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Abstract18

Until recently, the development of a global geography of floods was challenged by the19

fragmentation and heterogeneity of in situ data and the high costs of processing large20

amounts of remote sensing data. Such geography would facilitate the exploration of large-21

scale drivers of flood extent and timing including wide latitudinal, climate, and topo-22

graphic effects. Here we used a monthly dataset spanning 30 years (Global Surface Wa-23

ter Extent) to develop a worldwide geographical characterization of slow floods (1-degree24

grid), weighting the relative contribution of seasonal, interannual, and long-term fluc-25

tuations on overall variability, and quantifying precipitation-flooding delays where sea-26

sonality dominated. We explored the dominance of different flooding timings across five27

Köppen-Geiger main climates and seven topography classes derived from modeled wa-28

ter table depths (i.e., hydro-topography) to contribute top-down insight about the out-29

standing, cross-regional flooding patterns and their likely large-scale drivers. Our results30

showed that, globally, the mean extent of floods averaged 0.48% of the global land area,31

predominantly associated with hydro-topography (>2x more extensive in flatter land-32

scapes). Climate drove flood timings, with predictable, seasonally-dominated fluctua-33

tions in cold regions, interannual and mixed patterns in temperate climates, and more34

irregular (higher variability) and unpredictable (less seasonal) patterns in arid regions.35

Net gains of flooded area dominated temporal variability in 9% of the cells including bo-36

real clusters likely affected by warming trends. We propose that this new geographical37

perspective of floods can aid different avenues of hydrological research in the upscaling38

and extrapolation of field studies and the parsimonious representation of floods in hy-39

droclimatic models.40

1 Introduction41

Floods influence a myriad of biophysical and human processes at multiple spatial42

and temporal scales, examples of which are nutrient cycles in riverine environments, pri-43

mary productivity and ecological succession in wetlands, and local climate properties (Aufdenkampe44

et al., 2011; Davies et al., 2008; Faysse et al., 2020; Houspanossian et al., 2018; Jardine45

et al., 2015; Robertson et al., 2001; Sanchis et al., 2012; Simões et al., 2013; Loarie et46

al., 2011). The temporal dynamics of floods modulate these influences and may be de-47

scribed according to regimes and timings. Flood regimes have been defined through their48

association with different triggers, i.e., rainfall pulses, snowmelt, runoff from upslope ar-49

eas, and soil moisture (R. Merz & Blöschl, 2003; Parajka et al., 2010), and through the50

level of sensitivity to terrain or atmospheric properties, i.e., hydraulic infrastructure, land51

use and land cover changes, and climatic changes (Sivapalan, 2005; Prigent et al., 2007;52

Silva et al., 2017; B. Merz et al., 2021). Flood timing, instead, describes the moment,53

duration, and degree of periodicity of flooding peaks (e.g. summer vs. winter-time floods,54

flash floods lasting days vs. slow floods lasting months, seasonal vs. erratic floods). It55

is also characterized according to their recurrence and degree of extremeness (e.g., 1- vs.56

100-year), and rich/poor flooding periods lasting several years (Cunderlik et al., 2004;57

Hall et al., 2014; Lee et al., 2015; R. Merz & Blöschl, 2003; Pickens et al., 2020; Saharia58

et al., 2017; Tulbure & Broich, 2019; Warfe et al., 2011). Thus, and from a systems the-59

ory framework (O’Neill et al., 1986), we could distinguish scale-dependent factors influ-60

encing these two aspects of flooding dynamics. From a bottom-up perspective, we can61

view flooding regimes as the result of different processes (i.e., causal mechanisms). In62

turn, from a top-down perspective, we can think of the dominating timescale at which63

flooding fluctuates (hereby, flood timing; for example, seasons, years and even decades)64

as indicators of the influence of drivers that (i) operate at larger spatial scales (e.g., cli-65

mate regimes, atmospheric circulation patterns) (Kundzewicz et al., 2019), and (ii) are66

particularly susceptible to the many ongoing anthropogenic changes (Trenberth, 2011).67

To improve our understanding of the dominant drivers of floods, it becomes fundamen-68

tal to weigh and explain the temporal attributes of flooding across large scales.69
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While our current knowledge of the drivers of floods at large spatial and tempo-70

ral scales has been growing with the increasing availability of historical data and pale-71

oenvironmental proxies (Blöschl et al., 2020; Knox, 2000) together with modern remote72

sensing information (Alsdorf et al., 2007; C. Huang et al., 2018; Lopez et al., 2020), a73

comprehensive understanding of the drivers of flooding at the global level is still miss-74

ing. Indeed, hierarchically bottom-up, causal mechanisms (i.e., processes, such as soil75

moisture excess after exceeding its infiltration capacity) answering to upper-level drivers76

have been described from local (Troch et al., 1994; Arora et al., 2021; Alborzi et al., 2022)77

to catchment (Delgado et al., 2012; Ganguli et al., 2020; Jencso & McGlynn, 2011) and78

continental levels (Hall et al., 2014; Blöschl et al., 2017; McCabe et al., 2007), yet the79

larger, global patterns remain underexplored. A mismatch, arising from incongruences80

in spatial, temporal, and methodological approximations, has been found between the81

many lines of hydrology research across the planet (Rogger et al., 2017), that constrains82

the possibilities to upscale from local processes to global patterns (Blöschl, 2006). It might83

be partly for these reasons that global models still show high uncertainty in anticipat-84

ing how floods may shift under the conjunct effects of climate change, land cover change,85

and infrastructure development. A uniform characterization of the timing and extent of86

floods at the global level and its link with regional drivers is the first step towards the87

improvement of global flooding modeling.88

To this day, global efforts quantifying the temporal dynamics of floods have gone89

a long way into describing very local (e.g., 900 m2)- to basin-level variance at different90

timescales, but have not explored geographical patterns or the drivers to aid their in-91

terpretation. Two main lines of research can be distinguished. First, classifications of92

continental surface water based on remote sensing information have been able to char-93

acterize, to different extents, flooding dynamics for a few years (Cao et al., 2014; Pri-94

gent et al., 2007) to up to 35 years (Pekel et al., 2016a; Pickens et al., 2020). Their quasi-95

complete global coverage has allowed the identification of long-term change (over 10 to96

35 years) hotspots associated with water infrastructure and climate change effects (Pekel97

et al., 2016a), and the correlation between rainfall and floods over latitudinal belts (Prigent98

et al., 2007) and climate regimes (e.g., temperature and precipitation, Cao et al., 2014),99

among other large-scale questions that can be addressed with these tools. However, nei-100

ther discuss the existence of geographical patterns of flood timing that could arise from101

their findings (e.g., across continents, latitudinal and/or longitudinal gradients). Second,102

recompilations of streamflow records of up to 70 years have given place to detailed clas-103

sifications of flood season patterns (Do et al., 2020; Lee et al., 2015; B. Merz et al., 2021;104

Stein et al., 2020), yet the heterogeneous distribution of gauging stations hampers their105

extrapolation capacity to ungauged catchments and continents (e.g., South America, South106

Asia, and Africa). Ultimately, global studies have advanced in the classification of floods107

and the identification of temporal patterns, but their ability to upscale their conclusions108

on global drivers remains limited due to (i) lack of pattern recognition, (ii) short time109

periods of observation; and/or (iii) geographically-biased data availability.110

In turn, our deepest understanding of large-scale flooding dynamics comes from ob-111

servations and analyses at single river basins and comparisons across several of them at112

continental levels. In European river basins, for which long flow records and historical113

water coverage data are available, short flooding episodes (lasting hours to days) have114

been linked to precipitation of differing duration as well as snow/thaw episodes (e.g., Blöschl,115

2022; Hall & Blöschl, 2018; R. Merz & Blöschl, 2003) and revealed strong interactions116

with antecedent conditions, e.g., soil moisture (Bertola et al., 2021; Blöschl et al., 2017)117

(see also Wasko et al., 2020b; Tramblay et al., 2021, for soil moisture relevance in south-118

eastern Australia and Africa, respectively). At the continental level in Europe, complex119

shifts in flood timing patterns in response to climate change have been documented, in-120

cluding seasonal anticipations in the snowmelt-driven Northeast, delays in storm-led floods121

around the Mediterranean and North Sea, as well as overall reductions in the South and122

East and rises the Northwest (Parajka et al., 2010; Blöschl et al., 2017, 2019; Bertola et123
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al., 2021). In North America this was also manifested, as a shortage of the snow accu-124

mulating season and consequential earlier onset of thaw and lower spring flood magni-125

tudes have been evidenced for the last thirty years (from weather and gauging stations;126

Burn & Whitfield, 2016; Cunderlik & Ouarda, 2009; Stewart et al., 2005; Wasko et al.,127

2020b) (but see also Villarini, 2016). In the flatter tropical setting of the Amazon basin,128

where floods display slower seasonal timings as explored through remotely sensed infor-129

mation and streamflow records, the effects of rainfall on flooding are strongly mediated130

by regional water table dynamics (Miguez-Macho & Fan, 2012; Papa et al., 2013). Un-131

der drier and (even) flatter settings in Argentina, flood pulses are not linked to well-defined132

river basins but are associated instead with the expansion and coalescence of isolated133

surface water bodies connected with rising water table levels (Aragón et al., 2011; Kup-134

pel et al., 2015). Floods in these regions, as well as in southeastern Australia, have shown135

multiyear fluctuations and have evidenced a high sensitivity to the interactive effects of136

climate fluctuations and land cover changes across the last thirty years (Tulbure & Broich,137

2019; Viglizzo et al., 2011; Whitworth et al., 2012).138

When considering the global drivers of flooding at large spatial and temporal scales,139

it is also important to recognize the overwhelming role of topography over climate driv-140

ing groundwater depth at the planetary level (Fan et al., 2013). When we increase the141

observation scale, saturation may progressively gain dominance over infiltration as the142

flood-generating process (Blöschl, 2022), likely favored by regional topography and shal-143

lower water tables (Anyah et al., 2008; Jencso & McGlynn, 2011; Jobbágy et al., 2017).144

This possible connection between large-scale, slow flooding and topography and its in-145

terplay with climate has not been empirically and quantitatively assessed to our knowl-146

edge. In this sense, hydrologically-conditioned topography (hereby hydro-topography),147

based on the average water table depth and associated with the probability of conver-148

gence and stagnation of surface water, is one useful parameter to explore the sensitiv-149

ity of flooding to the most relevant effects of topography.150

Here we narrow the definition of timing as the dominating timescale of flood fluc-151

tuations (e.g., seasons, years, decades) to evaluate their differing sensitivity to regional152

drivers. Focusing on slow floods captured by monthly-revisiting sensors onboard satel-153

lite platforms (e.g., Landsat), we hypothesize that (1) climate drives the timing of floods154

through their climatological average rainfall and temperature regimes (e.g., from hot arid155

to cold humid), (2) topography drives the extent of floods at a regional level, facilitat-156

ing saturation as the regional average water table level nears the surface, and (3) that157

the way in which both drivers combine at a given location is a result of their interplay158

mediated by geographical attributes, especially their latitudinal distribution. As shown,159

remote sensing provides a unique opportunity to study floods in a consistent way, cov-160

ering the whole climatic and topographic combination set, and with records going as far161

back as 1985 for monthly, 30-meter pixels (Pekel et al., 2016a; Pickens et al., 2020). By162

looking at how floods distribute globally in time and space, by exploring patterns in their163

timings’ similarity, and by comparing their traits across all possible combinations of to-164

pography and climate we might be able to provide evidence on how geography controls,165

offsets, or even intensifies the influence of regional drivers on flood temporal dynamics.166

2 Data and methods167

2.1 Data selection168

To conduct this large-scale study we used Google Earth Engine, an online open pro-169

cessing platform that holds an abundant data catalog of continuous update and provides170

high-performance cloud computing, allowing researchers to process large amounts of data171

in next-to-negligible times (Gorelick et al., 2017; Kumar & Mutanga, 2018). Flood ex-172

tent was estimated through the monthly, 30-meter resolution Global Surface Water Ex-173

tent dataset v1.3 (GSWE, Pekel et al., 2016a), which is available in Google Earth En-174
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gine for the period between 1985-2020. We limited our analysis to 1990-2020 to have three175

full decades of data, excluding the beginning of the Landsat missions for which there is176

a limited imagery distribution. Meteorological information (i.e., precipitation and tem-177

perature) was derived from TerraClimate, a monthly, 0.04° (∼ 5 km at the Equator) grid-178

ded dataset available for the 1958-2021 period (Abatzoglou et al., 2018a). Climatic char-179

acterization was based on Köppen-Geiger’s dominant climate types (Kottek et al., 2006b;180

Rubel et al., 2017). Topographic characterization was based on the discrete classifica-181

tion by Roebroek et al. (2020), where they integrate the complex effects of local and re-182

gional topography on hydrology (therefore, hydro-topography) based on modelled mean183

water table depth (as per Fan et al., 2013).184

To characterize regional slow floods at a global level, we summarized their cover-185

age in a 1-degree rectangular grid, which is an appropriate spatial level to look into re-186

gional hydrological processes (covering extensions of hundreds of thousands square km,187

Blöschl & Sivapalan, 1995), while also matching other relevant remote sensing datasets188

(e.g., GRACE, Tapley et al., 2004, 2019). We started off with 12,500 cells that exclu-189

sively covered continental terrestrial surface, excluding Antarctica. The monthly-level190

data was pre-processed and aggregated by cell in Google Earth Engine, and extracted191

to an R environment for further filtering, completion of analyses and plotting (see Data192

Availability Statement).193

2.2 Data filtering and hydrologic year reconstruction194

First, we filtered the GSWE dataset according to surface water variation in each195

30x30 m pixel between 1990 and 2020. Within the Google Earth Engine platform, and196

prior to cell-level aggregation, we masked those 30-meter pixels with a coefficient of vari-197

ation lower than 30%. This threshold proved to satisfactorily exclude lakes and other198

permanent water bodies across diverse regions (Figure 1). We then aggregated the monthly199

flooded fraction per 1°x1° cell (i.e., flooded extent) and obtained the regional time se-200

ries, to which we applied a two-step decision filter to have the best flood-representing201

time series while acknowledging frequent cloud-induced data gaps. To that end, we (i)202

excluded months with less than 75% of valid observations, and (ii) excluded cells that203

had less than 40% qualifiable months over the analyzed period (mainly due to cloud cover).204

Afterwards, we obtained the month where the flooded extent was at its minimum for each205

calendar year. The median value across all years was thus set as the start of the hydro-206

logic year. While this is accurate in unimodal surface water dynamics, for bimodal or207

non-modal (non-uniform) series (see Data Availability Statement) we took the first month208

that was returned. We also extracted the maxima (peak-occurring months) to associate209

floods with two main triggers, precipitation and snowmelt.210

2.3 Surface water variability and its decomposition211

We classified all cells according to the apportionment of temporal variability to (i)212

seasonal and (ii) interannual fluctuations, and (iii) long-term changes (i.e., net gain or213

loss over at least 20 years) through a K-means-based, conceptual decision tree. We also214

sought to further divide the seasonally dominated cells, considering two sub classes based215

on their association with rainfall and snowmelt, and the long-term class reflecting the216

direction of change (positive or negative). As a result, we obtained six classes (Figure217

S1), which summarize the dominant timescale at which flooding fluctuates (e.g, season-218

level, year-level or decade-level). The equations for the decomposition are explained in219

this section and exemplified in Figure 2.220

After applying quality filters to the monthly time series of 1-degree flood extent,221

we described each cell through mean, maximum, and minimum extent descriptors, and222

through two measures of variability: variance (σ2) and coefficient of variation (CV ). Be-223

cause the temporal data was incomplete, often with large gaps of information, we de-224
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Figure 1. Examples of surface water masking result according to the coefficient of variation of

each pixel (threshold = 30%), showing coefficient of variation (top panel), coefficient of variation

after masking (central panel) and water cover frequency (bottom panel). (a) Mississippi River,

United States; (b) Amazon River, Brazil; (c) Indus River, Pakistan; (d) Picasa Lake, Argentina;

(e) glacial lakes in Russia; (f) Coongie Lakes, Australia; (g) Lake Chad, Chad.

cided to apply a simple decomposition based on segmented averages to characterize the225

variance instead of other approaches (e.g., BFAST; Verbesselt et al., 2010) that require226

gap-filled time series.227

First, we propose that the temporal function of flooded extent (FE) is defined by228

a combination of cycles or timescales of differing duration, therefore:229

FEt = Tt + IAt + ST t + r (1)230

where Tt is the long-term or trend component, which describes a net loss or gain231

of FE; IAt is the interannual component that points to year-to-year variations (akin to232

deseasonalization methods); STt is the seasonal component, describing the degree of sea-233

sonal fixation (wet season/dry season); and a final error component (r). The function’s234

variance is an additive combination of the variances of each component:235

σ2
FE = σ2

T + σ2
IA + σ2

ST + σ2
r (2)236

To quantify the apportionment of each component (compweight), we isolated them237

and calculated a coefficient of determination, i.e., the fraction of the variance that is ex-238

plained by them, through:239

comp weight% =
σ2

comp

σ2
FE

∗ 100 (3)240
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We explored long-term trends of flood extent through a Mann-Kendall test. If the241

test was significant (p<0.001), a trend slope was derived using the Theil-Sen slope es-242

timator (Sen, 1968; Theil, 1992), which is a common methodology employed in the ex-243

ploration of trends in hydrology (e.g., Wasko et al., 2020a; Kemter et al., 2023; Blöschl244

et al., 2017). Then, a long-term series was simulated from the resulting slope coefficient,245

and its variance was calculated and compared against the FE variance following Eq. (3).246

It is important to note that long-term trends were only explored in landscapes with at247

least 20 years of high-quality data, as trends found over shorter periods (e.g., 10 years)248

might be the result of fluctuations at the year level. Figure S2 locates the “blind spots”,249

i.e., landscapes that did not suffice the minimum timeseries extent according to the fil-250

ters described in Section 2.2.251

The interannual component (IA) corresponds to the effect of hydrologic-yearly means,252

following the function:253

IAt =

{
FEy if T = 0

FEy − T if T ̸= 0
(4)254

where FEy is the flooded extent averaged for the yth hydrologic year (as defined255

in the previous section). It should be noted that, if the series had a trend component,256

part of the interannual component (IA) is explained by the long-term trend. Thus, when257

a trend was found, the interannual component was calculated as IA− T .258

We define seasonality as the dynamic that reveals a fix wet and dry season. Even259

though temporary accumulation of water leads to seasonal floods (i.e., non-permanent),260

we were further interested in describing how fixed those peaks were. We thus defined sea-261

sonality (ST ) as the function given by:262

ST t = FEm (5)263

where FEm is the flooded extent averaged for the mth month.264

The error term may be thought of as the fraction of variance that cannot be ex-265

plained by a single component (i.e., residual variance). This could be due to erratic, non-266

cyclic fluctuations (at the described timescales) or due to a combination of components267

that, by themselves, contribute to a small part of the fluctuations (i.e., codominance).268

We classified flood timings firstly according to the dominant aspect of its tempo-269

ral variability through a K-means (Hartigan & Wong, 1979) clustering of four centers,270

with 500 random initial sets and 1000 iterations. The means of the clusters were inter-271

preted to label each class, and the long-term class was further divided in positive- and272

negative long-term trend depending on the direction of the LT slope (Figure S1).273

2.3.1 Two drivers of seasonality274

Seasonal floods can directly result from seasonal precipitation regimes, in which275

case lags are expected to be short and related to concentration and accumulation times.276

Yet, they can also be mediated by sub-zero temperatures dictating freezing and thaw cy-277

cles, and leading to longer lags and decoupling from precipitation seasonality. We an-278

alyzed the temporal proximity of flooding peaks to precipitation peaks as well as to the279

endings of sub-zero temperature period for all the cells in which the seasonal component280

was dominant. For this purpose, we calculated lags between precipitation and flooding281

peaks for each cell and performed bootstrapped simple linear regression, which iterates282

over thousands of samples resulting from permutations with replacement of the popu-283

lation, to extract the median intercept and slope of peak-to-peak lag relationship. We284
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Figure 2. Example of timeseries segmentation into long-term (LT, blue line), interannual (IA,

green line) and seasonal (ST, red line) components, with the remaining variance being considered

“residual” (R, calculated as 100 minus the sum of LT, IA, and ST relative contributions to the

total variance) for three cells: (a) one where there is seasonal and interannual codominance (cen-

tered at 52.5°N, 92.5°W), (b) one where seasonality dominates (centered at 15.5°S, 23.5°E), and
(c) one where interannual fluctuations dominate (centered at 35.5°S, 62.5°W). The dashed line

represents the overall mean flooded extent (MFE).
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also included local regression analyses (i.e., LOESS) which generate smoothed regres-285

sions along the data, allowing to interpret visually the form of the relationship between286

the landscape’s precipitation and flooding peaks (see Section 2.2). In order to distinguish287

whether seasonality was driven by rainfall or snowmelt we assumed that a landscape cell288

had snowmelt effects when it had (a) at least two consecutive months of sub-zero mean289

temperatures, and (b) a lag of at least four months between precipitation peak and flood-290

ing peak. Landscapes that did not follow both criteria were assumed as being directly291

associated to rainfall. This approach discerned regions with sub-zero winters whose pre-292

cipitation peaks escape freezing-thawing effects and are closely coupled with floods from293

those where seasonal flooding cycles are clearly controlled by temperature.294

2.4 Flood dynamics across climate and hydro-topography gradients295

Last of all, we explored how the observed flooding attributes are associated with296

climate and to hydro-topography (see Section 2.1). The five climate classes used (A –297

equatorial, B – arid, C – warm temperate, D – snow/boreal, E – polar) capture the like-298

lihood of water excess generation and of its temporary retention as ice, while the seven299

classes of hydro-topography (1 – open water and wetland, 2 – lowland, 3 – undulating,300

4 – hilly, 5 – low mountainous, 6 – mountainous, 7 – high mountainous) capture a gra-301

dient that ranges from high convergence and stagnation to high divergence and drainage302

that integrate some of the most relevant effects of topography on flooding. We summa-303

rized each attribute through a majority value per landscape cell (Figure S3).304

3 Results305

3.1 Flooding descriptors306

Flooded areas display a highly skewed geographical distribution (Figure 3). The307

mean flooded extent (MFE) of all grid cells averaged 0.48% across all continents exclud-308

ing Antarctica, with 73.4% of the total flooded area concentrated in the top 20% most309

flooded grid cells (Figure S4). Slow (long-lasting) floods showed a dominant latitudinal310

gradient, where northern Eurasia and North America hold the largest share of highly water-311

covered cells (MFE > 10%) (Figure 3 a). Outside the boreal belt, the valleys of some312

of the largest rivers and important wetland areas in Africa (Nile, Congo, Niger, and Zam-313

bezi rivers), Asia (Ob, Taz, Lena, Indus, Brahmaputra, Ganges, and Yangtze rivers, Poyang314

Lake), and South America (Amazon, Beni, Paraná, Orinoco and Ucayali rivers, Iberá315

and Orinoco Llanos wetlands) contributed the next largest number of highly flooded cells.316

The overall temporal variability of floods, as captured by the coefficient of varia-317

tion, revealed a general stable water coverage (CV < 50%, 56.3% of cells) in areas with318

most flooded area coverage (MFE > 1%) (Figure 3b, S5a), particularly across North Amer-319

ica, Amazonia, Europe, and northeastern Asia. Moderate temporal variability (50 < CV320

< 200 %, 32.5% of cells) took place in all continents and its highest fraction was aggre-321

gated in central and southern Argentina, the Sahel and Okavango regions in Africa, cen-322

tral Asia, eastern China, and all across Australia. Lastly, extreme variability (CV > 200%,323

11.2% of cells) was found in western and central Australia, northern Sahel, the Saharan324

desert, the Arabian Peninsula, and Iran.325

The decomposition of the variance of flood extent through time showed that sea-326

sonal, interannual, and long-term components explained together, on average, 68% of the327

total variance (more than 90% in the top decile and less than 43% in the lowest decile).328

Particularly remarkable is the fact that seasonality dominated the variance of 34.1% of329

the cells, followed by interannual fluctuations (18%) and long-term changes (11.1%). In330

the rest of the cells (36.7%) more than one timescale of variance prevailed (i.e., inter-331

annual and seasonal codominance). The geographic control was evident in the seasonal-332

to-interannual dominance shift with a distinctive threshold at the -20° latitude (Figure333
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Figure 3. Global distribution of flooding extent (a, mean monthly values) and temporal vari-

ability of landscapes with mean flooded extent greater than 0% (b, coefficient of variation). Note

that the color scales are nonlinear

4 and Figure S5b). Seasonality dominated flood timings across the northern hemisphere334

and the tropics, while interannual flooding fluctuations were dominant in northeastern335

Brazil, Argentina, South Africa, and eastern Australia. Over the United States, a tran-336

sition from seasonal to interannual dominated flooding fluctuations coincided with the337

aridity gradient that has its most conspicuous limit along the -97° meridian (Figure S6).338

Long-term change (i.e., net gain or loss of flooded area) dominated flooding vari-339

ability in 11.1% of the cells, with positive trends outweighing negative ones (9.85 and340

1.25%, respectively). Positive long-term trends were distributed across all latitudes and341

were especially important in Europe and central Asia, with magnitudes of up to 1300342

km2 of net flood gain. In contrast, negative long-term trends, which dominated 1.2% of343

flood timings, were mainly found in mid-latitudinal regions (Figure S5c). Positive long-344
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term dominated dynamics were not as spread nor aggregated as seasonal- and interannual-345

driven fluctuations, except in China and Canada. Negative change appeared mostly in346

the Aral Sea, southern Argentina, and central United States (Figure 4, S5c) and may347

reflect well-documented patterns of increased droughts and irrigation impacts.348

60°

30°

0°

-30°

-120° 120°-60° 60°0°-150° -90° -30° 30°

60°0°-60°-120°

150°

120°

Mean Flooded Extent (%)

IA
< 0.1

STr

STs

LT-

LT+

R

0.10 0.25 1.0 >10  | | | |

Figure 4. Classification of flood timings according to the major pattern of temporal fluc-

tuation (or lack thereof): interannual (IA, green), rainfall-driven seasonal (STr, magenta),

snowmelt-driven seasonal (STs, red), negative long-term trend (LT−, yellow), positive long-term

trend (LT+, blue), and residual (R, gray). Color intensity reflects Mean Flooded Extent in a

nonlinear scale. It should be noted that a cell might be subject to contributions from more than

one timing component (e.g. seasonal with long-term trend), yet the dominant one is highlighted.

3.2 Flooding attributes across climatic and hydro-topographic gradients349

Flooding descriptors responded differently to climate and hydro-topography (Fig-350

ure 5). The magnitude of flooding (as captured by MFE) was mainly explained by hydro-351

topography, being exponentially biased towards the flattest positions (type 1, open wa-352

ter and wetland, and type 2, lowlands, both characterized by extremely shallow water353

tables, Figure S3) which had four times more water covered area than the rest of the land-354

scapes, hosting 12% of the flooded areas in just 4.54% of the global land (Figure 5 and355

Table S1). Outside these hydrologically stagnant cells, undulating to hilly landscapes (types356

3 and 4) held 78.17% of global flooded area with a share of 75.88% of global land. These357

figures dropped for mountainous cells (types 5-7) which hold 9.82% of global flooded area358

hosting 18.92% of the global land. Climate appeared as a subordinate factor but no less359

crucial, showing how the Boreal type held the largest share of floods (40% of global flooded360

area in 24.77% of the global land) and, together with Equatorial type, had more than361

twice and three times more average flooding than Arid and Temperate types (Figure 5362

and Table S1).363

Total temporal variability (which had a global average coefficient of variation of364

68.4%) peaked towards flat arid landscapes (mean CV = 141%) and decreased towards365

both more complex and flatter landscapes (Figure 5c). Results showed that hilly and moun-366
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Figure 5. Allocation of flooding temporal descriptors regarding modal main climate (A

– equatorial; B – arid; C – warm temperate; D – snow/boreal; E – polar) and modal hydro-

topography position (1 – open water and wetland; 2 – lowland; 3 – undulating; 4 – hilly; 5 – low

mountainous; 6 – mountainous; 7 – high mountainous). For all 12,500 continental cells (a) total

land area (in Mkm2) per combination, and for the 11,443 analyzed cells: (b) mean MFE (%);

(c) mean variability (%). Color scales in panels b-c are reproduced from those in Figure 3 a-b,

respectively, which are nonlinear.

tainous cells with low mean water coverage had the most stable floods (mountainous and367

high mountainous mean CV = 42%). Total variability responded more clearly to climate,368

being lowest in the Polar climate type (mean CV = 42%) and highest in the Arid type369

(mean CV = 113%).370

As temporal variability was segmented into seasonal, interannual, and long-term371

components some noticeable patterns emerged (Figure 6). The seasonal component dom-372

inated under both Equatorial and Polar climates and gradually yielded its dominance373

to the interannual component along the Boreal-Temperate-Arid gradient. Interannual374

variability was prevalent in intermediate hydro-topographies, especially under the Arid375

and Temperate climates. The positive long-term component of flooding temporal vari-376

ability was most important in Polar regions, while the negative ones prevailed in Arid377

regions. Positive trends (most common in mountainous hydro-topographies under all cli-378

mates) were more widespread than negative ones (most common in flat hydro-topographies379

with Arid climate).380

3.3 Drivers of seasonal flooding381

Seasonal fluctuations in flooding may respond to high/low precipitation and/or snow/thaw382

seasonal cycles, as suggested by the temporal (mis)match between flooding and precip-383

itation peaks throughout the year under different climate types (Figure 7). Varying de-384

grees of synchrony with rainfall seasonality evidenced temperature-mediated lags for flood-385

ing growing towards boreal regions after two types of regression analyses. Equatorial and386

Arid regions revealed the most immediate response of floods to rainfall timing, with a387

mean lag of 3.5 months, whereas Boreal territories adjusted better instead to the begin-388

ning of above-zero temperatures, showing a mean lag of 9.4 months.389

Warm regions (climates A, B, and C) had the tightest synchrony between rainfall390

and flood, with a mean lag of 3.4, 3.7, and 5.2 months, respectively (Figure 7a and c).391
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Figure 6. Allocation of flooding temporal descriptors regarding modal main climate (A

– equatorial, B – arid, C – warm temperate, D – snow/boreal, E – polar) and modal hydro-

topography position (1 – open water and wetland, 2 – lowland, 3 – undulating, 4 – hilly, 5 – low

mountainous, 6 – mountainous, 7 – high mountainous). Percentage of cells dominated by (a)

interannual, (b) rainfall-driven seasonal, (c) snowmelt-driven seasonal, (d) negative long-term

trend, (e) positive long-term trend, (f) residual variance.

Bootstrapped linear regression sustained this association, showing how flooding peak tim-392

ing was greatly explained by precipitation peak timing for Equatorial climates (inter-393

cept = 3.2, slope = 1.05, R2 = 0.83), while rainfall-driven cells of Arid and Temperate394

climates presented similar coefficients (intercept = 2.7 and 2.83, slope = 0.98 and 1.07,395

R2= 0.58 and 0.7, respectively; Figure S7). Local regression analyses (through a LOESS396

smoothing function, Figure S8) showed how, for Arid and Temperate climates, an increase397

of flood-lag in cells where precipitation would peak between May and September while398

floods peaked between March and May, hinting a decoupled flooding pattern. These were399

all distributed north of the 30° latitude, where monthly minimum temperatures drop be-400

low 0°C in the cold season and could disassociate floods from precipitation (to an up to401

10-month lag) independently of the cell’s proportion of snow inputs.402

In contrast, in the vast fraction of the northern hemisphere registering subzero win-403

ter temperatures (climates D and E), seasonal floods occurred mainly where snow pre-404

cipitation inputs were highest (snow fraction > 30%) and were initiated by the onset of405

snowmelt between April and June of the following calendar year (Figure 7b, circles). This406

translates into an up to one month lag to minimum temperature rise above 0°C, and into407

a great dissociation from precipitation peak (between 8 and 10 months, Figure 7d and408

S7). Some Polar- and Boreal-dominated cells showed floods closer to precipitation peaks409
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when they occurred earlier in the calendar year. Regression analyses based on bootstrapped410

linear models reflected this association (intercept = 0.45 and 1.01, R2 = 0.74 and 0.92,411

respectively; Figure S7). In these cases, we found that either snow inputs were minor (snow412

fraction < 30%) and/or that precipitation coupled with the initiation of above-zero tem-413

peratures, so the effect of temperature mediating in the translation of rainfall to flood414

was not as prevalent (Figure 7b and d, triangles).415

4 Discussion416

Here we present a novel, global characterization of the timing of slow floods. By417

segmenting monthly time series into short, intermediate, and long timescales of fluctu-418

ation we were able to identify and map regions with similar flood timing. Based on this419

geographic characterization of water coverage patterns we provide evidence about the420
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Figure 7. Seasonality of precipitation and floods. Month of flood peak vs. month of precipi-

tation peak for (a) Equatorial (red), warm Temperate (green) and Arid (yellow), and (b) Boreal

(purple) and Polar (light blue) Köppen-Geiger climate (KG) dominated cells, differentiating

conditions of low (empty triangles) and high snow inputs (circles). Where floods peak on the fol-

lowing calendar year in respect to precipitation, “+1” is indicated. Jitter does not suggest exact

dates but is used for a better display of the data. Subplots c) and d) show the precipitation-to-

flood peak lag distribution, in months, for each climate type.
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large-scale drivers of flooding dynamics, thanks to the exploration of flood attributes across421

the wide range that regional climate and topography achieve at the global scale. In the422

first place, we propose how this new geographical perspective of flood timing can aid dif-423

ferent global hydrology research avenues. We then focus on the main lessons that it of-424

fers about the roles of topography and climate and their interactions driving flooding425

dynamics. Lastly, we show how these geographical findings provide insight into the dif-426

fering sensitivities of flooding to global change.427

Setting floods in a geographical context allows for exploring patterns influenced by428

broad environmental gradients including wide latitudinal effects. The distribution of global429

flood timings, based on the predominant timescale of their fluctuations, revealed that430

while many highly flooded regions of the world have a predictable flood seasonality, an-431

other large fraction experiences floods whose major fluctuations span multiple years. In432

fact, seasonality dominates flood timing across the boreal and tropical belts, yielding to433

predominantly interannual timing-dominated fluctuations south of the -20° latitude (Fig-434

ure 4 and S5). This distinct hemispheric effect could be explained by a lower temper-435

ature and precipitation seasonality (i.e. more oceanic climate of the austral temperate436

belt) which may be overridden by multiyear sources of fluctuations such as ENSO (Kundzewicz437

et al., 2019; Silva et al., 2017). One important implication of these patterns is that for438

at least one-fifth of the terrestrial surface, flood analyses should encompass several years439

to capture the typical span of flooding conditions.440

We envision that an explicit global geography of floods, one for which the cartog-441

raphy generated in this study (Figures 3 and 4) is an initial contribution, has two ma-442

jor applications for hydrology research. On one side, it serves as a guide for the synthe-443

sis and extrapolation of local studies on flood causes, dynamics, and consequences across444

regions with similar flood timings. On the other side, it can help select the most appro-445

priate assimilation strategies for land surface models incorporating the currently over-446

looked effect of flooding on water and energy fluxes, by showing where floods must be447

accounted for and at what temporal scale their variability should be represented. Sev-448

eral studies have shown how coupling global climate models with land surface models449

that incorporate surface water dynamics substantially improves the estimation of energy450

and greenhouse gas fluxes (e.g., Schrapffer et al., 2020; Getirana et al., 2021) as they are451

key in the energy feedback between the surface and the atmosphere (Houspanossian et452

al., 2018; Krinner, 2003).453

The drivers and process explaining a phenomenon under study depend on the ob-454

servation scale (O’Neill et al., 1986; Blöschl & Sivapalan, 1995). We conducted our study455

at a large scale and explored how flood attributes (i.e., mean extent, variability, and tim-456

ing) respond to regional climatic and topographic constraining drivers. Our analysis demon-457

strated how high levels of water convergence and groundwater proximity to the surface458

resulting from regional topography were the main control of surface water accumulation,459

even after excluding large water reservoirs of low variability (pixels varying less than 30%460

of the observed period). Landscapes with regional water tables closer than 0.25m (hydro-461

topographic class 1, mean flooded extent = 1.77%) were two to four times more likely462

to flood than undulating to hilly regions (mean flooded extent = 0.38 to 0.98%), and ten463

times more likely to flood than mountains (mean flooded extent = 0.19 to 0.23%) (Fig-464

ure 5). Fan et al. (2013) estimated that at least 15% of the continental surface water may465

be in contact with shallow water tables, while several local studies have illustrated the466

sensitivity of the groundwater-surface contact in that portion of the world to land use467

and vegetation changes (Cramer & Hobbs, 2002; Favreau et al., 2009; Giménez et al.,468

2020; Ibrakhimov et al., 2018). Whether the regional mechanism explaining the link be-469

tween topography, water table, and flooding is dominated by saturation or infiltration470

processes (Blöschl, 2022) is an attractive question to follow this analysis. For instance,471

it could be addressed by looking into the shape of the evolving relationship between rain-472
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fall, runoff, water table levels and flooded extent (e.g., Gelmini et al., 2022; Reager et473

al., 2014; Zuecco et al., 2016) at a regional level.474

Climate was more important than topography in explaining the temporal variabil-475

ity of floods and their timing. Predictable, seasonally-dominated fluctuations in cold re-476

gions gave place to interannual and mixed patterns in temperate climates, and to more477

irregular and unpredictable patterns in arid regions (Figures 5 and 6). The link between478

climate, flood peak seasonality, and flood-generating processes has been explored in the479

contiguous United States (Saharia et al., 2017), where the subordinate climate (with vs.480

without dry season), as well as the geographical context (inland vs. coastal and inter-481

mountainous vs. flatland), also helped explain the varying magnitude of the represen-482

tative peak discharge. We further identified the process triggering regionally seasonal483

floods (i.e., rainfall vs. snowmelt), finding that freezing/thawing pulses dictated by tem-484

perature seasonality rule flood timings in boreal climates (Figure 6). A third flood-generating485

process that was included within the rainfall trigger is rain-on-snow events, which were486

in this study located in northwestern United States, and central and eastern Asia, yet487

can be locally relevant as demonstrated in Europe (R. Merz & Blöschl, 2003; Viglione488

et al., 2016; B. Merz et al., 2021), United States (McCabe et al., 2007; Stein et al., 2020)489

and more recently, over the northern polar belt (Cohen et al., 2015).490

While our study did not attempt to attribute long-term trends to causal mecha-491

nisms or to the effect of temporal changes in each driver (e.g., climate regime shifts or492

large-scale topographic modifications), it helps hypothesize on the phenomena that may493

explain their prevalence as the major source of flooding variability across 11% of the ter-494

restrial surface (Figure 4). Some large clusters of long-term flooding variability domi-495

nance with prevailing positive trends observed in Europe, central Asia, and northern North496

America point towards the effects of global warming, as supported by regional field stud-497

ies (B. Merz et al., 2021; Woldemeskel & Sharma, 2016) and modeling efforts (Meriö et498

al., 2019; Vormoor et al., 2015); or the interactive effects of global warming and shift-499

ing precipitation regimes (Bertola et al., 2021; Song et al., 2014; Viglione et al., 2016;500

K. Yang et al., 2014; L. Yang et al., 2021). In other regions, land use may be the pre-501

vailing driver, for instance in the cluster in north-eastern China, corresponding to the502

Songnen plain, where paddy rice has expanded over native grasslands over the last thirty503

years, likely increasing the amount and duration of water coverage (Liu et al., 2009; Wang504

et al., 2009; Y. Zhang et al., 2019). In contrast, long-term negative trends in flooding505

were less abundant and more fragmented. The conspicuous case of the Aral Sea, explained506

mainly by the impacts of irrigation infrastructure (Jin et al., 2017; Micklin, 1988) ap-507

pears to be accompanied by other situations in which irrigation may play an important508

role such as the Mendoza-Colorado rivers in Argentina (Rojas et al., 2020).509

Surprisingly, vast areas of increasing flooding detected in our study like that in south-510

central Canada which may be a result of changes in climate interacting with agricultural511

practice shifts (Hayashi et al., 2016; J. Huang et al., 2016; Wang & Vivoni, 2022), are512

poorly explored in the literature. A noticeable aspect of this flood-gaining region is its513

location in the transition from seasonal-dominated to interannual-dominated flood tim-514

ings (Figure 4). We speculate that flooding shifts there could be associated with a regime515

switch from a more regular temperature control to a more variable precipitation control516

of flood timing (see Chegwidden et al., 2020; Wang & Vivoni, 2022; S. Zhang et al., 2022).517

In Patagonia, we detected a less-aggregated, negatively-trended cluster which is alarm-518

ing given the increasing susceptibility to drying of lakes in semi-arid regions. There has519

been recent evidence generated that indicates how the shallow Colhué Huapi Lake in cen-520

tral Patagonia might be following the Aral Sea’s fate, though it is unclear whether it is521

related to snowpack depletion, increased extraction for human and livestock consump-522

tion, decreased precipitation, or a combination of all (Carabajal & Boy, 2021; Scordo et523

al., 2018). Thus, a key takeaway from our analysis is that a global framework can ac-524
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tually help connect research lines and generate hypotheses arising from the observed re-525

gional patterns.526

Lastly, we believe that a continuous update of the geography of floods, as flood datasets527

expand, will become relevant as it could indicate where and how future flood timings may528

change in response to the effects of climate change. Furthermore, because intensification529

of the hydrological cycle giving place to higher interannual variability (Huntington, 2006)530

could result in detrimental effects on water and food security, more attention should be531

put into understanding the dynamics of interannual-dominated timings. Over the last532

32 years, interannual fluctuations have been dominating floods mostly in the global south533

(i.e., Argentina, Australia, South America, South Africa, and Botswana) but also across534

the United States, southern India, and northeastern China. By continuously monitor-535

ing the dominant timing of floods at a global level, we could anticipate timing shifts (e.g.,536

seasonal to interannual), especially where they are most likely to occur, i.e., in the tem-537

perate and dry climate boundaries.538

5 Conclusions539

Upscaling and extrapolating our growing body of plot- to basin-level knowledge about540

the mechanisms, drivers, and impacts of flooding is still challenging. With an explicit541

representation of the global geography of floods, for which this work is an initial contri-542

bution, we can contribute top-down insight into the most salient cross-regional flooding543

patterns and their likely large-scale drivers. The global distribution and timing of “slow”544

floods (those lasting at least a few days, in opposition to “flash” floods lasting only hours)545

captured over the last three decades revealed that flooding extent was strongly dictated546

by regional topography and its effect on the proximity of the water table to the surface547

(i.e. hydro-topography), with climate having a secondary role. Low regional areas of wa-548

ter convergence were 2-4 times more likely to flood than flat to hilly regions and 10 times549

more likely to flood than mountains. Across major climate types, floods were more ex-550

tensive in landscapes having seasonal sub-zero temperatures than the rest combined, sug-551

gesting how freezing/thaw cycles favor pulses of liquid water accumulation beyond any552

other climatic control. The timing of floods (i.e., the dominant timescale at which flood-553

ing fluctuates) was mainly driven by climate with seasonality peaking in both equato-554

rial and polar climates and interannual variability rising along the boreal-temperate-arid555

gradient, with a clear global North/South hemisphere contrast. The dominance of long-556

term flooding trends prevailed mainly in the boreal belt (>50° latitude), where floods557

are gradually increasing their coverage. Global patterns of positive and negative long-558

term flooding trends suggest that anthropogenic climate change may influence flooding559

where warming accentuates thawing cycles (increasing flooding), eliminates freezing (de-560

creasing flooding), or intensifies interannual precipitation variability. Yet, climate change561

may have its most salient effect on the timing of floods at all temporal levels from sea-562

sonal to long-term. As not only water security but the multiple aspects of ecosystems563

and societies linked to floods are likely to respond to shifting flooding dynamics, it be-564

comes crucial to keep improving our monitoring strategies and our conceptual models565

of flood controls. In this sense, this study is an example of how large-scale studies with566

a uniform global coverage serve as a guide for the synthesis and extrapolation of local-567

to-continental studies on flood causes, dynamics, and consequences across regions with568

similar flood timings. The detection of patterns and further comparison of the pathways569

of flood timing across the planet can give place to hypotheses and novel studies in re-570

gions that may have gone unnoticed.571
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Data Availability Statement573

This study uses data from multiple sources, the majority being freely available in574

the Google Earth Engine data catalog (https://developers.google.com/earth-engine/575

datasets). Flood extent is based on the Global Surface Water Extent dataset v1.3 (Pekel576

et al., 2016b). Meteorological data (precipitation and temperature) is derived from Ter-577

raClimate (Abatzoglou et al., 2018b). Köppen Geiger climates were downloaded from578

http://koeppen-geiger.vu-wien.ac.at/present.htm, (Kottek et al., 2006a) and hydrologically-579

conditioned topography from http://www.hydroshare.org/resource/38ac7dd90c7d4353bb492604981782f0580

(Roebroek, 2020). All timeseries were extracted to an R environment (R Core Team, 2021a)581

for filtering and completion of analysis, and visualization of results, through the doPar-582

allel (Microsoft Corporation & Weston, 2020a), factoExtra (Kassambara & Mundt, 2020),583

foreach (Microsoft Corporation & Weston, 2020b), ggplot2 (Wickham, 2016), ggpubr (Kassambara,584

2020), Kendall (McLeod, 2022), moments (Komsta & Novomestky, 2015), robslopes (Raymaekers,585

2022), stats (R Core Team, 2021b), sf (Pebesma, 2018), and tidyr (Wickham, 2021) pack-586

ages. The exploration of distribution uniformity and modes extraction of flooding and587

precipitation was carried through the LaplacesDemon R package (Statisticat & LLC.,588

2021).589

The derived flood inundation extent dataset and meteorological data associated with590

this study, as well as the R codes used for processing, analyzing and plotting in this study591

can be found at https://doi.org/10.5281/zenodo.7328786 (Torre Zaffaroni et al., 2022).592
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Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., . . .640
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the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift ,785

–21–



manuscript submitted to Water Resources Research

15 (3), 259–263. doi: 10.1127/0941-2948/2006/0130786

Krinner, G. (2003). Impact of lakes and wetlands on boreal climate. Journal of Geo-787

physical Research: Atmospheres, 108 (16), 4520. doi: 10.1029/2002jd002597788

Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Incep-789

tion: Usage, Trends, and Potential. Remote Sensing , 10 (10), 1509. doi: 10790

.3390/rs10101509791
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does it take to flood the Pampas?: Lessons from a decade of strong hydro-795

logical fluctuations. Water Resources Research, 51 (4), 2937–2950. doi:796

10.1002/2015WR016966797

Lee, D., Ward, P., & Block, P. (2015). Defining high-flow seasons using tempo-798

ral streamflow patterns from a global model. Hydrology and Earth System Sci-799

ences, 19 (11), 4689–4705. doi: 10.5194/hess-19-4689-2015800

Liu, D., Wang, Z., Song, K., Zhang, B., Hu, L., Huang, N., . . . Jiang, G. (2009).801

Land use/cover changes and environmental consequences in Songnen Plain,802

Northeast China. Chinese Geographical Science, 19 (4), 299–305. doi:803

10.1007/s11769-009-0299-2804

Loarie, S. R., Lobell, D. B., Asner, G. P., & Field, C. B. (2011). Land-Cover and805

Surface Water Change Drive Large Albedo Increases in South America*. Earth806

Interactions, 15 (7), 1–16. doi: 10.1175/2010EI342.1807

Lopez, T., Al Bitar, A., Biancamaria, S., Güntner, A., & Jäggi, A. (2020). On the808

Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales809

(Vol. 41) (No. 6). Springer. doi: 10.1007/s10712-020-09618-0810

McCabe, G. J., Clark, M. P., & Hay, L. E. (2007). Rain-on-snow events in the811

western United States. Bulletin of the American Meteorological Society , 88 (3),812

319–328. doi: 10.1175/BAMS-88-3-319813

McLeod, A. (2022). Kendall: Kendall rank correlation and mann-kendall trend test814

[software]. Retrieved from https://CRAN.R-project.org/package=Kendall815

(R package version 2.2.1)816
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Blöschl, G. (2017). Land use change impacts on floods at the catchment scale:890

Challenges and opportunities for future research (Vol. 53) (No. 7). John Wiley891

& Sons, Ltd. doi: 10.1002/2017WR020723892

Rojas, F., Rubio, C., Rizzo, M., Bernabeu, M., Akil, N., & Mart́ın, F. (2020). Land893

Use and Land Cover in Irrigated Drylands: a Long-Term Analysis of Changes894

in the Mendoza and Tunuyán River Basins, Argentina (1986–2018). Applied895

–23–



manuscript submitted to Water Resources Research

Spatial Analysis and Policy , 13 (4), 875–899. doi: 10.1007/s12061-020-09335-6896

Rubel, F., Brugger, K., Haslinger, K., & Auer, I. (2017). The climate of the Eu-897

ropean Alps: Shift of very high resolution Köppen-Geiger climate zones 1800-898
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