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Abstract

The responses of tropical anvil cloud and low-level cloud to a warming climate are among the largest sources of uncertainty

in our estimates of climate sensitivity. However, most research on cloud feedbacks relies on either global climate models with

parameterized convection, which do not explicitly represent small-scale convective processes, or small-domain models, which

cannot directly simulate large-scale circulations. We investigate how self-aggregation, the spontaneous clumping of convection

in idealized numerical models, depends on cloud-radiative interactions with different cloud types, sea surface temperatures

(SSTs), and stages of aggregation in simulations that form part of RCEMIP (the Radiative-Convective Equilibrium Model

Intercomparison Project). Analysis shows that the presence of anvil cloud, which tends to enhance aggregation when collocated

with anomalously moist environments, is reduced in nearly all models when SSTs are increased, leading to a corresponding

reduction in the aggregating influence of cloud-longwave interactions. We also find that cloud-longwave radiation interactions

are stronger in the majority of General Circulation Models (GCMs), typically resulting in faster aggregation compared to Cloud-

system Resolving Models (CRMs). GCMs that have stronger cloud-longwave interactions tend to aggregate faster, whereas the

influence of circulations is the main factor affecting the aggregation rate in CRMs.
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• GCMs aggregate faster than CRMs on average due to an enhanced longwave feed-6

back7

• Feedbacks tend to decrease in magnitude as SST increases, although the rate of8
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Abstract12

The responses of tropical anvil cloud and low-level cloud to a warming climate are13

among the largest sources of uncertainty in our estimates of climate sensitivity. How-14

ever, most research on cloud feedbacks relies on either global climate models with pa-15

rameterized convection, which do not explicitly represent small-scale convective processes,16

or small-domain models, which cannot directly simulate large-scale circulations. We in-17

vestigate how self-aggregation, the spontaneous clumping of convection in idealized nu-18

merical models, depends on cloud-radiative interactions with different cloud types, sea19

surface temperatures (SSTs), and stages of aggregation in simulations that form part of20

RCEMIP (the Radiative-Convective Equilibrium Model Intercomparison Project). Anal-21

ysis shows that the presence of anvil cloud, which tends to enhance aggregation when22

collocated with anomalously moist environments, is reduced in nearly all models when23

SSTs are increased, leading to a corresponding reduction in the aggregating influence of24

cloud-longwave interactions. We also find that cloud-longwave radiation interactions are25

stronger in the majority of General Circulation Models (GCMs), typically resulting in26

faster aggregation compared to Cloud-system Resolving Models (CRMs). GCMs that27

have stronger cloud-longwave interactions tend to aggregate faster, whereas the influ-28

ence of circulations is the main factor affecting the aggregation rate in CRMs.29

Plain Language Summary30

The spatial organization of tropical rainstorms has major effects on weather and31

climate. This organization influences the duration and intensity of these convective storms,32

and alters the amount of radiation absorbed and emitted by the atmosphere. There is33

great uncertainty in the response of organisation to a warming climate, and this results34

in one of the largest sources of uncertainty in climate predictions. Climate projections35

rely on either General Circulation Models (GCMs) that can represent the large-scale mo-36

tions, or smaller high-resolution models that represent small-scale features like cloud for-37

mations, but not the large motions. In this study, we compare convective organization38

in GCMs and Cloud-system Resolving Models (CRMs) across a range of sea surface tem-39

peratures (SSTs). We find that the cloud-radiation feedbacks that make the convective40

environment more favorable for further convection, and the non-convective environment41

less favorable for convection, are stronger in GCMs than CRMs on average. This is re-42

lated to larger cloud amounts in GCMs, leading GCMs to have typically faster organ-43

ization than CRMs. We find these feedbacks which drive aggregation decrease as SST44

increases, yet the aggregation rate is largely insensitive to SST because of the decrease45

in the effect of atmospheric motions that oppose aggregation.46

1 Introduction47

Convective self-aggregation is the process by which initially randomly distributed48

convection becomes spontaneously clustered despite homogeneous boundary conditions49

and forcing. It was first identified in numerical models of radiative-convective equilib-50

rium (RCE) and has major implications for weather and climate (e.g. Wing et al., 2017).51

Because of this, it has been the focus of many studies in recent years (e.g. Bretherton52

et al., 2005; Coppin & Bony, 2015) and continues to be an active area of research. Pro-53

cesses that drive and maintain self-aggregation have been shown to be relevant to ob-54

served convection (Holloway et al., 2017), aiding the development of tropical cyclones55

(Nolan et al., 2007) and the Madden–Julian oscillation (Raymond & Fuchs, 2009; Arnold56

& Randall, 2015). However, there remains much debate as to the mechanisms and feed-57

backs responsible for controlling aggregation, which is in part due to the inter-model vari-58

ability in the structures and dynamics of convection within these models (Wing et al.,59

2017).60
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Aggregation of tropical convection has significant impacts on the climate, tending61

to decrease the total high-cloud fraction and free-troposphere humidity (e.g. Tobin et62

al., 2013; Wing & Cronin, 2016), affecting the amount of shortwave radiation being ab-63

sorbed by the atmosphere and surface, as well as affecting the amount of longwave ra-64

diation escaping to space. The uncertainty in the response of aggregation to a warming65

climate is a major source of uncertainty in our estimates for the global climate sensitiv-66

ity (Sherwood et al., 2020), with models that increase in aggregation with warming tend-67

ing to have a lower climate feedback parameter due to increased longwave cooling (Wing68

et al., 2020).69

Various metrics have been proposed to characterize aggregation, many of which di-70

vide the domain into regions where convection occurs and regions of subsidence. Wing71

and Emanuel (2014) designed a framework to study aggregation using a variance of frozen72

moist static energy (FMSE) budget. FMSE, or h, is given by73

h = cpT + gz + Lvqv − Lfqi (1)

where cp is the specific heat capacity of dry air at constant pressure, T is temperature,74

g is the gravitational acceleration, z is the height above the surface, Lv is the latent heat75

of vaporization, qv is the water vapor mixing ratio, Lf is the latent heat of fusion and76

qi is the condensed ice mixing ratio. As aggregation increases, the spatial variance of column-77

integrated FMSE increases. In RCE experiments over a fixed sea surface temperature78

(SST), variations in humidity contribute the most to the spatial variability in FMSE as79

horizontal temperature gradients are weak, and the gravitational potential term is ap-80

proximately uniform throughout the domain. Therefore the variance of column-integrated81

FMSE correlates most strongly with the variance of column relative humidity. Wing and82

Emanuel (2014) derive a budget equation for the rate of change of vertically-integrated83

FMSE variance, allowing for the quantification of the contributions of different FMSE84

feedbacks to the rate of change of aggregation:85

1

2

∂ĥ′2

∂t
= ĥ′LW ′ + ĥ′SW ′ + ĥ′SEF ′ − ĥ′∇h.ûh (2)

where hats (̂) denote a density-weighted vertical integral, LW and SW are the net at-86

mospheric column longwave and shortwave heating rates, SEF is the surface enthalpy87

flux, made up of the surface latent heat and sensible heat fluxes, ∇h.ûh is the horizon-88

tal divergence of the ĥ flux, and primes (′) indicate local anomalies from the instanta-89

neous domain-mean. Each term on the right hand side is a covariance between the ĥ anomaly90

and the anomaly of a source/sink of ĥ. If the term is positive, there is either an anoma-91

lous source of ĥ in a region of already high ĥ, or an anomalous sink of ĥ in a region of92

low ĥ, representing a positive feedback on self-aggregation. Wing and Emanuel (2014)93

find each of the terms are important for aggregation, with the longwave and surface flux94

feedback being crucial drivers of aggregation, but later decreasing and becoming neg-95

ative as the convection becomes aggregated. They find the shortwave feedback to be a96

key maintainer of aggregation highlighting that the processes that drive aggregation are97

separate to the processes that maintain it.98

Most research on cloud feedbacks relies on either general circulation models (GCMs)99

that use parameterized convection, or limited-area cloud-system resolving models (CRMs)100

with explicit convection that are too small to represent global-scale circulations. The cli-101

mate feedback and sensitivity of aggregation are different for GCMs and CRMs in the102

Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP; Wing et103

al., 2018), with GCMs typically having a lower climate sensitivity due to convection be-104

coming more aggregated on average at higher SSTs (Becker & Wing, 2020). This response105

is not seen on average in CRMs.106

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Despite there being debate as to the processes driving and maintaining aggrega-107

tion, the majority of studies find that interactions between convection and longwave ra-108

diation are key drivers and maintainers of aggregation (Wing et al., 2017). Pope et al.109

(2021) quantified the contribution of radiative interactions with different cloud types to110

aggregation using a set of simulations from the UK Met Office Unified Model which are111

submitted to RCEMIP as UKMOi-vn11.0-RA1-T (referred as UKMO-RA1-T hereafter).112

They used a similar FMSE variance budget framework to Wing and Emanuel (2014) but113

normalize ĥ in such a way so that its SST dependence is eliminated, thus making the114

analysis framework insensitive to SST. They found the direct longwave interactions with115

high-topped cloud and clear regions to be the main drivers of aggregation. High-topped116

clouds typically occur in anomalously-high ĥ regions and drastically decrease atmospheric117

radiative cooling, leading to a positive longwave-FMSE feedback. Similarly, clear regions118

have anomalously high radiative cooling rates and tend to be found in anomalously-low119

ĥ regions, again leading to a positive longwave-FMSE feedback and driving aggregation.120

Pope et al. (2021) found the main maintainers of aggregation were longwave inter-121

actions with high-topped cloud, and shortwave interactions with water vapour. Anoma-122

lously humid environments occur in positive ĥ′ regions and are able to absorb more so-123

lar radiation leading to a positive feedback. The difference in humidity between the moist124

and dry regions increases with aggregation, hence the shortwave-moisture feedback has125

a higher impact during mature aggregation. The extents of the contributions of these126

feedbacks to aggregation are sensitive to SST. In their simulations, the longwave con-127

tribution to aggregation is insensitive to SST during the growth phase of aggregation,128

but there is a smaller longwave contribution to aggregation maintenance as SST increases129

due to the reduction of high-topped cloud fraction. This decrease in high-topped cloud130

fraction is consistent with the stability iris mechanism described by Bony et al. (2016),131

who describe the reduction in anvil cloud as a consequence of increased anvil stability132

and decreased convective outflow with increasing SST. Shortwave interactions with mois-133

ture become less important to aggregation maintenance at warmer SSTs. This is because134

the variability in atmospheric solar heating between humid and dry regions contributes135

to a smaller fraction of the total ĥ variability as SST increases. Despite radiative inter-136

actions with cloud and moisture being the main drivers of aggregation, the rate of ag-137

gregation was most strongly moderated by circulations that generally oppose aggrega-138

tion, resulting in faster aggregation at warmer SSTs.139

In this study, we test the robustness of the conclusions from Pope et al. (2021) by140

applying their analysis framework to the CRM and GCM simulations in RCEMIP. We141

quantify the contributions of cloud-radiation interactions to self-aggregation at differ-142

ent stages of organisation and study their SST dependence. We investigate whether the143

differences in cloud-radiation interactions between models and model types can explain144

the differences in the behaviour of self-aggregation.145

2 Methods146

The CRMs and GCMs of RCEMIP are configured using a strict protocol which is147

described in Wing et al. (2018). CRMs perform ∼100-day, non-rotating, long channel148

simulations on a domain of ∼6,000 km × 400 km with a 3 km horizontal grid spacing,149

doubly periodic boundary conditions, and explicit convection. GCMs perform ∼1,000-150

day, non-rotating, global-scale aquaplanet simulations with parameterized convection.151

They have a mean grid spacing of O (1◦) varying between ∼100 km and ∼170 km, with152

the average of all GCMs being ∼120 km. Every model in RCEMIP has constant solar153

forcing and performs simulations with three fixed SSTs of 295 K, 300 K and 305 K to154

compare how convection in RCE may be affected by a warming climate.155

We study aggregation using the variance of normalized frozen moist static energy156

budget framework that is described by Pope et al. (2021) (referenced as P21 hereafter).157
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The framework is based on that used in Wing and Emanuel (2014), however vertically-158

integrated FMSE is normalized between hypothetical upper and lower limits based on159

SST in an attempt to eliminate the strong temperature dependence of FMSE. This ap-160

proach uses the variance of normalized FMSE (var(ĥn)) as the aggregation metric be-161

cause it is approximately insensitive to SST. The budget equation for the rate of change162

of var(ĥn) is:163

1

2

∂ĥ′2
n

∂t
= ĥ′

nLW
′
n + ĥ′

nSW
′
n + ĥ′

nSEF ′
n − ĥ′

n∇h. ˆuhn (3)

Here, ĥ′
n and each of the three normalized flux anomalies on the RHS (LW ′

n, SW
′
n, and164

SEF ′
n) is equal to the original flux anomaly in equation (2) divided by the difference be-165

tween the upper and lower limits of ĥ (ĥmax and ĥmin). ĥmax is defined as the vertically-166

integrated FMSE of a fully saturated moist pseudoadiabatic profile from the surface to167

the tropopause, plus the integrated FMSE of the initial profile above the tropopause. For168

ĥmin, the vertically-integrated FMSE of a dry adiabatic profile with zero moisture is used169

within the troposphere, and integrated FMSE above the tropopause from the initial pro-170

file is added. The SST is used as the temperature at sea-level pressure to initiate both171

adiabatic profiles. The tropopause is defined as the lowest level in the initial profile at172

which the lapse rate decreases to 2◦C/km or less, which has some variability in height173

between model simulations.174

Var(ĥn) is not only dependent on spatial aggregation, but it is also sensitive to grid175

spacing, particularly while convection is well-scattered. This is because small-scale fea-176

tures, e.g. convective updrafts and downdrafts that tend to have strong positive and neg-177

ative ĥ′
n respectively, are not resolved at coarser resolutions. This leads to a smaller var(ĥn)178

for coarser horizontal resolutions. As the size of the convective clusters increase and ĥn179

anomalies are strong over large areas, var(ĥn) becomes less sensitive to grid spacing (anal-180

ysis not shown). To make the comparison between CRMs and the 40× coarser GCMs181

as fair as possible, we horizontally smooth the raw output fields of the CRMs so that ev-182

ery grid box is the mean of the 40 × 40 grid boxes surrounding it (accounting for the183

periodic boundary conditions). When using this smoothing technique in the analysis, we184

refer to the CRMs as Smoothed CRMs.185

In a similar way to P21, we define Growth and Mature phases of aggregation by186

two ranges of var(ĥn) for which convection, in the majority of models, is randomly scat-187

tered or well clustered, respectively. The Growth phase is identified as any time after188

day 2 (to neglect spin-up effects) when var(ĥn) for GCMs and Smoothed CRMs is be-189

tween 0.8×10−4 and 2.4×10−4. The Mature phase is identified as any time when var(ĥn)190

for GCMs and Smoothed CRMs is between 0.8×10−3 and 2.4×10−3. Given our previ-191

ous notion that var(ĥn) is sensitive to grid spacing, we use the times of the Growth and192

Mature phases identified from the Smoothed CRMs to also analyse the (non-Smoothed)193

CRMs.194

Since ĥ′
n is a factor of every term in Equation 3, one might expect the magnitude195

of the terms to increase with aggregation. By dividing each term by the instantaneous196

horizontal standard deviation of ĥn, we can eliminate the dependence of the terms on197

the magnitude of ĥ′
n. After dividing by this standard deviation, the sensitivity of the terms198

to aggregation will depend on the sensitivity of the other variable in the term and its199

correlation with ĥ′
n.200

A drawback of the var(ĥn) budget framework is that it is a vertically-integrated201

framework that is not able to quantify the effects of processes occurring at specific ver-202

tical levels. Studies have shown that there are many low-level processes that are impor-203

tant for aggregation. For example, Muller and Held (2012) highlight the importance of204

shallow, radiatively-driven circulations caused by cooling atop shallow clouds in dry re-205
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gions, yielding an upgradient transport of FMSE, inducing a positive aggregation feed-206

back. Jeevanjee and Romps (2013) describe how cold pools are responsible for the do-207

main size dependence of self-aggregation. Boundary layer processes are key for the pro-208

duction of available potential energy that is associated with the development of self-aggregation209

(Yang, 2018a), and are theorized to determine the length scale of aggregation (Yang, 2018b).210

The use of our vertically-integrated framework means the effects of these processes are211

not directly studied. Circulations that are induced by diabatic forcing are included in212

the vertically-integrated advection term in the var(ĥn) budget framework. So the radi-213

ation and surface flux terms only account for the direct diabatic feedbacks.214

2.1 Cloud Classification Scheme215

We use a cloud classification scheme to define a cloud type at each grid point in216

the simulations. The contribution of radiative interactions with these cloud types to ag-217

gregation are calculated by multiplying each cloud type’s fraction by the mean covari-218

ance between its radiative and FMSE anomalies. This analysis technique is based on that219

used by P21, however the cloud type definitions in this study are different. In RCEMIP,220

3D data are only available for the final 25 days of CRMs and GCMs, so we are not able221

to define cloud based on the vertical profile of condensed water for the full simulation222

as in P21. Instead, we define clouds using top of atmosphere (TOA) fluxes, using the same223

method as Becker and Wing (2020) (referenced as BW20 hereafter). This method pro-224

duces four different cloud types: Clear, Shallow, Deep, and Other. The outgoing short-225

wave radiation (OSR) and outgoing longwave radiation (OLR) thresholds used to de-226

fine the four cloud types are shown in Table 1.227

Table 1. OSR and OLR thresholds used to define the cloud types.

Cloud type OSR (W m−2) OLR (W m−2)

Clear < 100 N/A
Shallow ≥ 100 > 250
Other ≥ 100 173 - 250
Deep ≥ 100 < 173

A comparison of the cloud type classification schemes between that used in P21228

and this study is shown in Figure 1(a-d). These figures show the P21 cloud distributions229

for each of the BW20 cloud types across all of the CRMs. Approximately 80% of this230

study’s Clear category is made up of the Clear type defined in P21, meaning the con-231

densed water content is less than 10−6 kg m−3 everywhere in the column. The remain-232

der of the BW20 Clear category is mostly made up of optically-thin High and Low cloud.233

The Shallow cloud type is mostly made up of Low cloud, and the Deep cloud is almost234

entirely made up of the high-topped cloud (High, High & Mid, High & Low, and Deep).235

The Other cloud type is made up of approximately two thirds high-topped cloud that236

is perhaps too optically thin or having too small a vertical extent to lead to an OLR less237

than 173 W m−2 and be classed as Deep.238

Cloud types are redefined using the Smoothed radiative fluxes in order to make a239

fairer comparison to GCMs. The distribution of non-Smoothed clouds for each Smoothed240

cloud type is shown in Figure 1(e-h). The Smoothed Clear and Deep categories are mainly241

made up of the non-Smoothed Clear and Deep categories respectively. The Smoothed242

Shallow cloud is only about one quarter made up of non-Smoothed Shallow cloud, and243

mostly made up of Clear. The Smoothed Other cloud type is mostly a combination of244

Clear, Other and Deep regions.245

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Cle
ar Lo
w Mi
d

Mi
d &

 Lo
w

Hi
gh

Hi
gh

 &
 Lo

w
Hi

gh
 &

 M
id

De
ep

0

20

40

60

80

100

(%
)

(a) Clear (83%)
Cle

ar Lo
w Mi
d

Mi
d &

 Lo
w

Hi
gh

Hi
gh

 &
 Lo

w
Hi

gh
 &

 M
id

De
ep

(b) Shallow (5%)

Cle
ar Lo
w Mi
d

Mi
d &

 Lo
w

Hi
gh

Hi
gh

 &
 Lo

w
Hi

gh
 &

 M
id

De
ep

(c) Other (6%)

Cle
ar Lo
w Mi
d

Mi
d &

 Lo
w

Hi
gh

Hi
gh

 &
 Lo

w
Hi

gh
 &

 M
id

De
ep

(d) Deep (7%)

Clear
Shallow Other Deep

0

20

40

60

80

100

(%
)

(e)Clear - Smoothed (86%)

Clear
Shallow Other Deep

(f)Shallow - Smoothed (2%)

Clear
Shallow Other Deep

(g) Other - Smoothed (9%)

Clear
Shallow Other Deep

(h) Deep - Smoothed (3%)

Figure 1. (a-d) Distributions of the cloud categories used in P21 for each of the four cloud

types used in this study. Data is averaged over the final 25 days of the CRMs for all SSTs. (e-h)

Distributions of this study’s cloud types for each of the Smoothed cloud types. Data is averaged

over the full duration of the CRMs (neglecting the 2-day spin-up period) for all SSTs. Orange

lines represent the median, boxes represent the interquartile range, and whiskers represent the

full range of the models. The UKMO-RA1-T model is shown in purple triangles. Average domain

fraction is shown in the subplot titles.
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Figure 2. Cloud type fraction vs FMSE percentile for the (a) BW20 cloud types for all

CRMs, (b) Smoothed BW20 cloud types for all CRMs, (c) P21 cloud types for all CRMs, and (d)

BW20 cloud types for the GCMs during the final 24 hours of the simulations.
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Figure 2 shows the fraction of different cloud types as a function of FMSE percentile246

during the final 24 hours of the simulations. Differences in the BW20 and P21 cloud clas-247

sification schemes within the CRMs can be seen by comparing Figures 2a and 2c. Cloud248

fraction increases with FMSE percentile regardless of the cloud classification scheme used.249

There is a lower cloud fraction in the BW20 cloud types compared to the P21 cloud types250

at all FMSE percentiles except for the extremely moist environments in which the cloud251

fraction is close to 100%. There is greater high-topped cloud in the P21 classification scheme252

compared to the BW20 Deep cloud which may be due to the presence of optically-thin253

High cloud that has OSR < 100 W m−2. There is also a greater fraction of P21 Low cloud254

compared to BW20 Shallow cloud at all FMSE percentiles, again due to the presence255

of optically thin Low cloud with OSR < 100 W m−2.256

The effect of Smoothing is shown by comparing Figures 2a with 2b. Smoothing re-257

duces the total cloud fraction in the lower 40% and upper 10% of FMSE values. The frac-258

tion of Deep cloud is reduced and the fraction of Other cloud is increased at all FMSE259

percentiles. The difference between Smoothed CRMs and GCMs can be seen by com-260

paring Figures 2b and 2d. There is a greater cloud fraction in GCMs at all FMSE per-261

centiles, which is largely due to the increase in Deep cloud fraction. There is also a greater262

Shallow cloud fraction particularly at lower FMSE values, and a lower Other cloud frac-263

tion at higher FMSE values. The effects of Smoothing, and comparisons between CRMs264

and GCMs are discussed further in section 4. The cloud type fractions of the non-Smoothed265

CRMs are most similar to the fractions of the GCMs, suggesting GCMs may be tuned266

to have a more accurate cloud fraction in a discrete grid box sense rather than on sub-267

grid scales. Yet GCMs still have a greater average cloud fraction particularly at higher268

ĥ′
n regions.269

Radiative interactions with high-topped cloud and Clear regions are shown to have270

the largest role in aggregation in P21. With the majority of BW20 Clear and Deep clouds271

being collocated with P21 Clear and high-topped cloud respectively, results from P21272

can be fairly compared to results from this study.273

3 Variance of Normalized FMSE274

The RCEMIP CRMs simulate a wide range of convective characteristics (Wing et275

al., 2020). All models display aggregation to some degree except for the UKMO-CASIM276

model at 305 K, whose convection remains scattered throughout the entire simulation.277

Figure 3 shows 24-hour running averages of var(ĥn) for each Smoothed CRM and SST.278

Also shown are the var(ĥn) limits for the Growth and Mature phase of aggregation (in-279

troduced in section 2), which will be discussed later. There is much variability in the rate280

of aggregation amongst the CRMs as well as the maximum degree of aggregation, with281

no consistent SST dependence. The inconsistent SST dependence of aggregation is seen282

regardless of aggregation metric used (Wing et al., 2020). Not all models reach both the283

Growth and Mature stages of aggregation at all three SSTs. These models are marked284

with an asterisk in Figure 3 and do not contribute to model-mean calculations to pre-285

vent skewing the results.286

Figure 4 shows 24-hour running averages of var(ĥn) for each GCM and SST. Also287

shown are the var(ĥn) limits for the Growth and Mature phase of aggregation. All of the288

GCMs aggregate, again displaying a wide range of characteristics (Wing et al., 2020).289

Unlike the CRMs, aggregation increases with SST in the majority of GCMs. GCMs that290

reach a more aggregated state at warmer SSTs do not usually aggregate faster as SST291

increases, but they tend to continue aggregating for a longer duration. As with the CRMs,292

we do not include all GCMs in the model-mean calculations as not all models have data293

in both the Growth and Mature phases of aggregation for each of the SSTs. These mod-294

els are marked with an asterisk. Note CAM5 and CAM6 have FMSE data only for the295

final 25 days of the 1095-day simulation. ICON-GCM at 300 K already has a variance296
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Figure 3. Time series of var(ĥn) for each Smoothed CRM and SST neglecting the first two

days accounting for model spin-up (24-hour running averages). The Growth and Mature phases

are indicated by the yellow and blue shaded regions respectively. Models marked with an aster-

isk (*) are excluded in future model-mean calculations as not all of their simulations reach the

Growth and Mature phase for all SSTs.

greater than the upper limit for the Growth phase after two days (which we consider the297

spin-up period) so is not included in model-mean calculations. SP-CAM and SPX-CAM298

are also excluded from all further analysis because of abnormally-large longwave cool-299

ing rates across the entire domain. Domain-mean longwave cooling within the 300 K sim-300

ulations of both the GCMs and CRMs range between 150 and 230 W m−2, whereas the301

cooling rates for SP-CAM and SPX-CAM are around 325 W m−2. This has knock-on302

effects, affecting the longwave heating anomalies of clouds, their longwave-FMSE anomaly303

covariance and their contribution to aggregation (analysis not shown). ECHAM6 and304

GEOS are included in the model-mean calculations because the 295 K simulations reach305

the Mature stage after the 100 days shown in Figure 4.306

Figure 5 shows the spatiotemporal mean of the budget terms during the Growth307

phase and Mature phase of aggregation for Smoothed CRMs and GCMs and for each308

SST. From this figure, we can see which FMSE covariances are enhancing or opposing309

aggregation at these different stages. The var(ĥn) tendency is calculated using a second-310

order finite difference approximation from 6-hourly calculated var(ĥn). The diabatic terms311

are explicitly calculated, and the advection term is calculated as a residual of the other312

terms. By comparing GCMs to the Smoothed CRMs, we remove biases that may be a313

result of the small-scale features that cannot be resolved in the larger grid spacing in GCMs.314

Figure 5 shows that for all model types, and at all SSTs, FMSE feedbacks with long-315

wave radiation and surface fluxes are typically the main drivers of aggregation in the Growth316

phase, however the magnitude of each feedback is highly variable from model to model.317

The shortwave term is consistently small and positive and has little inter-model variabil-318
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Figure 4. Time series of var(ĥn) for each GCM and SST for the first 100 days, neglecting the

first two days accounting for model spin-up (24-hour running averages). Note CAM5 and CAM6

output FMSE for the final 25 days only and so we only show that time period for those models.

The Growth and Mature phases are indicated by the yellow and blue shaded regions respectively.

Models marked with an asterisk (*) are excluded in future model-mean calculations.
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Figure 5. Spatiotemporal mean of terms in the var(ĥn) budget equation divided by the in-

stantaneous standard deviation of ĥn for Smoothed CRMs (triangles) and GCMs (circles) at each

SST during the Growth phase (filled markers) and Mature phase (open markers) of aggregation.

For each term, SST increases to the right. The mean for the Smoothed CRMs and GCMs for

each SST are shown in black markers. Models that do not reach both the Growth and Mature

phase at all three SSTs are shown with orange markers and do not contribute to the mean. SP-

CAM and SPX-CAM are excluded from the figure. UKMO-RA1-T is shown in purple.
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ity. The advection term typically opposes aggregation and is the greatest source of vari-319

ability for the rate of aggregation across the models.320

During the Mature phase of aggregation, both the longwave and shortwave feed-321

backs maintain aggregation, and are balanced by the typically-negative surface flux and322

advection feedbacks. On average, the magnitude of the longwave feedback has little de-323

pendence on the degree of aggregation, whereas the shortwave feedback increases with324

aggregation as moist and dry regions amplify, leading to larger differences in shortwave325

absorption between positive and negative ĥ′
n regions. The surface flux feedback is usu-326

ally positive during the Growth phase as higher surface wind speeds in moist convective327

regions leads to a positive feedback. During the mature phase, the wind speed-surface328

flux feedback becomes overcompensated by the negative air-sea disequilibrium feedback,329

whereby surface evaporation rates are enhanced in drier environments (Wing & Emanuel,330

2014). The surface flux feedback during the Mature phase at higher SSTs may be less331

negative due to the wind-evaporation feedback being relatively stronger (Coppin & Bony,332

2015).333

As noted by Wing et al. (2020), GCMs tend to reach a higher degree of aggrega-334

tion at higher SSTs. With little SST dependence of the rate of aggregation in our de-335

fined Growth phase, aggregation rates increase with SST for var(ĥn) greater than the336

upper limit of the Growth phase. This can be seen in many of the models in Figure 4337

and to some extent in Figure 5 by looking at the var(ĥn) tendency of GCMs during the338

Mature phase which increases slightly with SST. However, the greatest SST dependence339

of the rate of change of var(ĥn) is during the times in between the Growth and Mature340

phase (not shown). For GCMs during the Growth phase, the sum of the diabatic terms341

decrease in magnitude with SST, yet the advection term becomes more positive with SST,342

resulting in little SST dependence in the rate of aggregation in the Growth phase. Af-343

ter the Growth phase however, the sum of the diabatic feedbacks becomes less SST de-344

pendent, while the advection term remains more positive with SST. This results in a greater345

rate of aggregation after our defined Growth phase. In CRMs, the sum of the diabatic346

terms also becomes less sensitive to SST after the Growth phase, though they still have347

a more negative SST dependence than the average of the GCMs. The main difference348

between GCMs and CRMs is the SST sensitivity of the longwave term after the Growth349

phase, which remains more constant on average with SST in GCMs. This will be explored350

further in the following section.351

The longwave feedback is on average a factor 2 greater in GCMs compared to CRMs352

for all stages of aggregation. The larger longwave feedback in GCMs is the main differ-353

ence in terms of the diabatic feedbacks between CRMs and GCMs. This results in GCMs354

having an overall larger diabatic feedback, corresponding to a more negative advection355

feedback and/or a higher rate of aggregation in the Growth phase. There is, however,356

a large spread in the models’ advection term and aggregation rate. The difference be-357

tween the mean advection term between GCMs and Smoothed CRMs is not statistically358

significant at the 95% confidence level for a given SST, even when including the mod-359

els that are neglected from the model-mean comparisons. The increase in mean aggre-360

gation rate from the Smoothed CRMs to the GCMs is only significant at each SST when361

we include the models neglected from the model-mean comparisons. The difference in362

the longwave feedbacks in CRMs and GCMs is significant and will be discussed further363

in the next section.364

There is little difference in the budget terms between the non-Smoothed and Smoothed365

CRMs (not shown). After dividing the terms by the standard deviation of ĥn, the rate366

of aggregation, longwave term, and shortwave term remain similar on average. The most367

significant change is the surface flux term during the Growth phase, which decreases by368

about 40% after smoothing. With the surface flux term decreasing in the Growth phase,369

and the other diabatic terms and var(ĥn) tendency term remaining similar, the advec-370
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tion term becomes more positive after smoothing as it is calculated as a residual of the371

other terms.372

If FMSE feedbacks in CRMs and GCMs are represented similarly despite the dif-373

ferent grid spacings, the budget terms in GCMs should be similar to the budget terms374

in the Smoothed CRMs. For both CRMs and GCMs, each of the diabatic terms are typ-375

ically positive during the Growth phase but on average decrease in magnitude as SST376

increases (Figure 5). P21 studied the UKMO-RA1-T model simulations which are rep-377

resented by the purple, triangular data points in Figures 5, 7 & 8. They analysed this378

SST dependence of the UKMO-RA1-T CRM and found the longwave feedback decreases379

with SST due to the reduction of high-cloud fraction at higher SSTs. However in their380

study, this SST dependence was only found in the Mature phase. We explore how high-381

cloud fraction affects the longwave feedback in the RCEMIP CRMs and GCMs in the382

following section. P21 found the decrease in the shortwave feedback to be inversely pro-383

portional to the difference between ĥmax and ĥmin. Physically, this means that the short-384

wave heating anomalies contribute similar amounts to increasing the non-normalized FMSE385

variance at different SSTs. However, since FMSE anomalies are higher at warmer SSTs,386

the shortwave heating anomalies contribute to a smaller fraction of FMSE variance. For387

both CRMs and GCMs in RCEMIP, the advection term becomes less negative with SST388

on average and is inversely proportional to the sum of the diabatic terms. The result is389

that the rate of aggregation during the Growth phase for both CRMs and GCMs does390

not depend strongly on SST.391

Some of the results from the mean of the models are in contrast to the results found392

in P21. According to the model means, the surface flux feedback is almost as important393

as the longwave feedback in driving aggregation, which is in stark contrast to the UKMO-394

RA1-T model that shows the surface flux feedback to be slightly negative even during395

the Growth phase. This suggests the air-sea disequilibrium feedback in the UKMO-RA1-396

T model dominates over the wind speed-surface flux feedback to a larger degree than in397

the majority of models. The sum of the diabatic terms decreases with SST for the model398

means, yet it is more constant with SST in the UKMO-RA1-T simulations and is also399

more negative. Despite the more negative diabatic feedback in UKMO-RA1-T, the rate400

of aggregation is faster than the model means at 300 K and 305 K. This is because the401

UKMO-RA1-T model has the most positive advection feedback of all models. This feed-402

back increases with SST despite the diabatic terms remaining similar, resulting in faster403

aggregation at higher SSTs in UKMO-RA1-T, but there is little change in aggregation404

rate with SST for the model mean.405

Previous literature has shown the diabatic terms to be essential drivers of aggre-406

gation, so we would expect that a greater diabatic-FMSE feedback would lead to an in-407

creased rate of aggregation. Despite the diabatic terms driving aggregation in the Growth408

phase of the RCEMIP simulations (Figure 5), we cannot conclude that the magnitude409

of the sum of the diabatic terms is correlated to the rate of aggregation. Figure 6a shows410

the correlation between the longwave term and the var(ĥn) tendency term in Equation411

3 during the Growth phase for Smoothed CRMs and GCMs. We find there is a signif-412

icant correlation between the longwave term and rate of aggregation in the GCMs, but413

there is no significant correlation between the longwave term and rate of aggregation in414

the CRMs (regardless of Smoothing). Figure 6b shows the correlation between the sum415

of the diabatic terms and the var(ĥn) tendency term. Again there is a significant pos-416

itive correlation between the diabatic feedbacks and rate of aggregation in the GCMs,417

but not for the CRMs. A greater diabatic feedback is associated with a more negative418

advection feedback (Figure 6c). In the CRMs, the sum of the diabatic terms is, on av-419

erage, proportional to the magnitude of the advection feedback, hence there is no sig-420

nificant relationship between the diabatic feedbacks and aggregation rate. There is a less421

negative relationship between the sum of the diabatic terms and the advection term in422

the GCMs, allowing GCMs with a higher diabatic feedback to aggregate faster. The rate423
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Figure 6. (a) Average of the var(ĥn) tendency term vs the longwave term in Equation 3, (b)

average of the var(ĥn) tendency term vs the sum of the three diabatic terms (longwave, short-

wave & surface flux), (c) average of the advection term vs the sum of the diabatic terms, and

(d) average var(ĥn) tendency term vs the advection term, for each Smoothed CRM (points) and

GCM (crosses) averaged over the Growth phase. Also shown is the regression line for CRMs

(dotted) and GCMs (solid line), as well as their slope, p-value and r-value.
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of aggregation in CRMs is most strongly correlated with the advection feedback (Fig-424

ure 6d), with no significant correlation between the advection feedback and aggregation425

rate in the GCMs.426

The longwave feedback is a key driver and maintainer of aggregation in the ma-427

jority of models at each SST. It is typically a larger feedback in GCMs, resulting in largely428

faster aggregation rates compared to CRMs. The longwave feedback is a key factor in429

determining the model spread in the rate of aggregation, as well as the sensitivity of the430

degree of aggregation to SST in GCMs.431

4 Contributions of Cloud-Radiation Interactions to Aggregation432

In this section, we compare longwave-cloud interactions within the CRMs and GCMs.433

We first study these interactions in the CRMs to test the robustness of the conclusions434

in P21. We then compare CRMs to GCMs by first seeing how cloud-longwave interac-435

tions are affected by coarsened grid spacing using the Smoothed CRMs. Then we com-436

pare the Smoothed CRMs to GCMs to study why the longwave feedback tends to be stronger437

in GCMs.438

4.1 Cloud-Radiation Interactions within CRMs439

The contributions of longwave interactions for the different cloud types in the CRMs440

and Smoothed CRMs during the Growth and Mature phase of aggregation for each SST441

are shown in Figure 7a. Each model that contributes to the mean is shown in grey, the442

model mean shown in black, UKMO-RA1-T is shown in purple, and models that do not443

contribute to the mean are shown in light orange. We first focus on the (non-Smoothed)444

CRMs.445

For the CRMs during the Growth phase of aggregation, longwave interactions with446

the Clear and Deep regions contribute most to the longwave feedback. The Clear regions447

have a large contribution mainly because of their large domain-fraction (Figure 7b) and448

positive LW ′
n×ĥ′

n covariance (Figure 7c), despite the covariance being on average the449

lowest in magnitude out of all cloud types. Deep clouds are the next most abundant cloud450

type on average and typically have the largest LW ′
n×ĥ′

n covariance of all cloud types.451

They have the largest LW ′
n due to their cold cloud tops (Figure 7e) and have the sec-452

ond highest ĥ′
n of the cloud types (Figure 7d). A large portion of the Deep category comes453

from thin anvil cloud which often extend a great distance from the high-FMSE updraft454

that they originated from. This transport of high cloud to lower-FMSE regions lowers455

the average ĥ′
n of the Deep category. The Shallow and Other cloud types have an insignif-456

icant contribution to the longwave feedback in comparison because their LW ′
n×ĥ′

n co-457

variance is small in magnitude (mostly due to a small-magnitude LW ′
n) and they have458

a small fraction (although the fraction is highly variable between models).459

The negative SST dependence of the longwave feedback, as seen in Figure 5, can460

be explained by the negative SST dependence of the longwave interactions with the Deep461

and Clear regions as follows, in agreement with P21. During both the Growth and the462

Mature phases, the LW ′
n×ĥ′

n covariance of the Deep regions remains similar with SST463

(Figure 7c) while the Deep cloud fraction steadily decreases (Figure 7b), so the SST de-464

pendence of the Deep cloud’s longwave contribution to aggregation is primarily due to465

the decrease in Deep cloud fraction.466

The contribution of the Clear regions decreases with SST due to the decrease in467

the Clear LW ′
n×ĥ′

n covariance. There are multiple factors that influence this SST de-468

pendence: the change in longwave heating rates of the different cloud types, the change469

in their fraction, the increase in the range of ĥmax and ĥmin, and the change in corre-470

lation between longwave and FMSE anomalies in the Clear regions. The correlation be-471
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Figure 7. Non-Smoothed CRMs (downward triangles) vs Smoothed CRMs (upward tri-

angles): (a) Contributions of longwave interactions for each cloud type to the longwave term

in equation 3 divided by the standard deviation of ĥn, (b) Fraction of each cloud type, (c)

LW ′
n × ĥ′

n covariance divided by the standard deviation of ĥn, (d) ĥ
′
n divided by the standard

deviation of ĥn, (e) LW
′
n, and (f) absolute longwave heating. Data points and layout follow the

same protocol as in Figure 5. Note different y-axis ranges for Clear in b, c, d & e.
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tween LW ′
n and ĥ′

n remains similar with SST (15% decrease in the correlation coefficient472

from 0.173 at 295 K to 0.147 at 305 K), as does the mean ĥ′
n (Figure 7d). The change473

in the Clear LW ′
n × ĥ′

n covariance is therefore mainly due to the change in LW ′
n.474

To isolate the effects of the changing longwave heating rates with SST on the Clear475

longwave feedback, we use the average cloud type fractions at 295 K with the average476

cloud type longwave heating rates at 305 K. From these, we calculate a hypothetical new477

domain-mean longwave cooling rate and cloud type LW ′, and find that the average Clear478

LW ′ becomes 74% more negative compared to the values at 295 K. However, after nor-479

malising LW ′ to account for the changing SST, we find this hypothetical new Clear LW ′
n480

is largely insensitive to SST. We next isolate the effect of the changing cloud fraction with481

SST by using the average cloud type longwave heating rates at 295 K with the average482

cloud type fractions at 305 K to calculate the cloud types’ LW ′. We find the domain-483

mean longwave cooling rate increases by approximately 3 W m−2 compared to the value484

at 295 K, and is mainly a result of the decreasing Deep cloud fraction allowing for en-485

hanced radiative cooling. The increased domain-mean cooling rate is closer to the mean486

cooling rate of the Clear regions, making their LW ′ 37% less anomalously negative. This487

is close to the actual 30% decrease in the mean LW ′
n of the Clear regions. This shows488

that the SST sensitivity of the Clear LW ′
n is primarily due to changes in cloud fraction489

with SST.490

Next, we look at the effects of smoothing on cloud-longwave interactions in the CRMs491

to see how a coarser grid spacing affects cloud-longwave interactions. After smoothing492

the TOA radiative fluxes and reclassifying the cloud types using the smoothed radiation,493

there is a large difference in the fraction of the different cloud types (Figure 7b). Firstly,494

there is an almost complete elimination of Shallow cloud in the Smoothed CRMs dur-495

ing the Growth phase, with a large reduction in Deep cloud in the Growth and Mature496

phases. This is because the Shallow and Deep clouds are often small in area, particu-497

larly during the Growth phase, meaning that after averaging the TOA radiative fluxes498

across the surrounding 120 km × 120 km area, these clouds are often reclassified as ei-499

ther Clear or Other clouds. This results in an increase in Other cloud, although there500

is an approximate halving of the total cloud fraction during the Growth phase. During501

the Mature phase, all cloud types increase in fraction in the Smoothed CRMs as a likely502

result from increased cloud clustering. The total cloud fraction in the Mature phase is503

similar to the non-Smoothed CRMs.504

Smoothing also has an effect on the average LW ′
n × ĥ′

n covariance of the cloud505

types (Figure 7c). The covariance remains similar for Deep cloud, but increases slightly506

for the Other cloud, perhaps a result of a significant proportion of the non-Smoothed Deep507

cloud regions becoming reclassified as Other after Smoothing, as can be inferred by com-508

paring Figures 2a & b. The combined effects of the change in cloud fraction and LW ′
n × ĥ′

n509

covariance after Smoothing is a reduction in the contribution from Deep cloud with sub-510

sequent increases in the contributions from the Other and Clear cloud types during all511

stages of aggregation.512

4.2 Comparison of Cloud-Radiation Interactions within CRMs and GCMs513

In Figure 8 we compare the longwave-cloud interactions between the Smoothed CRMs514

and GCMs. Figure 8a shows that during the Growth phase, longwave interactions with515

the Clear regions and Deep regions are the main drivers of aggregation for GCMs, with516

interactions with Other clouds also having a significant contribution. Contributions of517

each of these cloud types to the total longwave feedback are higher in GCMs compared518

to the Smoothed CRMs. This is largely due to the increased fraction of the Other and519

Deep cloud types (Figure 8b), but also the increased LW ′
n × ĥ′

n covariance of the Deep520

and Clear cloud types (Figure 8c).521
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The absolute longwave heating rate of Deep cloud is similar in the Smoothed CRMs522

and GCMs, but in the Clear regions, the longwave heating rate is more negative on av-523

erage for GCMs (Figure 8f). Clear regions occupy the majority of the domain, mean-524

ing the domain-mean longwave emission is closely linked to that of the Clear regions. This525

makes the Deep clouds in GCMs have a more positive LW ′
n (Figure 8e), helping increase526

their LW ′
n × ĥ′

n covariance.527

The LW ′
n × ĥ′

n covariance of the Clear regions is more than double that of the528

Smoothed CRMs. This is in part because Clear regions in GCMs typically occur in more529

negative ĥ′
n compared to Smoothed CRMs (Figure 8d), which is a likely consequence of530

the greater cloud fraction in GCMs, confining the Clear regions to drier environments.531

The LW ′
n is also more negative in GCMs partially due to the mean absolute longwave532

heating rates being more negative on average, but mainly because of the difference in533

cloud fraction between the model types. To isolate the effect of the difference in cloud534

fraction between CRMs and GCMs on the Clear longwave feedback, we use the mean535

longwave heating rates of the cloud types in the Smoothed CRMs with the cloud frac-536

tions of the GCMs. We then calculate a hypothetical new domain-mean longwave cool-537

ing and cloud type LW ′, and find that the LW ′
n of the Clear regions becomes approx-538

imately 2.5 times more negative. This is thanks to the Deep clouds lowering the domain-539

mean longwave cooling rate in GCMs, hence making the Clear regions more anomalously540

negative. These effects suggest that the greater Deep cloud fraction in GCMs is a key541

factor in the enhanced total longwave-FMSE feedback, and therefore rate of aggregation542

in GCMs compared to CRMs. The non-Smoothed CRMs have a similar Deep cloud frac-543

tion and Deep LW ′
n × ĥ′

n covariance to the GCMs, yet the contributions from Other and544

Clear cloud types remain larger in GCMs thanks to the increase in the Other cloud frac-545

tion in GCMs. The increase in Other cloud fraction, with their positive LW ′, helps fur-546

ther lower the (negative) LW ′ of the Clear regions in GCMs compared to non-Smoothed547

CRMs, helping increase these cloud types’ contributions to the longwave feedback.548

As the convection reaches the Mature phase, longwave interactions in the Clear,549

Other and Deep cloud types maintain aggregation in the Smoothed CRMs. For GCMs,550

longwave interactions with the Clear and Deep cloud types are the key maintainers of551

aggregation. Despite the GCMs having a larger Shallow fraction, these clouds have a sim-552

ilarly insignificant contribution to the longwave feedback as in the Smoothed CRMs. Their553

LW ′
n × ĥ′

n covariance is consistently close to 0 because both their LW ′
n and ĥ′

n is small.554

The SST sensitivity of the longwave feedback in GCMs is less straightforward than555

CRMs with multiple factors playing a role. During the Growth phase, the longwave feed-556

back decreases with SST, and this is due to the decrease in the contributions of the Clear557

and Deep cloud types. This in turn, is mainly due to their decreasing LW ′
n × ĥ′

n co-558

variance since the fractions of these cloud types remain relatively insensitive to SST. The559

decrease in the Clear covariance with SST is mainly due to the Clear regions occurring560

in less anomalously-negative ĥ′
n regions. The main factor responsible for the decreasing561

contribution from Deep cloud is the increase in the range of ĥmax and ĥmin that is used562

to normalize the longwave heating anomalies. During the Mature phase of aggregation,563

the longwave feedback has little SST sensitivity for GCMs.564

In GCMs, the change in the SST dependence of the longwave term from negative565

during the Growth phase to more neutral after the Growth phase is one of the main fac-566

tors causing GCMs to be more aggregated at higher SST, since the advection feedback567

remains less negative with SST throughout the majority of the simulations. For GCMs568

during the Growth phase, we find a negative SST dependence of the contribution of each569

cloud type to the longwave feedback. During the Mature phase, these SST dependen-570

cies are more positive. The contributions from the Deep and Other clouds have a more571

positive SST dependence after the Growth phase because their LW ′ × ĥ′
n covariance572

increases with SST (Figure 8c). This is because these clouds form in more anomalously573

positive ĥ′
n regions as SST increases (Figure 8d).574
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5 Conclusions575

In this study, we compare the effects of cloud-radiation interactions on convective576

self-aggregation within the CRMs and GCMs submitted to RCEMIP (Wing et al., 2018).577

We use the normalized vertically-integrated FMSE variance (var(ĥn)) budget framework578

to study aggregation (Pope et al., 2021, referred to as P21.), and define “Growth” and579

“Mature” phases of aggregation to compare how FMSE feedbacks contribute to aggre-580

gation at similar stages of aggregation across the range of models. We define four dif-581

ferent cloud types based on the top of atmosphere radiative fluxes following the method582

from Becker and Wing (2020) and calculate the contribution of radiative interactions with583

these cloud types to aggregation. These cloud types are: Clear, Shallow, Deep and Other.584

GCMs have on average a 40 times larger grid spacing than CRMs. When comparing these585

two model types we account for biases in our analysis technique due to the resolution586

difference by horizontally smoothing the CRMs so that each grid point is an average of587

the 40 × 40 grid points surrounding it, referred to as Smoothed CRMs.588

The goals of the study are to:589

• Validate the robustness of the results in P21 who studied the effects of cloud-radiation590

interactions on self-aggregation within the Met Office Unified Model version 11.0591

CRM (submitted to RCEMIP and referred to as “UKMO-RA1-T”).592

• Investigate to what extent differences in cloud-radiation interactions affect self-593

aggregation within CRMs and GCMs, and how these are sensitive to SST.594

5.1 Robustness of P21 results595

We consider the robustness of the following five conclusions from P21:596

1. Key drivers of aggregation are longwave interactions with high-topped clouds and597

Clear regions. (Robust)598

599

Most CRMs and GCMs are in agreement with this conclusion when considering600

that Deep cloud are mostly equivalent to high-topped clouds in P21. Deep clouds601

have strong longwave heating anomalies and occur in anomalously moist regions.602

Clear regions typically have negative longwave heating anomalies and tend to oc-603

cur in anomalously dry regions. Both of these radiative interactions result in a strongly604

positive longwave feedback.605

606

2. The main maintainers of aggregation are longwave interactions with high-topped607

clouds and shortwave interactions with water vapor. (Robust)608

609

Most CRMs and GCMs are in agreement that these radiative interactions are key610

maintainers of aggregation. The shortwave feedback increases with aggregation611

as moist and dry regions amplify, leading to a greater contrast in shortwave ab-612

sorption by water vapor between the moist and dry regions, resulting in an en-613

hanced shortwave-FMSE feedback.614

615

3. The main resistors of aggregation are negative surface flux and advection feed-616

backs. (Not Robust for surface flux in the Growth phase)617

618

In the majority of models, the surface flux feedback is actually a key driver of ag-619

gregation, with the UKMO-RA1-T model having the most negative surface flux620

contribution during the Growth phase. In most models, this is likely due to a strong621

wind speed-induced surface flux feedback outweighing the air-sea disequilibrium622

feedback during the Growth phase of aggregation (unlike in UKMO-RA1-T where623

the opposite is true). As aggregation matures, the models are in agreement that624
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the surface flux feedback becomes increasingly negative and often opposes aggre-625

gation. The advection feedback is typically negative and highly variable between626

models.627

628

4. The SST-dependence of the longwave feedback is absent during the Growth phase,629

but is negative in the Mature phase. (Not Robust for Growth phase)630

631

For the RCEMIP models, the domain-mean longwave feedback decreases with SST632

at all stages of aggregation, which is primarily due to the decrease in Deep and/or633

Other cloud fraction at warmer SSTs. P21 also find the high-topped cloud frac-634

tion decreases with SST, however this is compensated by an increase in their mean635

longwave-FMSE covariance in the Growth phase. We do not find the longwave-636

FMSE covariance of the Deep and Other clouds increasing with SST in the ma-637

jority of RCEMIP models, hence their domain mean longwave feedback tends to638

decrease with SST.639

640

The RCEMIP CRMs and GCMs differ in the processes leading to the decrease in641

the longwave feedback with SST. For the CRMs, the average longwave-FMSE co-642

variance of these clouds remains similar with SST, so the decrease in their cloud643

fraction reduces their total aggregating influence. A secondary effect of the de-644

creased Deep cloud fraction is an increase in the magnitude of domain mean long-645

wave cooling. This makes the typically-negative longwave heating anomalies of the646

Clear regions less anomalous, also decreasing the Clear regions’ aggregating in-647

fluence at warmer SSTs. In GCMs, the longwave feedback decreases with SST be-648

cause the normalized longwave heating anomalies of Deep clouds decreases, reduc-649

ing their aggregating influence. In addition, the Clear regions occur in less anoma-650

lously dry regions due to the reduced total cloud fraction, also reducing their av-651

erage aggregating influence as SST increases.652

653

5. The SST-dependence of the aggregation rate is positive because the advection654

feedback becomes increasingly positive with SST. (Not Robust)655

656

P21 find the sum of the diabatic feedbacks are insensitive to SST during the Growth657

phase, however for the RCEMIP CRMs and GCMs, each diabatic feedback tends658

to decrease with SST during the Growth phase. Despite the sum of these diabatic659

feedbacks decreasing with SST, the rate of aggregation remains similar on aver-660

age. The sum of the diabatic feedbacks tends to be proportional to the magnitude661

of the (negative) advection feedback, resulting in no significant change in aggre-662

gation rate with SST.663

5.2 Differences between GCMs and CRMs664

Using var(ĥn) as our aggregation metric, we find there is much variability in the665

rate of aggregation and the maximum degree of aggregation within the CRMs, with no666

consistent SST dependence on the rate of aggregation and the maximum degree of ag-667

gregation. GCMs, on the other hand, aggregate faster than CRMs on average, and tend668

to be more aggregated at higher SSTs.669

Both the contributions of shortwave-FMSE and surface flux-FMSE feedbacks to670

aggregation are similar in magnitude in Smoothed CRMs and GCMs. However, the longwave-671

FMSE feedback is, on average, approximately twice as strong in GCMs compared with672

CRMs. This results in typically faster rates of aggregation in GCMs. This is primarily673

due to GCMs having a larger cloud fraction than Smoothed CRMs, but more crucially674

a larger Deep cloud fraction. However, if GCMs are instead compared to the non-Smoothed675

CRMs, GCMs have a similar Deep fraction but a larger Other fraction, which still re-676

sults in a greater total longwave-FMSE feedback. The longwave-FMSE feedback is strongest677
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for Deep clouds because they typically occur in anomalously-high FMSE regions, and678

have anomalously strong positive longwave heating rates. Like with the SST sensitiv-679

ity of cloud fraction in CRMs, a secondary effect of the increased Deep cloud fraction680

in GCMs is an increase in the longwave-FMSE feedback in the Clear regions. This is be-681

cause an increased cloud fraction reduces the magnitude of domain-mean longwave cool-682

ing. With Clear regions occupying the majority of the domain, their typically-negative683

longwave heating anomalies become more negative, increasing their longwave-FMSE feed-684

back. The increase in the contributions from Deep and Clear regions to the longwave-685

FMSE feedback accounts for the doubling of the total feedback.686

As previously mentioned, the sum of the diabatic feedbacks with FMSE tend to687

decrease with SST during the Growth phase, yet the aggregation rate remains insensi-688

tive to SST thanks to the increasingly positive advection feedback. After the Growth phase689

however, the sum of the diabatic feedbacks in GCMs becomes less SST dependent, yet690

the advection feedback remains more positive at higher SSTs, resulting in GCMs being691

more aggregated at higher SSTs. Their diabatic terms become less SST dependent af-692

ter the Growth phase in part because the Deep and Other cloud types tend to occur in693

more anomalously moist environments at higher SSTs, increasing their longwave-FMSE694

feedback. This finding, and the point made above about differences in cloud amount be-695

tween GCMs and CRMs, suggests that GCMs should be compared more systematically696

to CRMs to investigate their total cloud amount, and their tendency to place high-topped697

clouds in more anomalously moist environments as SSTs increase.698

Despite the difference in the diabatic feedbacks between GCMs and CRMs account-699

ing for the difference in the aggregation rate between these model types, there is no ev-700

idence that the model spread in the magnitude of the diabatic feedbacks can explain the701

model spread in the rate of aggregation in CRMs. For CRMs, the model spread in the702

rate of aggregation is mostly determined by the magnitude of the advection term due703

to it having the highest inter-model variability compared to the other diabatic terms.704

The advection term may be largely influenced by circulations induced by strong radia-705

tive cooling from low cloud in dry regions that result in an upgradient transport of FMSE,706

helping aid aggregation (Muller & Held, 2012; Muller & Bony, 2015). This effect is not707

investigated in this study. Unlike in CRMs, the diabatic feedbacks are significantly cor-708

related with aggregation rate in GCMs, and this may suggest that GCMs are not cap-709

turing key circulations that would otherwise mediate aggregation.710

We have shown that the production of cloud in CRMs and GCMs, in terms of quan-711

tity and distribution, is very different. This in turn, results in largely different longwave-712

FMSE feedbacks that alter the rate and degree of aggregation. Not only are the longwave-713

FMSE interactions enhanced in GCMs, but there is a less negative correlation between714

the diabatic and advection feedbacks in GCMs than CRMs. This suggests that GCMs715

are not resolving circulations the may otherwise export FMSE away from moist regions,716

mediating aggregation, as seen in CRMs. These factors highlight our limitations to ac-717

curately represent the cloud response to warming in climate studies. CRMs are often used718

to study the cloud response to warming, but are too small to capture the large-scale cir-719

culations that affect the total cloud feedback. GCMs are used in climate modelling stud-720

ies because they are complete representations of the climate system, and they can per-721

form hundreds of years of global-scale simulations. However, there are discrepancies be-722

tween cloud-radiation interactions and circulations between GCMs and CRMs.723

We might expect that CRMs are better at representing smaller-scale convective pro-724

cesses and circulations, but systematic comparisons of these attributes with observed cases725

of organised convection, would help us understand the discrepancies between GCMs and726

CRMs, and might lead to improvements in these simulations.727
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