = 487 

0.0002; Table 3). Additionally, pairwise ANOSIM comparisons of individual summers indicated 488 

that phytoplankton communities in the two manipulation summers were not different (ANOSIM 489 

R = 0.04, p = 0.18), but that all other pairwise summer comparisons were significantly different 490 

(Table S4).  491 

Although total genera richness did not vary between manipulation and reference summers 492 

(adj. Anderson-Darling p = 1.0; Table S3), a post-hoc indicator species analysis revealed that 493 

seven genera were associated with reference summer conditions, three of which were desmids 494 

(Staurastrum and Staurodesmus in 2018 and Spondylosium in 2019). Anderson-Darling tests also 495 

indicated that desmids were more abundant in reference summers (adj. Anderson-Darling p = 496 

0.03; Table 2). Other taxa associated with reference summer communities included cryptophyte 497 

taxa (Rhodomonas) and green algae taxa (Oocystis, Monomastix, Selenastrum). No taxa were 498 

significantly associated with manipulation summer communities. From 2016–2019, genus 499 

richness in phytoplankton samples from the depth of maximum biomass ranged from 7 to 18 500 

genera, and a total of 65 genera were observed from 2016–2019 (Table S5; see Text S4 for 501 

further description of phytoplankton community structure). 502 

 503 
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Thermocline deepening affects intra-annual phytoplankton community composition 504 

Phytoplankton communities before and after each thermocline deepening event were 505 

different in 2016, but not 2017 (Table 3). Additionally, phytoplankton communities before and 506 

after the intense naturally-occurring storm in 2019 were substantially different (Table 3; Fig. 6). 507 

We found that phytoplankton community composition at the intra-annual scale was sufficiently 508 

explained by two NMDS ordination axes for each year. Pairwise ANOSIMs of phytoplankton 509 

communities after each deepening event in 2016 indicated that phytoplankton communities after 510 

the second and third deepening events in late June and July were different from early-season 511 

(May-early June) phytoplankton communities (Text S2; Table S6; Fig. 6). Across all summers 512 

and within each summer, phytoplankton communities were substantially different from month to 513 

month (Table 3; Text S3), as expected due to seasonal succession. However, months within 514 

manipulation summers were more dissimilar (2016 R = 0.50 and 2017 R = 0.47) than months 515 

within reference summers (2018 R = 0.24 and 2019 R = 0.33), indicating higher community 516 

turnover during reference summers.  517 

Indicator analysis revealed that several taxa were associated with post-storm and post-518 

thermocline-deepening communities. A colonial, filamentous cyanobacterium 519 

(Dolichospermum), a single-celled, flagellated mixotroph (Rhodomonas), and a centric diatom 520 

(Cyclotella) were associated with post-storm communities in 2019, as well as following 521 

thermocline-deepening manipulations in 2016. Congruence between taxa associated with late 522 

summer communities and post-storm or post-thermocline-deepening communities (e.g., 523 

Dolichospermum, Trachelomonas, Cyclotella; Text S3) emphasizes the difficulty of 524 

disentangling the effects of thermocline deepening or intense storms from seasonal succession 525 

(Text S5; Table S7, S8).  526 
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Both across summers and within each summer, water temperature was the 527 

physicochemical variable most strongly associated with phytoplankton community composition 528 

in NMDS ordination results (Fig. 6; Fig. 7; see Text S6 for further discussion of physicochemical 529 

variables associated with phytoplankton community structure within and among summers). 530 

 531 

Phytoplankton community structure differed between deep and shallow biomass peaks 532 

Different peak biomass depths were associated with different phytoplankton communities 533 

at the inter-annual and intra-annual scale (Fig. 7). Aggregated across 2016–2019, median peak 534 

depth was 3.6 m, and the inter-quartile range of peak depths was 3.1 to 4.9 m. Phytoplankton 535 

communities that occurred above and below the 3.6 m median were substantially different during 536 

2016–2019 (ANOSIM R = 0.28, p = 0.0001; Fig. 7A, B), and phytoplankton communities that 537 

were associated with deeper peaks were also associated with deepening in the first and second 538 

dimensions of the inter-annual NMDS (Fig. 6A). According to indicator species analysis, the top 539 

two dominant genera from 2016–2019 (Cryptomonas and Dolichospermum) were associated 540 

with deep and shallow peaks, respectively (Fig. 7). In addition to Cryptomonas, one green algae 541 

genus (Elakatothrix) was associated with peaks deeper than 3.6 m, while a diverse suite of 542 

genera other than Dolichospermum, including green algae (nanoplankton < 5 μm GALD, 543 

Selenastrum), dinoflagellate (Parvodinium), diatom (Nitzchia), and cryptophyte (Rhodomonas) 544 

taxa were associated with peaks shallower than 3.6 m. Intra-annually, phytoplankton 545 

communities also differed in biomass peaks above and below 3.6 m in 2017 and 2019 (see Text 546 

S7 for a description of intra-annual differences in phytoplankton community structure between 547 

deep and shallow peaks). 548 

 549 
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Discussion 550 

Our four-year whole-ecosystem manipulation revealed that an increased frequency of 551 

thermocline deepening events led to deeper phytoplankton biomass peaks at the inter-annual 552 

scale, and this effect was mediated by changes in thermal stratification and the depth of 553 

maximum SRP concentration in the photic zone. Responses of phytoplankton depth distributions 554 

to increased thermocline deepening frequency were consistent across summers, and desmids 555 

were consistently associated with reference summer conditions. However, other responses of 556 

phytoplankton to experimental thermocline deepening and intense storms, such as drivers of 557 

phytoplankton community composition, the magnitude of maximum biomass, and bloom 558 

occurrence, varied at both the inter-annual and intra-annual scale. Our results indicate that 559 

antecedent conditions (sensu Perga et al., 2018) and the seasonal timing of thermocline 560 

deepening may mediate the effect of abrupt thermocline deepening on phytoplankton community 561 

composition and distribution. Moreover, our finding that different taxa were associated with deep 562 

and shallow biomass peaks suggests that phytoplankton depth distributions and community 563 

composition are linked at both inter-annual and intra-annual scales. Below, we discuss our 564 

results in the context of predicting phytoplankton responses to the increased frequency of 565 

thermocline deepening anticipated under global change. 566 

 567 

Question 1: How do phytoplankton depth distribution and community structure change in 568 

response to an increased frequency of thermocline deepening events?  569 

Our findings indicate that an increased frequency of thermocline deepening events 570 

affected phytoplankton depth distributions via alteration and increased variability of both 571 

physical and chemical gradients in the water column at the inter-annual scale. Thermocline 572 



  

26 
 

deepening manipulations weakened stratification and increased variability in thermocline depth, 573 

increased the depth of maximum SRP and variability of SRP depth distributions in the photic 574 

zone, and deepened phytoplankton biomass peaks, supporting the hypothesis shown in Fig. 1B. 575 

These results were complemented by ARIMA models indicating that decreases in stratification 576 

and increases in the depth of maximum SRP mediated the deepening of phytoplankton biomass 577 

peaks in manipulation years. The finding that thermal stratification drives biomass peak depth 578 

aligns with previous research suggesting that storms affect phytoplankton community structure 579 

via altered thermal stratification (Stockwell et al., 2020). Alteration of nutrient depth 580 

distributions in response to changes in thermocline depth also aligns with expectations from 581 

previous work on storms (e.g., Jennings et al., 2012), but to our knowledge, the effects of these 582 

alterations in nutrient depth distributions on phytoplankton depth distributions at the whole-583 

ecosystem scale has not been previously reported.  584 

An increased frequency of thermocline deepening events also altered the relative 585 

importance of physicochemical drivers of phytoplankton depth distributions at the inter-annual 586 

scale. Specifically, more frequent thermocline deepening disrupted the ability of phytoplankton 587 

to respond to depth gradients of light. In reference years, light attenuation was strongly 588 

associated with both shallower and narrower biomass peaks, supporting previous findings that 589 

light attenuation is the most important driver of deep chlorophyll maximum depth across a broad 590 

variety of lake types under stratified conditions (Leach et al., 2018). However, in manipulation 591 

years, the relative importance of available light as a driver of biomass peak depth and width 592 

decreased, while the relative importance of thermal stratification increased. Strong thermal 593 

stratification was associated with shallower, narrower peaks in FCR, similar to results from a 594 

survey of phytoplankton depth distributions in 51 lakes in Québec, Canada (Lofton et al., 2020). 595 
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The increased importance of thermal stratification as a driver of phytoplankton depth 596 

distributions in manipulation years indicates that a thermally-stratified water column may be a 597 

prerequisite for phytoplankton to optimize their depth distribution in response to gradients in 598 

light, supporting previous research regarding the importance of thermal stratification for 599 

formation of deep chlorophyll maxima (Cullen, 2015 and references therein). Finally, our finding 600 

that maximum biomass was positively associated with warm temperatures at the peak biomass 601 

depth in reference years and by thermal stratification in manipulation years supports previous 602 

work suggesting that strong thermal stratification, in addition to warm temperatures, is needed 603 

for phytoplankton blooms to occur (Carey et al., 2012; Winder & Sommer, 2012). 604 

Our study indicates that the depth distribution and community composition of 605 

phytoplankton are related, which may be linked to phytoplankton functional traits (sensu 606 

Litchman, Klausmeier & Schofield, 2007). Different phytoplankton taxa were associated with 607 

deep and shallow biomass peaks, and some of these associations may have been driven by trait-608 

based responses to physicochemical conditions. For example, the filamentous cyanobacterium 609 

Dolichospermum was associated with shallow peaks across years, likely because that taxon is 610 

capable of both buoyancy regulation (Walsby, 1994) and nitrogen fixation (Wood et al., 2010), 611 

so it does not sink out of the water column and is not dependent on entrainment of nitrogen from 612 

deeper water for growth. By contrast, the cryptophyte Cryptomonas was associated with deeper 613 

peaks, possibly due to its low light tolerance (deNoyelles Jr et al., 2016) and ability to 614 

metabolize organic matter settling on the thermocline via mixotrophy (Mitra et al., 2016).  615 

In other cases, the reasons for association of certain phytoplankton taxa with deep or 616 

shallow peaks were less clear. For example, Rhodomonas is functionally similar to Cryptomonas 617 

(Mitra et al., 2016), but was associated with shallow peaks in 2016–2019. It is possible that this 618 
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non-intuitive association of Rhodomonas with shallow peaks is due to interspecific interactions 619 

of phytoplankton within the biomass peak. For example, mixotrophic Rhodomonas might 620 

metabolize organic carbon released via leaching or decomposition of Dolichospermum filaments 621 

accumulated in shallow peaks (Kritzberg et al., 2004; Ye et al., 2015). Recent research indicates 622 

that mixotrophy likely plays an important role in lake plankton dynamics (Gonçalves Leles et al., 623 

2018; Beisner, Grossart & Gasol, 2019), and may be important for determining community 624 

composition at the phytoplankton biomass peak in FCR. 625 

 626 

Question 2: What are the duration and consistency of phytoplankton responses to thermocline 627 

deepening at intra-annual and inter-annual scales?  628 

We found that phytoplankton community responses to experimental thermocline 629 

deepening and intense storm events were variable at both intra-annual and inter-annual scales. 630 

Our results indicate that the antecedent conditions and seasonal timing of thermocline deepening 631 

events may be as important as their frequency in determining phytoplankton community 632 

responses, contradicting expectations from previous research that an increased frequency of 633 

thermocline deepening events would either cause increased change in phytoplankton community 634 

structure (Pannard et al., 2008) or lead to alteration of phytoplankton community structure in 635 

favor of mixing-tolerant taxa (Winder & Sommer, 2012; Stockwell et al., 2020).  636 

At the inter-annual scale, phytoplankton community composition responses were 637 

inconsistent. Specifically, different environmental drivers were associated with phytoplankton 638 

community composition at the depth of peak biomass in each year, maximum biomass was not 639 

different between manipulation and reference years, and blooms occurred in both a manipulation 640 

and a reference year and their timing was not associated with either thermocline deepening 641 
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manipulations or storms. This lack of consistency in thermocline deepening responses across 642 

years suggests that the effects of abrupt thermocline deepening on phytoplankton community 643 

composition may be mediated by other factors. For example, antecedent conditions including 644 

winter ice cover or variability in seasonal catchment conditions affecting in-lake characteristics 645 

such as water residence time could influence phytoplankton responses to thermocline deepening 646 

(Chase, 2003; Perga et al., 2018; Stockwell et al., 2020; Thayne et al., 2021).  647 

At the intra-annual scale, variability in phytoplankton responses to thermocline 648 

deepening in 2016 and 2017 and an intense storm in 2019 indicates that both the timing and 649 

frequency of thermocline disturbance within the summer stratified period are important. Our 650 

findings indicate that disruption of established thermal stratification in summer (mid-June to 651 

mid-September) could cause greater disruption to phytoplankton communities than in late spring 652 

(May to early June) when stratification is weaker. Differences in phytoplankton community 653 

composition among 2016 mixing periods were primarily due to communities after the third 654 

mixing event in late July being substantially different from communities earlier in the summer. 655 

In addition, phytoplankton communities were substantially different before and after an intense 656 

storm in mid-June 2019. The observed stronger response of phytoplankton community 657 

composition to thermocline deepening when thermal stratification is already established supports 658 

the framework proposed by Stockwell et al. (2020), which predicts the response of 659 

phytoplankton to storm events is mediated by their functional traits. While spring and early fall 660 

plankton communities in temperate lakes might be well-adapted to mixing and changes in 661 

stratification, summer communities are likely not (de Senerpont Domis et al., 2013), and so a 662 

mid-summer thermocline deepening event could lead to greater change in community structure. 663 

Alternatively, differences in phytoplankton community structure after an intense storm in 2019 664 
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may be due to storm effects that we could not simulate via thermocline deepening manipulations, 665 

which are discussed further below.  666 

The relative consistency in seasonal succession among all years, demonstrated by the fact 667 

that June and September communities did not significantly vary among years, indicates that 668 

intermittent, abrupt thermocline deepening does not completely disrupt seasonal succession. The 669 

maintenance of seasonal succession dynamics despite our experimental manipulations and 670 

intense storms signals the potential importance of multiple mechanisms, including littoral 671 

propagule seed banks, overland dispersal, and top-down control by zooplankton grazing, in 672 

maintaining phytoplankton seasonal succession (Sommer et al., 2012; Padisák, Vasas & Borics, 673 

2016; Cottingham et al., 2021).   674 

 675 

Limitations and future opportunities 676 

While our study provides insight into the inter-annual and intra-annual responses of 677 

phytoplankton communities to intermittent, abrupt thermocline deepening, some limitations must 678 

be considered. There are several differences between the effects of our experimental thermocline 679 

deepening manipulations and storm effects on lake ecosystems. First, we were unable to simulate 680 

storm effects such as increased inflow and nutrient loading or changes in epilimnetic water 681 

temperature (e.g., Klug et al., 2012; Stockwell et al., 2020; Doubek et al., 2021). Second, FCR’s 682 

engineered mixing system is installed at a depth of 5 m, or approximately the middle of the water 683 

column, so mixing action is initiated from the middle of the water column rather than the surface, 684 

as would occur due to precipitation and wind action from a storm. However, examination of two 685 

naturally-occurring intense storm events confirmed that our thermocline deepening 686 

manipulations were a reasonable representation of thermocline deepening due to natural storms, 687 
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and that both storm-driven mixing and epilimnetic mixing manipulations caused turnover in 688 

phytoplankton community composition at the depth of peak biomass at the intra-annual scale.  689 

There are also limitations conferred by our sampling program and experimental design. 690 

First, phytoplankton depth distributions were likely influenced by factors in addition to 691 

thermocline deepening, including inter-annual differences in water residence time, precipitation, 692 

and other factors contributing to natural year-to-year variability in phytoplankton communities, 693 

which can be especially pronounced in reservoirs (Hayes et al. 2017). Second, our weekly field 694 

sampling protocol precluded analysis of patterns of phytoplankton community dynamics at sub-695 

weekly timescales, which may be particularly important for understanding short-term 696 

phytoplankton response to storms (Stockwell et al., 2020). In particular, the importance of 697 

microscale turbulence (Li et al., 2018; Wu et al., 2019) and convective processes (Bouffard & 698 

Wüest, 2019) in movement of phytoplankton cells and formation of surface blooms at short 699 

timescales is well-documented, though not quantified in this study. However, the fact that we 700 

still observed consistent differences in phytoplankton depth distributions between manipulation 701 

and reference years supports the strength of our results and approach. Third, an alternative 702 

experimental design, such as alternating summers with and without experimental manipulations, 703 

might have permitted more robust comparison of manipulation and reference summers. 704 

However, our experimental design was limited by drinking water quality management 705 

requirements, and still enabled assessment of increased thermocline deepening frequency over 706 

multiple sequential summers. 707 

Our findings indicate that examination of the effects of antecedent conditions and 708 

seasonal timing of storms on phytoplankton responses and consideration of inter-specific 709 

interactions in biomass peaks could be promising avenues for future research. Explicit 710 
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consideration of how precipitation, water residence time, phytoplankton propagule seed banks, 711 

pre-storm thermal stratification strength, and other antecedent conditions affect phytoplankton 712 

community response to abrupt thermocline deepening could enhance our understanding of future 713 

phytoplankton response to increased frequency and intensity of storms (e.g., Cottingham et al., 714 

2021; Thayne et al., 2021). In addition, our finding that some phytoplankton taxa are associated 715 

with peak depths that do not align with theoretical expectations based on functional traits signals 716 

that further attention may be needed on the role of complementary co-occurrence of 717 

phytoplankton taxa (e.g., Posch et al., 2015) in the formation of phytoplankton depth 718 

distributions.  719 

 720 

Conclusions 721 

Our work demonstrates that an increased frequency of thermocline deepening events has 722 

the potential to alter both phytoplankton depth distributions (following Fig. 1B) and community 723 

structure via alteration of both physical and chemical environmental conditions at the inter-724 

annual scale. Furthermore, our findings support previous research suggesting that phytoplankton 725 

depth distribution and community composition are linked at both the inter-annual and intra-726 

annual scale. Finally, we show that responses of phytoplankton community composition to 727 

intermittent, abrupt thermocline deepening are not consistent summer to summer or among 728 

thermocline deepening events or storms within a summer, indicating that antecedent conditions 729 

likely play an important role in mediating phytoplankton responses to increased frequency and 730 

intensity of storms under global change. Overall, our findings emphasize that both the spatial 731 

distribution and composition of freshwater phytoplankton communities are sensitive to 732 
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thermocline deepening at multiple scales, and so both distribution and composition must be 733 

considered when predicting phytoplankton responses to storms under global change. 734 
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Table 1: Schedule of thermocline deepening events and field sampling from 2016–2019. †SCFM 1052 

= standard cubic feet per minute. 1053 

 

 Thermocline deepening events Sampling season 

Year Date 

Mixer 

operation 

Intensity 

(SCFM †) 

Duration 

(hrs) Start date End date 

2016 May 29 continuous 25 6 May 2 Sept. 20 

 June 27-28 continuous 15 24   

 July 25-27 continuous 7.5-25 56   

2017 May 30 continuous 15 24 May 15 Sept. 4 

 July 10-12 intermittent 

(8 hrs per day) 
15 72   

2018 -- -- -- -- May 7 Sept. 10 

2019 -- -- -- -- May 6 Sept. 11 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 
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Table 2: Results of significant Anderson-Darling (A-D) tests to determine effect of thermocline deepening on physical, chemical, and biological 1061 

variables at the inter-annual scale. All p-values were Holm-Bonferroni corrected for multiple comparisons; non-significant variables are 1062 
presented in Table S3. PZ = photic zone; CV = coefficient of variation; SRP = soluble reactive phosphorus; DOC = dissolved organic carbon; BV 1063 

= biovolume; RA = relative abundance 1064 

 

Driver 

Mean ± 1 S.D. in 

manipulation 

years 

Mean ± 1 S.D. in 

reference years 

adj. A-D 

p-value 

Mean ± 1 S.D. in 

2016 

Mean ± 1 S.D. in 

2017 

Mean ± 1 S.D. in 

2018 

Mean ± 1 S.D. in 

2019 

 

Thermocline depth (m) 3.9 ± 1.1 2.8 ± 0.4 3.2×10-4 4.1 ± 1.1 3.7 ± 1 2.9 ± 0.4 2.8 ± 0.4 

Schmidt stability (J m-2) 25.1 ± 8.4 36.8 ± 6.6 2.5×10-5 24.6 ± 8.7 25.8 ± 8.3 37.6 ± 6.3 36 ± 7.1 

Buoyancy frequency (s-1) 0.006 ± 0.0018 0.0093 ± 0.0021 3.2×10-6 0.0063 ± 0.0018 0.0056 ± 0.002 0.0098 ± 0.002 0.0087 ± 0.002 

Depth of max. SRP in PZ (m) 2.4 ± 1.9 1.2 ± 0.7 7.0×10-4 3 ± 1.9 1.8 ± 1.8 0.9 ± 0.8 1.5 ± 0.4 

Mean PZ DOC (mg L-1) 2.6 ± 1 4 ± 1.4 1.6×10-4 2.1 ± 0.7 3.2 ± 1.1 4.6 ± 1.1 3.5 ± 1.4 

Max. PZ DOC (mg L-1) 3.2 ± 1.4 4.7 ± 1.6 8.0×10-4 2.7 ± 1.4 3.7 ± 1.2 5.5 ± 1.8 4.2 ± 1.2 

DOC at peak depth (mg L-1) 2.5 ± 1.3 3.7 ± 1.5 1.6×10-3 2.2 ± 1.3 2.9 ± 1.2 4.3 ± 0.9 3.2 ± 1.8 

DOC at depth sample (mg L-1) 2.5 ± 1.3 3.7 ± 1.4 5.9×10-4 2.2 ± 1.3 2.9 ± 1.3 4.3 ± 0.9 3.3 ± 1.7 

Biomass peak depth (m) 4.5 ± 1.3 3.1 ± 1.3 2.3×10-3 4.7 ± 1 4.1 ± 1.6 2.9 ± 1.1 3.2 ± 1.5 

BV Desmids (μm3 mL-1) 13000 ± 37000 130000 ± 180000 0.02 3800 ± 11000 26000 ± 55000 220000 ± 220000 48000 ± 90000 

RA Desmids 0.01 ± 0.02 0.08 ± 0.11 0.02 0 ± 0.01 0.02 ± 0.02 0.15 ± 0.12 0.03 ± 0.06 

1065 



  

49 
 

Table 3: Analysis of similarities (ANOSIM) results conducted on non-metric multidimensional scaling (NMDS) ordination output. 1066 
Phytoplankton community data were assessed for differences based on grouping by year, month, two thermocline deepening indicator 1067 

variables, and one peak depth indicator variable. Pairwise ANOSIM results for year, months within a year, and month of year across years are 1068 
presented in Tables S3-S6. R = ANOSIM R, where values approaching 0 indicate similar groups, values approaching 1 indicate dissimilar 1069 

groups, and values less than 0 indicate greater dissimilarity within a group than among groups. P = ANOSIM p-value. †indicates the inter-1070 
annual thermocline deepening regime and was coded as 0 for manipulation years and 1 for reference years; ‡indicates the intra-annual 1071 

thermocline deepening regime and was coded as 0 for reference years or pre-thermocline deepening during manipulation years, 1 for after the 1072 
first thermocline deepening event within a manipulation year, 2 after the second thermocline deepening event, and 3 after the third thermocline 1073 
deepening event; §assigned as a 0-1 indicator variable, where 0 was shallow peaks < 3.6 m (median peak depth across 2016–2019) and 1 was 1074 

deep peaks ≥ 3.6 m. ¶Although an intense storm occurred on 5 May 2016, no ANOSIM test was conducted due to insufficient pre-storm data 1075 
(n = 1 pre-storm sampling point). Significant results are italicized in bold. 1076 

 

NMDS  

input data Year Month DEEP1† DEEP2‡ 

Peak  

biomass depth§ 

Pre- and post-

intense storms¶ 

 R P R P R P R P R P R P 

2016–2019 0.20 1×10-4 0.19 1×10-4 0.15 2×10-4 0.06 0.19 0.28 1×10-4 -- -- 

2016 -- -- 0.50 1×10-4 -- -- 0.30 9×10-3 0.03 0.32 -- -- 

2017 -- -- 0.47 1×10-3 -- -- -0.05 0.58 0.46 0.01 -- -- 

2018 -- -- 0.24 0.04 -- -- -- -- -0.02 0.47 -- -- 

2019 -- -- 0.33 0.01 -- -- -- -- 0.78 6×10-4 0.98 3×10-4 

 1077 

 1078 
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Table 4: Best-fit autoregressive integrated moving average (ARIMA) models predicting depth of peak phytoplankton biomass, peak width, and 1079 

the magnitude of maximum biomass across all summers (2016–2019), as well as manipulation (abbreviated as “man”; 2016-2017) and 1080 
reference (“ref”; 2018-2019) summers. ARIMA models that were within 2 corrected Akaike Information Criterion (AICc) units of the best-fit 1081 

models for each response variable and time period are reported in Table S9. Note that AICc values in this table cannot be compared as models 1082 
were fit to different datasets. SRP = soluble reactive phosphorus; Kd = light attenuation coefficient; DIN = dissolved inorganic nitrogen; DOC = 1083 
dissolved organic carbon; CV = coefficient of variation; AR(1) = an autoregressive term with a time lag of one; MA(1) = a first-order moving 1084 

average term. Model order is specified as (p,d,q) where p is the order of the autoregressive term, d is the order of the integration term, and q is 1085 
the order of the moving average term. 1086 

Depth 

distribution 

metric 

Years 
ARIMA model 

structure 
Predictor variables AICc RMSE 

  Order Terms Thermal environment 
Light 

environment 
Chemical environment   

   MA(1) 
Thermocline 

depth (m) 

Schmidt stability 

(J m-2) 
Kd 

Depth of max. 

SRP in photic 

zone (m) 

Depth of max. 

DIN in photic 

zone (m) 

Depth of max. 

DOC in photic 

zone (m) 

  

Peak depth 

(m) 
all (0,1,1) 

-0.90 ± 

0.06 
-0.42 ± 0.13 -0.62 ± 0.16 -- 0.15 ± 0.11 -0.02 ± 0.12 0.03 ± 0.12 124.08 0.74 

 

 
man (0,0,0) -- -0.44 ± 0.18 -0.57 ± 0.18 -- 0.31 ± 0.17 -0.09 ± 0.18 -0.09 ± 0.18 65.85 0.74 

 

 
ref (0,0,0) -- -- -0.16 ± 0.20 -0.50 ± 0.20 0.11 ± 0.19 -- 0.20 ± 0.18 70.49 0.82 

     
Buoyancy 

frequency (s-1) 
Kd 

CV of SRP in 

photic zone 

CV of DIN in 

photic zone 

CV of DOC in 

photic zone 
  

Peak width 

(m) 
all (0,0,0) -- -- -0.31 ± 0.11 -0.13 ± 0.11 -- -- -0.11 ± 0.11 191.64 0.93 

 

 
man (0,0,0) -- -- -0.26 ± 0.15 -- 0.18 ± 0.15 -- -- 102.35 0.91 

 

 
ref (0,0,0) -- -- -0.22 ± 0.17 -0.34 ± 0.18 -- -- -0.16 ± 0.18 95.16 0.93 

   AR(1) 

Water 

temperature at 

the depth of 

peak biomass 

(oC) 

Buoyancy 

frequency (s-1) 

% of surface 

light at depth 

of peak 

biomass 

SRP 

concentration at 

depth of peak 

biomass  

(μg L-1) 

DIN 

concentration at 

depth of peak 

biomass (μg L-1) 

DOC 

concentration at 

depth of peak 

biomass  

(mg L-1) 

  

Maximum 

biomass  

(μg L-1) 

all (1,0,0) 
0.55 ± 

0.11 
0.64 ± 0.17 -- -0.42 ± 0.14 -0.09 ± 0.11 -- -- 145.30 0.70 

 man (1,0,0) 
0.65 ± 

0.13 
-- 0.23 ± 0.14 -0.22 ± 0.16 0.21 ± 0.13 -- -- 81.11 0.64 

 

 
ref (0,0,0) -- 1.1 ± 0.17 -- -0.75 ± 0.15 -0.24 ± 0.15 -- -- 64.09 0.67 

1087 
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Figure captions 1088 

Figure 1: Conceptual figure illustrating hypothesized relationships between thermocline depth 1089 

and peak phytoplankton biomass in the water column. (A) In an unmanipulated scenario, 1090 

phytoplankton peak biomass occurs at a depth which optimizes light, temperature, and nutrients 1091 

(optimal zone). In response to storm-induced thermocline deepening, B and C present two 1092 

alternative hypotheses of phytoplankton responses. In (B), thermocline deepening shifts the 1093 

location of the optimal zone for phytoplankton growth downwards as phytoplankton access 1094 

nutrients that are entrained across the thermocline. In (C), thermocline deepening homogenizes 1095 

biomass across depth as some phytoplankton shift deeper to access entrained nutrients while 1096 

others remain at shallow depths to maximize light availability, resulting in a broader optimal 1097 

zone for phytoplankton. Gray dashed lines represent the thermocline.  1098 

Figure 2: A map of Falling Creek Reservoir (FCR), located in Vinton, Virginia, USA. The EM 1099 

system line shows the extent of the epilimnetic mixing diffuser line within the reservoir that was 1100 

used to implement the thermocline deepening manipulations. 1101 

Figure 3: Variables that were determined to be different between manipulated (2016, 2017) and 1102 

reference (2018, 2019) summers according to Anderson-Darling tests. (A, B) Thermocline depth; 1103 

(C, D) Schmidt stability; (E, F) Buoyancy frequency; (G, H) Depth of maximum soluble reactive 1104 

phosphorus (SRP); (I, J) Depth of peak phytoplankton biomass. Manipulation summers are 1105 

shown in coral/red and reference summers are shown in teal/blue. Note the reversed y-axes in 1106 

panels (A, B, G, H, I, and J) so that the water surface is at the top of the y axis. Panel G is shown 1107 

without lines for improved legibility due to discrete sampling depths of SRP. 1108 
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Figure 4: Distributions of the photic zone depth, thermocline, depth of peak biomass, and depth 1109 

of maximum dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), and soluble 1110 

reactive phosphorus (SRP) in the photic zone during reference summers (A; 2018-2019) and 1111 

manipulation summers (B; 2016-2017), as well as the magnitude of phytoplankton biomass, 1112 

DOC, DIN, and SRP at the depth of the maximum for each of these variables in (C) reference 1113 

and (D) manipulation summers. Variables that were significantly different between manipulation 1114 

and reference summers according to Anderson-Darling tests are marked with (*).The color 1115 

gradients behind panels (A) and (B) are for illustrative purposes to connect the results presented 1116 

here to hypotheses presented in conceptual Figure 1. 1117 

Figure 5: Time series of relative abundance of phytoplankton divisions and total biovolume for 1118 

(A, B) manipulation summers and (C, D) reference summers. Thermocline deepening 1119 

manipulations in 2016 and 2017 are denoted with dashed black vertical lines, and naturally-1120 

occurring intense storms in 2016 and 2019 are denoted with solid black vertical lines. 1121 

Figure 6: (A) First and second and (B) second and third axes of non-parametric 1122 

multidimensional scaling (NMDS) ordination for phytoplankton communities across all summers 1123 

(2016–2019), as well as NMDS ordination results for individual summers: (C) 2016, (D) 2017, 1124 

(E) 2018, and (F) 2019. Gray and black arrows in (A) and (B) are fitted vectors of 1125 

physicochemical variables plotted at a p < 0.01 significance level, with variables that differed in 1126 

manipulation vs. reference summers in black. DEEP1 indicates the inter-annual manipulation 1127 

regime, coded as 0 for reference summers and 1 for manipulation summers. DEEP2 indicates the 1128 

intra-annual mixing regime, coded as 0 for reference years or pre-thermocline deepening during 1129 

manipulation summers, 1 for after the first thermocline deepening event within a manipulation 1130 

summer, 2 after the second thermocline deepening event, and 3 after the third thermocline 1131 
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deepening event. Other vector label abbreviations: Biom = magnitude of biomass in the 1132 

phytoplankton biomass peak; Mo = month; N2 = buoyancy frequency; PD = phytoplankton 1133 

biomass peak depth; T = water temperature at the depth of the phytoplankton grab sample (peak 1134 

biomass depth); Yr = year. The month color legend in (E) applies to all sub-plots. 1135 

Figure 7: Non-parametric multidimensional scaling (NMDS) ordinations overlain with the 1136 

smooth surface plane for biomass peak depth for all summers (A,B), 2016 (C), 2017 (D), 2018 1137 

(E), and 2019 (F). Plane contours are shown for median peak depth from 2016 to 2019 (3.6 m, 1138 

plotted in gray) as well as the inter-quartile range of peak depth (first quartile = 3.1 m, plotted in 1139 

light gray; third quartile = 4.9 m, plotted in dark gray). Genera shown in text were associated 1140 

with either shallow (<3.6 m) or deep (>3.6 m) peak depth in indicator species analysis. Genus 1141 

abbreviations: Aph = Aphanocapsa; Ast = Asterionella; Chl = small green algae nanoplankton (< 1142 

5 μm greatest axial linear dimension); Cry = Cryptomonas; Cyc = Cyclotella; Dic = 1143 

Dictyosphaerium; Dol = Dolichospermum; Ela = Elaktothrix; Eug = Euglena; Nit = Nitzchia; Par 1144 

= Parvodinium; Rho = Rhodomonas; Sel = Selenastrum; Spo = Spondylosium. Black arrows in 1145 

(C-F) show fitted vectors of physicochemical variables (significance level for vector plotting is p 1146 

< 0.01). Arrows that overlap (C) are labeled with a single label for legibility. DEEP2 indicates 1147 

the intra-annual mixing regime, coded as 0 for reference years or pre-thermocline deepening 1148 

during manipulation summers, 1 for after the first thermocline deepening event within a 1149 

manipulation summer, 2 after the second thermocline deepening event, and 3 after the third 1150 

thermocline deepening event. Other vector label abbreviations: Biom = magnitude of biomass in 1151 

the phytoplankton biomass peak; DOC = concentration of DOC at the depth of peak biomass; 1152 

Mo = month; N2 = buoyancy frequency; PD = depth of peak biomass; SRP = concentration of 1153 

SRP at the depth of peak biomass; T = water temperature at the depth of peak biomass.  1154 
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