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Abstract

Accurate characterization of peak snow water storage in High Mountain Asia (HMA) is essential for assessing the water supply

to over one billion downstream residents. Currently, such characterization still relies on modeling due to the measurement

scarcity. Here, eight global snow products were examined over HMA using a newly developed High Mountain Asia Snow

Reanalysis (HMASR) dataset as a reference. The focus of intercomparison was on peak annual snow storage, the first-order

determinant of warm-season water availability in snow-dominated basins. Across eight products the climatological peak storage

over HMA was found to be 161 km3 ± 102 km3 with an average 33% underestimation relative to HMASR. The inter-product

variability in cumulative snowfall (335 km3 ± 148 km3) explains the majority (>80%) of peak snow storage uncertainty, while

significant snowfall loss to ablation during accumulation season (51% ± 9%) also reveals the critical role of ablation processes

on peak snow storage.
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Key Points: 8 

• Existing snow products generally underestimate peak snow storage in High Mountain 9 
Asia compared with a novel snow reanalysis dataset  10 

• Large inter-product variability in accumulation-season snowfall explains most of the 11 
uncertainty in peak snow storage 12 

• Accumulation-season ablation plays a significant role in peak snow storage uncertainty 13 
and deserves more attention in future studies  14 
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Abstract 15 

Accurate characterization of peak snow water storage in High Mountain Asia (HMA) is essential 16 
for assessing the water supply to over one billion downstream residents. Currently, such 17 
characterization still relies on modeling due to the measurement scarcity. Here, eight global snow 18 
products were examined over HMA using a newly developed High Mountain Asia Snow 19 
Reanalysis (HMASR) dataset as a reference. The focus of intercomparison was on peak annual 20 
snow storage, the first-order determinant of warm-season water availability in snow-dominated 21 
basins. Across eight products the climatological peak storage over HMA was found to be 161 km3 22 
± 102 km3 with an average 33% underestimation relative to HMASR. The inter-product variability 23 
in cumulative snowfall (335 km3 ± 148 km3) explains the majority (>80%) of peak snow storage 24 
uncertainty, while significant snowfall loss to ablation during accumulation season (51% ± 9%) 25 
also reveals the critical role of ablation processes on peak snow storage.  26 
Plain Language Summary 27 

Peak snow storage is important for summer and fall water availability in snow-dominated regions. 28 
Here, we evaluated the estimates of peak snow storage over High Mountain Asia (HMA) from 29 
eight global snow products with respect to the newly developed High Mountain Asia Snow 30 
Reanalysis (HMASR). The results suggest a large uncertainty and general underestimation (33%) 31 
in HMA-wide peak snow storage estimates across the global snow products, when compared to 32 
the reference HMASR. Inter-product snowfall variability among global snow products explains 33 
most of their peak snow storage uncertainty (over 80%). Significant snow ablation loss during the 34 
accumulation season (~50% of snowfall inputs) is also critical in contributing to the peak snow 35 
storage variations.  36 

1 Introduction 37 
Seasonal snow accumulation in global mountain “water towers” provides a virtual reservoir 38 

in winter that is essential for warm-season water supply (Viviroli et al., 2007). In High Mountain 39 
Asia (HMA), snowmelt feeds the major river basins (e.g. Indus, Amu Darya, Ganges) in their 40 
headwaters (Bookhagen and Burbank, 2010; Armstrong et al., 2019; Khanal et al., 2021; 41 
Kraaijenbrink et al., 2021), which is critical for meeting the human water demands of over 1 billion 42 
people in spring and summer (Immerzeel et al., 2010). Snow storage in seasonal snowpacks and 43 
the timing of snowmelt are highly sensitive to a warming climate, which is likely to alter the 44 
frequency of snow droughts (Huning and AghaKouchak, 2020) and pose risks to the water security 45 
for natural and human use (Immerzeel et al., 2020; Qin et al., 2020; Kraaijenbrink et al., 2021).  46 

Snow water equivalent (SWE) is directly indicative of the total water resource availability 47 
in snowpacks at a given time. SWE reaches its seasonal peak at the end of the accumulation season 48 
(right before melt onset); accurately estimating peak snow storage (and its spatial distribution) is 49 
thus a first-order requirement for assessing snow-derived water availability for downstream use 50 
(Li et al., 2019). Despite its importance, the quantification of peak SWE over the world’s 51 
mountains is still poorly constrained (Mudryk et al., 2015; Wrzesien et al., 2019), primarily due to 52 
the difficulties in directly measuring SWE, which is impeded by the scarcity or the non-existence 53 
of in situ gages in many critical regions and a lack of satellite-based remote sensing for globally 54 
consistent SWE measurements (Palazzi et al., 2013; Dozier et al., 2016; Bormann et al., 2018). 55 
SWE can be estimated through data assimilation and modeling approaches. However, previous 56 
intercomparison studies suggest large discrepancies in SWE estimation over the entire northern 57 
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hemisphere (Mudryk et al., 2015; Mortimer et al., 2020; Xiao et al., 2020), North America or the 58 
Western United States (WUS; McCrary and Mearns, 2019; Wrzesien et al., 2019; Xu et al., 2019; 59 
Kim et al., 2021; Cho et al., 2022), Hindu Kush-Karakoram-Himalaya (Terzago et al., 2014), and 60 
the Tibetan Plateau (Bian et al., 2019; Orsolini et al., 2019). Despite the large uncertainties seen 61 
across the SWE products, studies assessing the links between snowpack storage, water availability 62 
and climate change are often based on a single snow dataset (e.g. Mankin et al., 2015; Huning and 63 
AghaKouchak, 2020; Immerzeel et al., 2020; Qin et al., 2020), which propagates the error in snow 64 
storage estimates to climatic and water resource availability quantification. Without improved 65 
characterization of seasonal snow storage, in regions like HMA, where the downstream regions 66 
have the densest population on Earth (over one billion residents in total) and the water supply to 67 
these residents heavily relies on snow-derived water, our confidence in estimating water resource 68 
availability and how it has been changing will remain compromised, thus impacting our ability to 69 
effectively adapt to ongoing changes. 70 

In this study, the newly developed High Mountain Asia Snow Reanalysis (HMASR; Liu et 71 
al., 2021a, b) is employed as a reference SWE dataset to examine the peak snow storage estimates 72 
from eight global atmospheric reanalysis and land data assimilation products. The use of HMASR 73 
provides a new reference dataset, derived specifically for mountain domains and constrained by 74 
remote sensing observations, to perform a more thorough evaluation of snow storage estimates 75 
over the broad HMA domain. The focus herein is understanding the uncertainty in processes 76 
leading up to accumulation-season peak SWE storage due to its first-order determination of 77 
available water resources in snow-dominated regions. The novelty of this study is embedded in 78 
the answers to the following science questions: 79 

1. What is the uncertainty in peak snow water storage over High Mountain Asia and its 80 
watersheds? 81 

2. How much of the uncertainty in peak snow storage is explained by the variability in 82 
accumulation-season snowfall and ablation, respectively?  83 

2 Data 84 
Herein the reference SWE dataset (HMASR) and eight reanalysis datasets are examined. 85 

The eight global datasets (Text S1 and Table S1) are chosen as representative community-based 86 
global products that span most of the period of HMASR (1999-2017), including: ERA5 and ERA5-87 
land (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis products, 88 
5th generation; Hersbach et al., 2020; Muñoz-Sabater et al., 2021), MERRA2 (Modern-Era 89 
Retrospective analysis for Research and Applications, version 2; Gelaro et al., 2017), JRA55 90 
(Japanese 55-year Reanalysis; Kobayashi et al., 2015) and four GLDAS-2.1 products (Global Land 91 
Data Assimilation System version 2.1; Rodell et al., 2004) at several resolutions and with different 92 
land surface models (GLDAS-Noah (0.25°), GLDAS-Noah (1°), GLDAS-VIC (1°), and GLDAS-93 
CLSM (1°), details listed in Table S1). Hereafter, to distinguish the globally-available datasets and 94 
the reference dataset, we use “snow products” and “HMASR” respectively. 95 

The intercomparison study period is chosen as Water Years (WYs) 2001 to 2017, with the 96 
maximum overlap across all datasets (Table S1; with WY 2001 spanning from 1 October 2000 to 97 
30 September 2001 for example). All nine datasets provide SWE estimates to evaluate the peak 98 
seasonal water storage. Other meteorological forcings (precipitation, P; air temperature, Ta; and 99 
snowfall, S) are obtained from the global snow products. HMASR (which does not include 100 
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snowfall) provides only SWE for comparison. The meteorological forcing variables for each snow 101 
product are obtained at their raw spatial and temporal resolutions (Table S1) and are aggregated 102 
into daily total values (for P and S) or daily average values (for Ta). Spatial aggregation is also 103 
performed for SWE and meteorological forcings to facilitate the intercomparison and the analysis 104 
at the basin- or domain-scale (Sections 4.1).  105 

3 Study region and Methods 106 

3.1 Study domain and classification of seasonal, ephemeral, and persistent snow regions 107 
The HMA region (Figure 1a) includes key mountain ranges (e.g. Tien Shan, Pamir, 108 

Karakoram, Himalayas, etc.) and the Tibetan Plateau. Westerlies dominate winter precipitation in 109 
the northwest and the Indian and East Asia monsoons dominate summer precipitation in the 110 
southeast (Yao et al., 2012).  111 

 112 

Figure 1. a) map of HMASR domain elevation with major watershed boundaries. The red ‘+’ 113 
symbol indicates the location shown in (b); b) an illustrative example of the seasonal cycle of 114 
SWE, cumulative snowfall, and cumulative ablation at a representative pixel in WY2017. The 115 
solid curves represent processes leading up to peak SWE (the focus of the work described herein), 116 
and the dashed curves represent the processes after peak SWE. The ‘o’ symbols on the curves 117 
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indicate peak SWE timing; c) the 17-year climatology of the seasonal cycle of HMA-wide SWE 118 
volume. The colors of the curves in (b) and (c) represent the estimation from different datasets. 119 

3.2 Accumulation-season snow mass balance 120 
Snowpack evolution can be characterized as snow mass gain (via solid precipitation, i.e. 121 

snowfall) and snow mass loss (via ablation, e.g. snowmelt, sublimation, wind drifting, etc.), which 122 
can be represented with mass and energy balance (Liston and Elder, 2006; McCrary and Mearns, 123 
2019). Herein we only focus on accumulation-season processes, as accurately characterizing peak 124 
storage is a necessary condition for accurately representing ablation-season processes and the total 125 
snowmelt water resource availability. 126 

We start with defining the snow accumulation season at the pixel-scale (from day of water 127 
year (DOWY) 1 until pixel-wise peak SWE DOWY, Text S2 and Figure S1). Note that 128 
‘accumulation season’ is most robustly defined for seasonal snow rather than ephemeral snow, as 129 
the latter is intermittent, where snow may accumulate and fully disappear multiple times within a 130 
WY (Petersky and Harpold, 2018). Both seasonal and ephemeral snow are important types (Sturm 131 
et al. 1995), while the former is more critical for water supply and thus emphasized in this work. 132 
Through the snow mass balance within the accumulation season (Text S3), we obtain the 133 
relationship: 134 

𝑠𝑤𝑒!"#$ = 𝑠#%% − 𝑎#%%           (1) 135 

where 𝑠𝑤𝑒!"#$ is the pixel-wise peak SWE, and 𝑠#%% and 𝑎#%% 	respectively denote the cumulative 136 
snowfall and snow ablation integrated over the accumulation season.  137 

In this work, both 𝑠𝑤𝑒!"#$  and 𝑠#%%  are obtained from the snow products, and 𝑎#%%  is 138 
computed as the difference between 𝑠#%% and 𝑠𝑤𝑒!"#$ (Text S3). Figure 1b provides an illustrative 139 
example showing the seasonal cycle of SWE, cumulative snowfall and ablation at a representative 140 
pixel in WY2017, showing clear differences in 𝑠𝑤𝑒!"#$ and its timing across products. Note that 141 
this comparison is primarily for illustration due to the large grid size differences among datasets. 142 
We also provide the caveat in using JRA55 that the diagnosed 𝑎#%%  is likely a mix of model-143 
specific ablation processes and non-negligible data assimilation corrections (Text S3).  144 

 The focus of this study is to quantitatively compare the seasonal snow storage estimates 145 
over the full HMA domain and at subregional scales through integrating pixel-scale quantities into 146 
basin- or HMA-scale volumes. Herein the 10 largest watersheds in HMA are examined (Lehner et 147 
al., 2008) and shown in Figure 1a. Seasonal, ephemeral, and persistent snow masks (Figure S2; 148 
Table S2; Text S4) are applied prior to the integration, with persistent snow excluded in the volume 149 
integration. For the three quantities in equation (1), the spatially integrated volumes are denoted 150 
herein as 𝑆𝑊𝐸!"#$, 𝑆#%% and 𝐴#%% (in units of km3), with the same relationship: 151 

𝑆𝑊𝐸!"#$ = 𝑆#%% − 𝐴#%%           (2) 152 

It should be noted that 𝐴#%% is calculated as the difference between 𝑆#%% and 𝑆𝑊𝐸!"#$ as 153 
noted earlier. Spatial integration over elevation bands (using intervals of 1000 m) is also performed 154 
in this work (Text S5; Figure S3).  155 

The analysis presented in this work consists of examining 𝑆𝑊𝐸!"#$  across all datasets 156 
(including using HMASR as a reference) and additionally 𝑆#%% and 𝐴#%% across all snow products. 157 
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More specifically, a linear regression (Text S6) is applied to examine the variations in 𝑆#%% loss to 158 
𝐴#%% and their ability to explain 𝑆𝑊𝐸!"#$ variance: 159 

𝑆𝑊𝐸!"#$ = β ∗ 𝑆#%% + 𝜀           (3) 160 

where β is the regression coefficient (slope), and ε is the random noise. 𝑆𝑊𝐸!"#$  and 𝑆#%%  are 161 
obtained from each product and for each WY. Note that JRA55 and HMASR data were excluded 162 
in the linear regression, since their snowfall data is either not available (HMASR) or inconsistent 163 
with SWE (JRA55, due to significant data assimilation corrections in SWE; Text S3). 164 

4 Results and Discussion 165 

4.1 Uncertainty in peak snow storage over HMA and its watersheds 166 

4.1.1 HMA-scale 167 
The integrated SWE volume climatology (17-year average) time series over HMA (Figure 168 

1c) shows significant variations in peak storage (a range of ~240 km3) and peak timing (a range of 169 
~35 days). Among these snow products, the largest peak snow storage is an order of magnitude 170 
greater than the lowest storage, and the earliest peak timing is one month ahead of the latest, 171 
suggesting large uncertainty across snow products. To better understand what drives the HMA-172 
wide storage differences and isolate accumulation-season sources of uncertainty, all results to 173 
follow focus on the pixel-wise peak snow storage (𝑆𝑊𝐸!"#$) and the processes leading to that 174 
storage (𝑆#%% and 𝐴#%%).  175 

The climatological HMA-wide 𝑆𝑊𝐸!"#$(pixel-wise peak snow storage) estimate is 161 176 
km3 ±  102 km3 across all global snow products (with HMASR as a standalone dataset for 177 
evaluation; Text S7 and Table S3), exhibiting a 63% uncertainty relative to the mean. When 178 
partitioned into seasonal and ephemeral snow, the estimates are 110 km3 ± 74 km3 and 51 km3 ± 179 
28 km3, respectively. The ERA5-land and ERA5 snow products, with volumes of 341 km3 and 288 180 
km3, exhibit larger values than HMASR (239 km3), corresponding to 43% and 20% more snow 181 
respectively. The GLDAS estimates all exhibit less snow than HMASR, with estimates of 182 
GLDAS-VIC (179 km3), GLDAS-Noah (120 km3 and 114 km3 for 0.25° and 1° respectively), and 183 
GLDAS-CLSM (98 km3), corresponding to 25%, 50%, 53% and 59% less snow than HMASR. 184 
The JRA55 and MERRA2 products exhibit the lowest 𝑆𝑊𝐸!"#$  with 93 km3 (61% less than 185 
HMASR) and 54 km3 (77% less than HMASR), respectively. When the snow products are 186 
compared collectively to HMASR over the full HMA domain, the mean difference (MD) in 187 
𝑆𝑊𝐸!"#$ is -33% with a root mean square difference (RMSD) of 52%. In seasonal snow regimes, 188 
there is a MD of -47% and RMSD of 58%. In ephemeral snow regimes, there is a MD of 70% and 189 
RMSD of 113%. This highlights the qualitative differences across snow regimes (underestimation 190 
in seasonal vs. overestimation in ephemeral) that are partially canceled out when considered 191 
together. 192 

4.1.2 Basin-scale 193 

Coherent spatial patterns in 𝑠𝑤𝑒!"#$ climatology are observed in all datasets (Figure 2a), 194 
which is consistent with previous work (e.g. Bian et al., 2019 and Orsolini et al, 2019). However, 195 
pixel-wise 𝑠𝑤𝑒!"#$  magnitudes vary significantly across datasets (Figure 2a), so do the basin-196 
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integrated volumes (𝑆𝑊𝐸!"#$; Figure 2b). ERA5 and ERA5-land exhibit the highest 𝑆𝑊𝐸!"#$ 197 
values in all basins over HMA. These products have the best agreement with the HMASR estimates 198 
in the winter westerly-dominated basins (Syr Darya, Amu Darya, and Indus), where the other 199 
products all underestimate 𝑆𝑊𝐸!"#$  compared to HMASR. MERRA2 consistently shows the 200 
least 𝑆𝑊𝐸!"#$ across all basins.  201 

In contrast, 𝑆𝑊𝐸!"#$ is significantly overestimated in ERA5 and ERA5-land, compared 202 
to HMASR, in the monsoon-dominated basins (Salween, Mekong, Yangtze and Yellow), which 203 
may be caused by the excess precipitation and lack of melt in its snow model (Orsolini et al., 2019; 204 
Hersbach et al., 2020). GLDAS products show the best agreement with HMASR in these basins, 205 
followed by JRA55 with comparable or slightly underestimated 𝑆𝑊𝐸!"#$  values. This is not 206 
surprising as JRA55 assimilates in-situ snow depth observations over the Tibetan Plateau, where 207 
most stations are sparsely located in the valleys over the eastern HMA (Bian et al., 2019). As 208 
suggested in previous work, JRA55 and GLDAS products have relatively good performance in 209 
estimating SWE/snow depth compared to in-situ data (Bian et al., 2019; Orsolini et al., 2019; Wang 210 
et al., 2020).  211 

 212 
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 213 
Figure 2. a) The 17-year climatology of pixel-wise peak SWE (𝑠𝑤𝑒!"#$), with persistent snow/ice 214 
pixels masked out (gray); b) The 17-year climatology of peak SWE volume in each basin 215 
(𝑆𝑊𝐸!"#$, with HMASR SWE shown with horizontal black line). The snow products are grouped 216 
into 4 main sets (ERA5 and ERA5-land, MERRA2, JRA55 and GLDAS), with the average 217 
𝑆𝑊𝐸!"#$ 	(bar plot) and the standard deviation (error bars) shown for the ERA5 and GLDAS 218 
groups. 219 
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4.2 Drivers of peak SWE variations across snow products 220 

4.2.1 Accumulation-season snowfall and ablation 221 

The variability in 𝑆#%%  and 𝐴#%% 	climatology among snow products is characterized in 222 
Figure 3 to illustrate their relative influence on 𝑆𝑊𝐸!"#$ variability. Overall, there exists large 223 
variations in 𝑆#%%  and 𝐴#%% 	estimates across the existing snow products. 𝑆#%%  is generally the 224 
largest in ERA5/ERA5-land products and is the smallest in MERRA2/GLDAS products, with the 225 
mean and uncertainty characterized by 335 km3 ± 148 km3 over the entire HMA, 178 km3 ± 83 226 
km3 in seasonal snow regimes and 157 km3 ± 67 km3 in ephemeral snow regimes. 𝐴#%% 	and its 227 
ratio to 𝑆#%% are also quite significant and variable across snow products, indicating snow loss via 228 
ablation during the accumulation season is a non-negligible factor in determining 𝑆𝑊𝐸!"#$ . 229 
Specifically, between 40% (ERA5-land) and 65% (MERRA2) of snowfall is lost to ablation during 230 
the accumulation season, with the overall ablation loss fraction given by 51% ± 9%. The snowfall 231 
loss to ablation is less in seasonal snow regimes, but the ratio still varies significantly across 232 
products (from 17% in ERA5-land to 55% in MERRA2, or 37% ± 13% across snow products). In 233 
ephemeral snow regimes, the snowfall loss to ablation during the accumulation season is large but 234 
more consistent across snow products (from 58% in GLDAS-VIC to 76% in MERRA2; 67% ± 235 
7%). Other work, focused on the WUS has also identified ablation as a significant accumulation-236 
season loss term (Cho et al., 2022).  237 

The elevational distribution of 𝑆#%% , 𝐴#%%  and 𝑆𝑊𝐸!"#$  climatology over the full HMA 238 
domain were normalized by total 𝑆#%% volume to illustrate the volumetric fraction (Figure S4). The 239 
distribution in fractional 𝑆#%%  exhibits general consistency across snow products, while the 240 
distribution in fractional 𝐴#%% is significantly more distinct across products. This leads to a distinct 241 
distribution in fractional 𝑆𝑊𝐸!"#$ rather than just reproducing the fractional 𝑆#%% distribution, and 242 
highlights the important role of ablation in removing snowfall differently with elevation over the 243 
accumulation season (Text S8).  244 
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 245 
Figure 3. The 17-year climatology of peak SWE volume (𝑆𝑊𝐸!"#$, solid bars) and accumulation-246 
season snowfall volume (𝑆#%% , shaded bars) integrated over HMA (top panel) and areas with 247 
seasonal (middle panel) and ephemeral snow (bottom panel). HMASR SWE is provided as a 248 
reference (solid black horizontal line). The text labels in each bar plot indicate the fraction of 249 
cumulative accumulation-season snowfall lost to ablation. JRA55 ablation fraction is only 250 
displayed here (noted with a symbol *) but not included in the discussion due to its diagnosed 251 
ablation being overestimated as a result of its snow data assimilation updates (Text S3). 252 

4.2.2 Contributions to peak snow storage variations 253 
To explain peak SWE variations, linear regression (Text S6) was applied across snow 254 

products and/or WYs. Over the full HMA domain, a strong linear dependence between the 255 
interannual 𝑆𝑊𝐸!"#$ and 𝑆#%% is clear (Figure 4a). Notably, 𝑆#%% values exhibit a large range (100 256 
– 700 km3) and have a sizeable gap between GLDAS and ERA5/ERA5-land. The global regression 257 
slope (𝛽&'()#'; across all snow products) is 0.54, indicating that, during the accumulation season, 258 
~54% of snowfall goes into 𝑆𝑊𝐸!"#$, while the other 46% is lost through ablation. Snowfall’s 259 
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contribution to 𝑆𝑊𝐸!"#$ is higher in seasonal snow regimes (Figure 4b), where ~71% of snowfall 260 
goes into peak SWE and 29% is lost via ablation. In ephemeral snow regimes (Figure 4c), however, 261 
~35% of snowfall goes into peak SWE while 65% is lost via ablation. These diagnosed fractions 262 
from multi-WY and multi-product analysis (Figure 4) are consistent with those derived from the 263 
climatology (Figure 3). The coefficient of determination (𝑅*) is 0.88, 0.88 and 0.80 for the full 264 
HMA domain, seasonal snow regime and ephemeral snow regime, respectively. Such values are 265 
informative in 1) confirming the expected strong linear dependence of 𝑆𝑊𝐸!"#$ and 𝑆#%% across 266 
all datasets and all WYs, and 2) over 80% of 𝑆𝑊𝐸!"#$ uncertainty is explained by 𝑆#%% variability 267 
and the other 20% or less is explained by 𝐴#%% variations.  268 
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 269 
Figure 4. Regression of peak SWE volume (𝑆𝑊𝐸!"#$) and accumulation-season snowfall (𝑆#%%) 270 
across all WYs (2001-2017), with volumes integrated over the a) the full HMA domain, b) 271 
seasonal, and c) ephemeral snow regimes, respectively. Note that JRA55 is displayed here but is 272 
not included in the linear regression due to its diagnosed ablation being overestimated as a result 273 
of its snow data assimilation updates. 274 
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In addition to treating all datasets as a large sample, we also evaluated the interannual 275 
variability for individual snow products and examined product-specific linear regression results. 276 
The individual regression slopes are distinct from the global slope value (Figure 4 and Table S4). 277 
ERA5-land and GLDAS-VIC exhibit higher slopes, while MERRA2 and the other GLDAS 278 
products exhibit lower slopes. The linear dependence of 𝑆𝑊𝐸!"#$  and 𝑆#%%  are very strong in 279 
seasonal snow (with 𝑅* ranging from 0.62 to 0.94) but much weaker in ephemeral snow (with 𝑅* 280 
ranging from 0.25 to 0.48) when examining individual snow products (Text S9 and Table S4). 281 
This can be attributed to ephemeral snow being more influenced by ablation, introducing 282 
additional noise into the snowfall-peak SWE relationship.  283 

Given the large range in 𝑆#%% across snow products, including the sizeable gap between 284 
ERA5/ERA5-land and the other snow products (GLDAS and MERRA2), we also separately 285 
regressed 𝑆𝑊𝐸!"#$ 	vs. 𝑆#%% for these two groups of snow products (Text S9 and Figure S5). In 286 
doing so, the  𝑅*  values drop to 58% and 43% respectively (from the global value of 0.88), 287 
indicating that 𝐴#%%  is a more important (explaining 42% and 57% of 𝑆𝑊𝐸!"#$  uncertainty, 288 
respectively) when examined in certain subsets of products.  289 

The results above indicate (not surprisingly) that 𝑆#%% 	variations are the primary factor in 290 
explaining 𝑆𝑊𝐸!"#$ variations in HMA, while ablation plays an important role. To decipher the 291 
degree to which those variations are explained by variations in precipitation vs. rain-snow 292 
partitioning across snow products, the accumulation-season snowfall volume (𝑆#%%) was regressed 293 
against precipitation volume (𝑃#%% ) (Text S9 and Figure S6). 𝑆#%%  shows very high linear 294 
dependence on 𝑃#%%  (𝑅*  up to 0.96), and there is a relatively minor difference when adding 295 
accumulation-season air temperature into the regression (𝑅*	slightly increased to ~0.98). This 296 
identifies the key role of precipitation in contributing to 𝑆𝑊𝐸!"#$ uncertainties (where similar 297 
results are found in Cho et al., 2022 in the WUS), highlighting the top priority of reducing 298 
precipitation uncertainties for accurate SWE estimation.  299 

5 Conclusion 300 
Accurate knowledge of peak snow water storage in HMA is a pre-requisite for predicting 301 

warm-season runoff, which is critical for the water supply to the large population and agricultural 302 
production in downstream areas. Results in this study confirm that our current state of knowledge 303 
of this important water resource is highly uncertain. Eight globally available snow products were 304 
examined, with the use of HMASR as a reference, to specifically analyze the peak snow storage 305 
and how it is affected by accumulation vs. ablation processes during the accumulation season. The 306 
key findings are: 307 

1) The integrated pixel-wise peak snow storage (𝑆𝑊𝐸!"#$) climatology across snow products 308 
was found to be 161 km3 ± 102 km3 over HMA, with varying uncertainty levels for 309 
seasonal (110 km3 ±  74 km3) vs. ephemeral (51 km3 ±  28 km3) snow. Compared to 310 
HMASR, the other snow products on average underestimate 𝑆𝑊𝐸!"#$ by 33% (MD) with 311 
a RMSD of 52% over the entire HMA. The error and uncertainty vary across different 312 
watersheds, where on average, the snow products underestimate seasonal snow (by 47%) 313 
and overestimate ephemeral snow (by 70%), compared to HMASR. 314 

2) There exists large variability in the accumulation-season snowfall (𝑆#%%)and ablation 315 
(𝐴#%%) climatology. 𝑆#%% 	climatology was found to be 335 km3 ± 148 km3, with 51% ± 316 
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9% of the total accumulation-season snowfall lost via ablation prior to the peak snow 317 
timing. The fraction differs between seasonal (37% ± 13%) and ephemeral (67% ± 7%) 318 
snow regimes. Both 𝑆#%%  and 𝐴#%%  play important roles in determining the spatial and 319 
elevational distribution in 𝑆𝑊𝐸!"#$.  320 

3) Uncertainty in inter-product peak snow storage estimates over HMA is primarily explained 321 
by 𝑆#%% 	(88%), with 88% and 80% in seasonal and ephemeral snow regimes respectively. 322 
The sensitivity to the chosen snow product ensemble could be a caveat to the relative 323 
importance of 𝑆#%%  in explaining 𝑆𝑊𝐸!"#$  uncertainty; when the eight datasets are 324 
partitioned into two subsets (as separated by the notable gap in 𝑆#%%), 𝐴#%% was found to 325 
explain more 𝑆𝑊𝐸!"#$  variations (42% and 57%, respectively) when examined within 326 
each subset.  327 

Reducing accumulation-season uncertainty will be a key first step to properly constraining 328 
melt-season processes (i.e. by providing an accurate initial condition of stored snow) that control 329 
snowmelt rates, infiltration, and runoff. Reducing the uncertainty in HMA snow storage estimates 330 
will require improved characterization of both snowfall and ablation processes and/or better 331 
measurements of SWE to constrain models during the accumulation season. The specific drivers 332 
for snow ablation variability during the accumulation season are not explored in this work, as they 333 
are typically intertwined with individual model physics, but are also important for peak SWE 334 
estimation (Cho et al., 2022) and should be investigated in future work. 335 
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(PRECTOTCORR) obtained from https://doi.org/10.5067/7MCPBJ41Y0K6, bias-corrected 352 
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Introduction  

This supporting information provides more details on the data, methods and results presented in 
the main text. Text S1 and Table S1 give details on HMASR and the eight global snow products 
examined for the intercomparison. Text S2 to Text S6 (along with Table S2 and Figure S1 to Figure 
S3) provide more clarifications on the methods. Text S7 to Text S9 (along with Table S3 to Table 
S4; Figure S4 to Figure S6) provide supplementary information for the results.  

  



 
 

 
 

2 

Text S1. Data: Description of HMASR and eight global snow products 
The High Mountain Asia Snow Reanalysis (HMASR) and the eight global snow products are 

evaluated in this research. Characteristics for each dataset are summarized in Table S1 with details 
provided as follows:  

HMASR (Liu et al., 2021a) is a snow-specific reanalysis dataset, providing daily estimates of 
SWE at 1/225° (~500 m) resolution, available from Water Years (WYs) 2000 to 2017. Among all 
datasets examined in this work, HMASR is unique as it was specifically designed for snow 
estimation in HMA, leveraging remotely sensed fractional snow-covered area (fSCA) and an 
advanced ensemble-based data assimilation framework. It is directly constrained by snow 
observations, offering the potential of SWE evaluation at high elevations and over complex 
terrain, where in-situ stations do not exist.  

ERA5 (Hersbach et al., 2020) is the 5th generation product of ECMWF’s atmospheric 
reanalyses that provides hourly estimates at 0.25° resolution. Both in-situ snow depth 
observations and binary snow cover data from the Interactive Multi-Sensor Snow and Ice Mapping 
System (IMS) are used in its snow data assimilation (optimal interpolation) system, where snow 
cover is not used at elevations above 1500 m in the ERA5 snow scheme (Bian et al., 2019). In 
addition to the ERA5 product itself, the ERA5-land (Muñoz-Sabater et al., 2021) dataset at finer 
resolution (0.1°) is derived from the same ERA5 forcing and Land Surface model (LSM), but 
without data assimilation.  

MERRA2 (Gelaro et al., 2017) is the 2nd version of NASA’s Global Modeling and Assimilation 
Office (GMAO) reanalysis product, providing hourly estimates at 0.625° x 0.5° resolution. The 
Catchment model (CLSM) is used as the LSM and no snow data assimilation is performed. MERRA2 
uses a bias-corrected precipitation field for precipitation inputs (Reichle et al., 2017) to derive its 
land surface state estimates including SWE.  

JRA55 (Kobayashi et al., 2015) is the latest version of the Japan Meteorology Agency (JMA) 
reanalysis product that provides sub-daily (e.g. 3-hour snowfall and 6-hour SWE and air 
temperature) estimates. We selected its highest resolution (~0.5625° x 0.5616°) outputs for this 
work. JRA55 uses the Simple Biosphere (SiB) model as the LSM in deriving its estimates. Station 
observed snow depth and satellite retrieved binary snow cover from the Special Sensor 
Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) are used to 
update snow depth using the data assimilation (optimal interpolation) method. SWE estimates 
are converted from snow depth estimates by assuming a constant snow density (200 kg/m3; Onogi 
et al., 2007). The JRA55 product assimilates snow depth data from the stations over the Tibetan 
Plateau, while ERA5 does not (Onogi et al., 2007; Bian et al., 2019; Orsolini et al., 2019). 

GLDAS-2.1 (Rodell et al., 2004) is a global land data assimilation product generated by the 
NASA Goddard Space Flight Center, providing estimates at sub-daily (3-hour) and 0.25° or 1° 
resolution, available from January 2000 to present. It contains four datasets: two Noah model 
driven datasets at 0.25° and 1° resolution, one Variable Infiltration Capacity (VIC) model driven 
dataset at 1° resolution, and one Catchment (CLSM) model driven dataset at 1° resolution, 
denoted as GLDAS-Noah (0.25°), GLDAS-Noah (1°), GLDAS-VIC (1°) and GLDAS-CLSM (1°) 
hereafter. All of the GLDAS-2.1 products are generated using the same set of meteorological 
forcing inputs, without any snow data assimilation. 
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Table S1. Characteristics of the snow data products used in this study. For the globally available snow products, in addition to SWE, other forcing 

variables such as precipitation (P), air temperature (Ta) and snowfall (S) are also used. 1 Liu et al., 2021a; 2 Muñoz-Sabater et al., 2021; 3 Hersbach 

et al., 2020; 4 Rodell et al., 2004; 5 Gelaro et al., 2017; 6 Kobayashi et al., 2015 

 

Dataset Spatial 
resolution 

Temporal  
coverage   

Temporal 
resolution 

Land 
Surface 
Model 

Assimilated snow 
observations 

Available 
variables used in 
analysis 

HMASR1 

(reference) 

1/225° x 

1/225° 
1999/10 -2017/09 Daily SSiB3 Fractional snow-covered 

area from Landsat and 

MODSCAG 

SWE 

ERA5-Land2 0.1° x 0.1° 1950 - present Hourly H-TESSEL - SWE, P, Ta, S 

ERA53 0.25° x 0.25° 1950 - present Hourly H-TESSEL In situ snow depth; IMS 

snow cover (binary) 

SWE, P, Ta, S 

GLDAS-Noah (0.25°)4 0.25° x 0.25° 
 

2000/01 - present 

 

3-hour 

 

Noah - SWE, P, Ta, S 

MERRA25 0.625° x 0.5° 1979 - present Hourly Catchment - SWE, P, Ta, S 

JRA-556 0.5625° x 

0.5616° 
1958 - present  3- or 

6-hour 

 

SiB In-situ snow depth, 

SSM/I, SSMIS snow cover 

(binary) 

SWE, P, Ta, S 

GLDAS-Noah (1°) 1° x 1° 2000/01 - present 

 

3-hour 

 

Noah - SWE, P, Ta, S 

GLDAS-VIC (1°) VIC  

GLDAS-CLSM (1°) Catchment  
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Text S2. Methods: Definition of the snow accumulation season 
The snow accumulation season is defined at the pixel scale, from day of water year (DOWY) 

1 (!!) through the pixel-wise peak SWE DOWY (!"#$%; Figure S1). Defining these quantities at the 

pixel-scale isolates accumulation-season processes, while doing so at the basin or larger scale 

inevitably mixes accumulation season and melt season processes due to significant elevational 

variations within the region examined. Spatial variations in !"#$% are indicative of seasonal and 

elevational patterns in climatology, but are also a function of model-specific inputs and process 

representation. 

 

Figure S1. Maps of the 17-year climatology of pixel-wise peak SWE DOWY ("&'()) for each dataset. 
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Text S3. Methods: Snow mass balance at the pixel-scale during accumulation season 
Snow mass balance at the model pixel scale can be described as the relationship between 

SWE (denoted as swe in m), snowfall (s, in m/day) and ablation (a, in m/day): 

					 **+ $%& = $ − )	                               (S1)  

The snow accumulation season is defined at the pixel scale, from day of water year (DOWY) 

1 (!!) through the pixel-wise peak SWE DOWY (!"#$%; Figure S2): 

  ∫ + **+ $%&, -!
+!"#$
+% = ∫ [$ − )]-!+!"#$

+%             (S2) 

$%&"#$% = $$,, − )$,,            (S3) 

where $%&"#$% characterizes the net added SWE within the accumulation season at a specific 

pixel. The $$,,  and )$,, 	terms denote the cumulative snowfall and snow ablation integrated over 

the accumulation season. The variables $%&"#$% 	and $$,, 	are directly obtained from each snow 

product. Since different LSMs across products represent and handle ablation processes 

differently, )$,,  is obtained herein as the difference between $$,, 	and $%&"#$% (similar to Xu et 

al., 2019): 

)$,, = $$,, − $%&"#$%           (S4) 

It should also be noted that while most snow products showed consistency between 

integrated positive SWE increments and snowfall (Figure 1b in the main text), JRA55 consistently 

exhibits SWE changes lower than expected relative to snowfall (i.e. data assimilation increments 

appear to be mostly negative). For this reason, the diagnosed ablation (defined herein as the 

difference between $$,, 	and $%&"#$% ; Equation S4) for JRA55 is likely a mix of model-specific 

ablation processes and non-negligible data assimilation corrections. This explains why JRA55 has 

higher snowfall estimates, but among the lower SWE estimates among the datasets in Figure 1b.  
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Text S4. Methods: Seasonal, ephemeral, and persistent snow masks 
As in Liu et al. (2021b), the HMASR dataset is used to derive masks for persistent snow/ice, 

seasonal snow, and ephemeral (intermittent) snow (Figure S2). The persistent snow mask (derived 

in Liu et al., 2021b) is used to remove areas that are likely glacierized or with significant carry-over 

snow storage from one WY to the next. Seasonal and ephemeral snow pixels are distinguished 

using a threshold of 0.05 m in climatological peak SWE, where the distinction is made due to the 

expected differences in their accumulation-season characteristics (e.g. seasonal snow lasts longer, 

ephemeral snow is intermittent with shorter duration, and the latter does not have a distinct 

accumulation season). Other work uses the Sturm et al. (1995) classification that identifies 

ephemeral snow as that with the snow duration less than 60 days and snow depth below 50 cm 

(e.g. Petersky and Harpold, 2018; Wrzesien et al., 2019).  

For the purpose of assessing the peak snow storage in HMA, seasonal snow is emphasized 

in this work. Ephemeral snow is also assessed due to its vast coverage and non-negligible 

volumetric contribution to the total storage. Both are examined in this work so that the 

accumulation/ablation processes in the accumulation season are properly characterized for each 

snow regime. Moreover, areas under 1500 m elevation are screened out within the whole HMA 

domain and in all three masks (seasonal, ephemeral and persistent snow), to emphasize the focus 

on areas that are more likely to have snow (above 1500 m elevation).  

For consistency, we applied the three HMASR-derived masks to all other datasets, by 

aggregating them from the original HMASR resolution (~500 m) to the coarser resolution grids in 

each product (Figure S2). The masked areas were carefully examined to make sure they are 

comparable across datasets (Table S2). Seasonal snow regimes mainly cover the northwestern 

mountain regions (dominated by winter westerlies, covering ~23% of the total area), while 

ephemeral snow mainly covers the vast area in the central and eastern regions (dominated by 

summer monsoons, covering ~69% of the total area), with the highest mountains covered by 

persistent snow/ice (covering ~8% of the total area).  
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Figure S2. The derived seasonal snow, ephemeral snow, and persistent snow/ice masks shown 

at the native resolution of each dataset. 
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Table S2. The total domain area (above 1500 m elevation) and the area of seasonal snow, 

ephemeral snow, and persistent snow/ice in all datasets. 

Dataset 

Total Domain Area 

(above 1500 m 

elevation) 

(106 km2) 

Seasonal Snow 

Area (106 km2) 

Ephemeral Snow 

Area (106 km2) 

Persistent 

snow/ice area 

(106 km2) 

HMASR 4.14 1.00 2.88 0.26 

ERA5-land  4.13 0.97 2.78 0.38 

ERA5 4.11 0.98 2.77 0.36 

GLDAS-

Noah 

(0.25°) 

4.14 0.87 2.90 0.37 

MERRA2 4.10 0.88 2.90 0.32 

JRA55 4.14 0.97 2.81 0.35 

GLDAS-

Noah (1°) 
4.15 0.95 2.90 0.30 

GLDAS-VIC 

(1°) 
4.15 1.01 2.84 0.30 

GLDAS-

CLSM (1°) 
4.15 1.06 2.79 0.30 

Average 4.13 0.97 2.84 0.33 

Percentage 

relative to 

total area 

100% 23% 69% 8% 
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Text S5. Methods: Spatial and elevational integration 
The pixel-scale quantities of $%&"#$% , $$,,  and )$,,  are further aggregated to the full HMA 

domain and at subregional scales, with persistent snow pixels (Text S4; Figure S2) masked out 

prior to the integration. Spatial integration of these quantities yields the same relationship as 

Equation (S3): 

123"#$% = 1$,, − 4$,,            (S5) 

where 123"#$% is the pixel-wise peak SWE volume, and 1$,,  and 4$,, 	respectively denote the 

cumulative snowfall and snow ablation volume integrated over the accumulation season. All three 

quantities are aggregated across the HMA-scale or subregional-scale domain. 

Spatial integration over elevation bands is also detailed here (Figure S3). The DEM for each 

dataset (at the native resolution) is shown for a representative tile 34°N, 66°E in Figure S3a. The 

hypsometry over the whole domain (Figure S3b) shows how the areal distribution of elevation 

varies across datasets. For elevational distributions of variables (e.g. 123"#$% 	and 1$,, ), the 

native DEMs for each dataset were used to integrate into volumes by discretizing elevation bands 

using intervals of 1000 m (centered on 1500, 2500, 3500, 4500, and 5500 m). Compared with 

HMASR, all snow product DEMs have less area below 2000 m or above 3500 m, and more area in 

between (2000 – 3500 m). The hypsometry is generally consistent above 3500 m, and most 

different around 2500 m across snow products, with GLDAS (1°) showing the highest area, 

followed by JRA55 and MERRA2, while ERA5 and GLDAS (0.25°) show the least area (yet slightly 

higher than HMASR). 
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Figure S3. Illustration of dataset-specific a) DEMs for a representative tile (34°N, 66°E) at the 

native resolution and b) hypsometry over the HMA domain (masked with seasonal and ephemeral 

snow areas shown in Figure S1, with persistent snow and areas under 1500 m elevation excluded), 

integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 4500, and 5500 m). 
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Text S6: Methods: Linear regression  
As shown in many previous studies, precipitation (in particular snowfall) is often regarded 

as the key variable affecting peak SWE estimation (Clark et al., 2011; Magnusson et al., 2015; Xu 

et al., 2019; Cho et al., 2022). Along these lines, we use a simple linear regression to examine the 

relationship between 123"#$% and 1$,,: 

123"#$% = β ∗ 1$,, + 8           (S6) 

where 123"#$% and 1$,,  are available for each snow product and each WY. In the analysis below, 

the regression is used to examine both global (i.e. across all snow products and WYs) and local 

(i.e. for a single snow product across all WYs) variations.  

The β term is the regression coefficient (slope), and is derived either globally (β-./0$.) or 

locally (β1). The slope physically represents the fraction of cumulative snowfall that remains in the 

snowpack at !"#$%. In the limit of no ablation the slope would be ~1, while the occurrence of 

accumulation-season ablation will generally lead to values < 1. The ε term is the random noise, 

which is assumed to be independent of the predictor (1$,, ). To avoid collinearity, 4$,, 	is not 

explicitly included as a predictor in the linear regression, as it is simply computed as the difference 

between 1$,, 	and 123"#$% 	(Similar to Equation S4). The coefficient of determination (R2 ) is 

often used to measure the goodness of fit for the linear model, and its value can be interpreted 

as the fraction of the explained variance. The above approach provides a mechanism to determine 

the relative role of snowfall vs. ablation in contributing to peak snow storage (through the slope) 

as well as explain the variation in peak storage relative to snowfall.  
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Text S7. Results: Climatology and uncertainty in HMA-wide peak snow storage 
As referenced in the main text, Table S3 shows the 17-year climatology of 123"#$% in the 

eight global snow products, and their percent difference compared with those in HMASR.  

Table S3. 17-year climatology of ;<=&'() and the percent difference in the eight snow products 

compared to those in HMASR, over the full HMA domain and over the areas with seasonal and 

ephemeral snow.  

  HMA Seasonal Ephemeral 

Dataset 
;<=&'() 

(km3)  

% 

difference 

from 

HMASR 

;<=&'() 

(km3) 

% 

difference 

from 

HMASR 

;<=&'()
(km3) 

% 

difference 

from 

HMASR 

HMASR  239 - 210 - 30 - 

ERA5-land 341 43% 249 19% 93 210% 

ERA5 288 20% 198 -5% 90 200% 

GLDAS-Noah 

(0.25°) 
120 -50% 84 -60% 36 20% 

MERRA2 54 -77% 35 -83% 18 -38% 

JRA55 93 -61% 64 -69% 29 -3% 

GLDAS-Noah (1°) 114 -53% 76 -64% 37 25% 

GLDAS-VIC (1°) 179 -25% 113 -46% 65 119% 

GLDAS-CLSM (1°) 98 -59% 61 -71% 38 26% 

Mean (excluding 

HMASR) 
161 - 110 - 51 - 

Standard Deviation 

(excluding HMASR) 
102 - 74 - 28 - 

Mean Difference - -33% - -47% - 70% 

Root Mean Square 

Difference 
- 52% - 58% - 113% 
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Text S8. Results: Elevational distribution in the volumetric fraction of ;(33, >(33 and ;<=&'() 
climatology over the full HMA domain 

The elevational distribution of 1$,, , 4$,,  and 123"#$%  climatology over the full HMA 

domain is shown in Figure S4, with volumes normalized by total 1$,,  to present the volumetric 

fraction. Given the significant differences in snowfall across snow products, the normalization 

reflects how, for the same amount of snowfall, each snow product distributes snowfall across 

elevation and how that fraction is partitioned into 4$,,  and 123"#$% .  The elevational 

distribution over the full HMA domain exhibits a generally consistent pattern with that over the 

seasonal and ephemeral snow regimes. For convenience, we define the elevation bands centered 

on 2500 m, 3500 m and 4500 m as low-, mid- and high-elevation herein.  

The fractional 1$,,  distribution over elevation is generally consistent across snow products, 

except that MERRA2 exhibits a slightly higher fraction	at low-elevation and a lower fraction at 

high-elevation. ERA5 and ERA5-land exhibit higher 1$,,  fractions at mid-elevation (5% more than 

MERRA2) and lower fractions at high-elevation (comparable to MERRA2). The GLDAS products 

exhibits the lowest fractions at low-elevation (~ 5-8% less than MERRA2) but the highest fractions 

at high-elevation (~8% more than MERRA2).   

The fractional 4$,,  distribution is significantly more distinct across snow products. At low- 

and mid-elevation, both ERA5-land and GLDAS-VIC stand out as having the lowest fractions, while 

ERA5 and the other GLDAS products show moderate fractions (8% more than ERA5-land), and 

MERRA2 shows the highest fraction (20% more than ERA5-land). At high-elevation, ERA5-land and 

GLDAS-VIC show the least fractional 4$,,, but ERA5 exhibits a comparable fraction compared to 

ERA5-land. The other GLDAS products and MERRA2 show the highest fractions (8% more than 

ERA5-land). The extremely low ablation in ERA5-land and ERA5 at high-elevation is discussed in 

Hersbach et al. (2020) and is attributed to its single layer snow model not producing enough melt. 

The other three GLDAS products only exhibit minor difference with ~2% less fractional 4$,,  in 

GLDAS-Noah (0.25°) and 1% less fractional 4$,,  in GLDAS-Noah (1°) compared to GLDAS-CLSM at 

low-elevation, but barely exhibit any difference at mid- or high-elevation. 

The elevational distribution of fractional 123"#$%  is a direct result of fractional 1$,,  and 

4$,, . In general, ERA5-land exhibits the highest fractional 123"#$% , while MERRA2 has the 

lowest fraction, primarily because MERRA2 consistently has higher fractional 4$,, . Their 

differences are the largest (13%) at mid-elevation where MERRA2 exhibits less fractional 1$,,, and 

the smallest (5%) at low-elevation where MERRA2 exhibits more fractional 1$,,. Compared with 

ERA5-land, GLDAS-VIC shows ~7% less fractional 123"#$%  at mid-elevation, but ~6% more at 

high-elevation, primarily because of the difference in fractional 1$,,  distribution. Again, the other 

three GLDAS products exhibit a relatively consistent distribution in fractional 123"#$%, except 

for the 0.25° product, which shows a slightly higher fraction (~3%) at mid-elevation due to the 

fractional 1$,,  difference compared with other products. GLDAS also exhibits more fractional 

123"#$% than MERRA2, with the largest difference (8%) at high-elevation where GLDAS obtains 

more fractional 1$,,  but equivalent fractional 4$,, , and the smallest difference (<1%) at low-

elevation where GLDAS exhibits less fractional 1$,,  and less fractional 4$,,. These highlight the 

important role of ablation in removing snowfall differently with elevation, leading to a distinct 

distribution in fractional 123"#$% rather than just reproducing the fractional 1$,,  distribution. 
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Figure S4. Volumetric fraction of accumulation-season snowfall (;(33), ablation (>(33) and peak 

SWE (;<=&'()), integrated over 1000-m elevation bins (centered on 1500, 2500, 3500, 4500, 

and 5500 m) over the full HMA domain. The fractional distribution is obtained for each snow 

product by normalizing the distribution by the product-specific total ;(33 across all elevations. 

The top panel displays the cumulative volumetric fraction across elevation bins, and the bottom 

panel displays the absolute volumetric fraction within elevation bins. Note that the fractional 

ablation and SWE in JRA55 are not displayed here, due to its diagnosed ablation being 

overestimated as a result of its snow data assimilation updates.  
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Text S9. Results: Explanations of peak snow storage variations from accumulation-season 
snowfall and ablation 

As referenced in the main text, Table S4, Figure S5 and Figure S6 presented in this 

supplementary information are used to explain peak snow storage variations from accumulation-

season snowfall and ablation.  

Table S4 shows the linear regression statistics between 123"#$% and 1$,,  across WYs 2001-

2017, with volumes integrated over the full HMA domain, seasonal and ephemeral snow regimes. 

As introduced in Text S6, regression is performed locally (for each snow product) and globally 

(across all snow product), with the exception of JRA55, which is not included in the global linear 

regression, due to its diagnosed ablation being overestimated as a result of its snow data 

assimilation updates.  

Figure S5 shows the linear regression between 123"#$% and 1$,,  across WYs 2001-2017, 

with volumes integrated over the full HMA domain. The snow products are partitioned into two 

groups (subsets) (subset 1: GLDAS products and MERRA2, subset 2: ERA5 and ERA5-land), based 

on the notable gap between ERA5 and GLDAS seen from 1$,, , where the linear statistics are 

obtained separately within each subset as shown on Figure S5.  

Figure S6 shows the linear regression between 1$,,  and @$,,  (accumulation-season 

precipitation) across WYs 2001-2017, with volumes integrated over the full HMA domain, to 

examine how much 1$,,  variations are explained by precipitation vs. rain-snow partitioning 

across snow products. 
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Table S4: Linear regression statistics of slope (A) and B2, from global and local (snow product-

specific regressions), where all regressions are statistically significant with p-values < 0.05. Note 

that JRA55 results are only displayed here (with statistics greyed-out in the table) but not included 

in the global linear regression due to its diagnosed ablation being overestimated as a result of its 

snow data assimilation updates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slope (C) D4 
 

HMA-

wide 

Seasonal Ephemeral HMA-wide Seasonal Ephemeral 

Global 0.54 0.71 0.35 0.88 0.88 0.80 

ERA5-land 0.61 0.83 0.35 0.58 0.94 0.25 

ERA5 0.53 0.67 0.36 0.53 0.70 0.32 

GLDAS-

Noah 

(0.25°) 

0.45 0.59 0.29 0.48 0.76 0.36 

MERRA2 0.35 0.46 0.24 0.48 0.62 0.42 

JRA55 0.25 0.30 0.17 0.61 0.77 0.33 

GLDAS-

Noah (1°) 

0.45 0.58 0.29 0.46 0.76 0.35 

GLDAS-VIC 

(1°) 

0.58 0.76 0.41 0.60 0.83 0.48 

GLDAS-

CLSM (1°) 

0.44 0.55 0.33 0.46 0.66 0.37 
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Figure S5. Regression of peak SWE volume (;<=&'()) and accumulation-season snowfall (;(33) 

across WYs 2001-2017, with volumes integrated over the full HMA domain. Regression is 

performed over two subsets of datasets (subset 1: GLDAS products and MERRA2, subset 2: ERA5 

and ERA5-land).  
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Figure S6. Regression of accumulation-season snowfall (;(33) vs. precipitation (E(33) across WYs 

2001-2017, with volumes integrated over the full HMA domain. 
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